首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During surveys of phytoplasma diseases, faba bean phyllody (FBP) was observed in several locations in Fars and Bushehr provinces (southern Iran). Samples of affected plants from Borazjan (Bushehr province) and Fasa (Fars province) were used to transmit the phyllody agent to faba bean, mung bean, pea, alfalfa and periwinkle by grafting, dodder and/or vector insect. Orosius albicinctus (Distant) was identified as the vector of Borazjan (BFBP) and Fasa (FFBP) faba bean phyllody. Naturally affected faba bean plants and all inoculated plants were positive for phytoplasma by direct PCR using the P1/P7 primer pair and nested PCR using P1/P7 and R16F2n/R16R2 primer pairs. Sequencing of PCR products identified the associated phytoplasmas as members of 16SrII phytoplasma group. Phylogenetic analysis using full length 16S rRNA gene sequences also confirmed similarity of the BFBP and FFBP phytoplasmas to the 16SrII group phytoplasmas. In this analysis the FFBP phytoplasma was grouped with ’Candidatus Phytoplasma australasia’, representative of 16SrII-D subgroup, while the BFBP phytoplasma formed a discrete group close to the 16SrII-C subgroup. Restriction fragment length polymorphism (RFLP) confirmed that BFBP and FFBP phytoplasmas belong to 16SrII group. Virtual RFLP confirmed that as members of peanut witches’ broom (16SrII) phytoplasma group, BFBP and FFBP phytoplasmas belonged to 16SrII-C and16SrII-D subgroups, respectively. Phytoplasmas associated with BFBP and FFBP were shown to be serologically related to the Fars alfalfa witches’broom phytoplasma, a member of 16SrII-C subgroup. It seems that witches’broom affected alfalfa fields are natural reservoirs of the FBP phytoplasma in southern Iran.  相似文献   

2.
Two different papaya diseases have been previously reported in Cuba, Bunchy Top Symptom (BTS) associated with a phytoplasma of group 16SrII ‘Candidatus Phytoplasma aurantifolia’ and Papaya Bunchy Top (PBT), associated with a rickettsia. Regarding the regional phytosanitary impact of both diseases for the papaya crop, the present study investigated the occurrence of BTS and PBT in papaya fields in Cuba, and the possible mixed infection of phytoplasma and rickettsia pathogens associated. Papaya plants showing symptoms of BTS or PBT or both, were collected in Las Tunas and Havana provinces from January 2009 to February 2010, and evaluated for phytoplasma and rickettsia by PCR with primers targeting the 16S ribosomal RNA and the rickettsial succinate deshydrogenase (sdhA) genes, respectively. Phytoplasmas and rickettsia were individually detected in 76/86 BTS-symptomatic and 22/22 PBT-symptomatic papaya plants, and simultaneously detected in 5/86 (5.81%) of the BTS-symptomatic and 17/22 (77.27%) of the PBT-symptomatic plants. Conventional and virtual RFLP analyses of the 16S rDNA sequences revealed the presence of phytoplasmas of group 16SrI ‘Candidatus Phytoplasma asteris’ and 16SrII in papaya plants affected by BTS and PBT, and identified two new phytoplasma subgroups, 16SrI-X and 16SrII-N in papayas fields of Las Tunas, which was confirmed by phylogenetic analysis. The partial rickettsia sdhA gene sequences were 100% identical to that of the rickettsia associated with PBT in Puerto Rico. Results confirm that phytoplasmas are consistently associated with both BTS and PBT symptoms, and that mixed infections of phytoplasma and rickettsia pathogens can occur in either BTS or PBT-affected papaya fields, which implies new epidemiological constraints for the disease control.  相似文献   

3.
The sesame crop is highly susceptible to infection by phytoplasmas, a class of cell wall-less plant pathogenic bacteria (Mollicutes), which is responsible for widespread loss of sesame crops in both North and South India in recent years. Therefore, characterizing the pathogen population is required before the control measures can be devised and implemented. With molecular tools based on nested polymerase chain reaction (PCR) assays, sequencing, restriction profiling, and phylogenetic analysis, phyllody-affected sesame plants collected from nine different states of India were found to be infected by phytoplasmas belonging to two 16Sr groups, namely 16SrI and II. Two subgroups of phytoplasma −16SrI-B and 16SrII-D— were prevalent in symptomatic sesame samples collected from North India, whereas phytoplasma of only the 16SrII group was found in South India. However, the latter samples were diverse, belonging to three different subgroups (16SrII-A, II-C, and II-D). In addition, yearly phyllody-affected sesame samples from Delhi for 4 consecutive years (2007–2010) showed variation in the infecting phytoplasma: the subgroup 16SrII-D was detected in samples collected in 2007, and 16SrI-B was predominantly found in the samples collected in the subsequent years. The study also provides molecular evidence for the association between 16SrI-B phytoplasma and different symptoms in sesame crops such as fasciation, little leaf, and stunting. This is the first study to report the association of the phytoplasma subgroups 16SrII-A and II-D with sesame crops in India. This study provides a baseline for designing specific detection and molecular analysis strategies for quarantine purposes. It also highlights the need for examining the dynamics of seasonal or location-specific variation in vector populations to determine the pattern of infection outbreaks.  相似文献   

4.
Huanglongbing (HLB), one of the most devastating citrus diseases in the world, was detected in Mexico in 2009. Currently, HLB is associated with the bacteria Candidatus Liberibacter spp., although several phytoplasmas have been found from trees showing HLB-like symptoms in Brazil and China. The aim of this study was thus to determine if, in addition to ‘Ca. L. asiaticus’ (CLas), phytoplasma species are also associated with HLB-like symptoms in citrus groves of Mexico. Citrus plants exhibiting symptoms such as diffuse chlorosis, blotchy mottle and vein yellowing were collected in the Mexican States of Nayarit, Colima and Sinaloa between August 2011 and September 2012. Samples were then evaluated for phytoplasmas and CLas by PCR, using primers that respectively target the genes for the 16S ribosomal RNA and 50S ribosomal protein of the β operon (rplA-rplJ). Out of 86 HLB-symptomatic citrus plants, 54 were positive for CLas, 20 were positive for phytoplasmas, 7 were found in mixed infections with both pathogens and 19 samples were negative for CLas and phytoplasmas. Actual and virtual RFLP analyses of the 16S rDNA sequences enabled us to classify two HLB phytoplasma strains as members of the aster yellows group (16SrI) ‘Candidatus Phytoplasma asteris’, which was confirmed by phylogenetic analysis. The HLB phytoplasma strain identified from Nayarit (HLBpc-Nay-IB) belongs to subgroup B (16SrI-B), and the strains identified from Colima (HLBpc-Col-IS) and Sinaloa (HLBpc-Sin-IS) belong to subgroup S (16SrI-S). The partial ‘Ca. L. asiaticus’ rplA-rplJ gene sequences were 100% identical to the ‘Ca. L. asiaticus’ strains isolated from several countries affected by HLB. These results confirm the association of ‘Candidatus Phytoplasma asteris’ with HLB-like symptoms in citrus groves in Mexico. Nonetheless, further studies are required to fully describe the ‘Ca. L. asiaticus’ and ‘Ca. P. asteris’ interactions in citrus, which will greatly assist the design of efficient management strategies.  相似文献   

5.
由植原体引起的槟榔黄化病是海南特色经济作物槟榔种植上的一种毁灭性病害。本研究通过PCR扩增测序、序列多重比对和系统发育分析,对海南部分代表性地区槟榔致死性病原植原体的序列信息与系统发育关系进行检测分析。结果表明:本研究检测的保亭、屯昌、万宁等海南部分代表性地区的槟榔黄化植原体的16S rDNA序列一致;BLAST分析表明各株系16S rDNA与16SrI组植原体同源性为100%。序列多重比对分析表明,本研究各槟榔黄化植原体株系与海南苦棟丛枝、长春花绿变、马松子变叶、辣椒黄化皱缩、蛇婆子丛枝、细圆藤丛枝和日本洋葱黄化、美国翠菊黄化等植原体同源性为100%;与已报道的海南万宁、印度、海南三亚的槟榔黄化植原体16S rDNA序列同源性分别为99.9%、99.9%、99.8%。系统发育分析表明,本研究槟榔黄化植原体与海南苦棟丛枝、长春花绿变、马松子变叶、辣椒黄化皱缩、蛇婆子丛枝、细圆藤丛枝等株系聚于一个分枝,支持率为100%。此外,在发病槟榔叶片、花穗、心叶等组织部位均可检测到植原体。研究结果表明,海南槟榔黄化植原体与海南苦棟丛枝、长春花绿变、马松子变叶、辣椒黄化皱缩、蛇婆子丛枝、细圆藤丛枝等植原体株系的同源性极高,槟榔黄化病很可能会以这些寄主植物作为病原传播载体进行传播扩散。  相似文献   

6.
利用植原体16S rDNA通用引物R16mF2/R16mR1对海南表现变叶症状的野茼蒿样品总DNA进行PCR扩增,获得约1.4 kb的特异片段,并对扩增产物进行核苷酸序列测定。通过BLAST程序比较、系统进化树构建及iPhy Classifier分析表明,海南发生的野茼蒿变叶植原体在分类上属于花生丛枝植原体组中的A亚组,即16Sr II-A亚组。这是我国首次在野茼蒿上发现植原体病害。  相似文献   

7.
During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches'-broom growth and floral deformations, linking each disease to phytoplasmal infection. Phylogenetic and virtual RFLP analyses of the phytoplasmal 16S rRNA gene sequences amplified from DNA of diseased plants revealed that all of the individual strains present in the diverse vegetable plants were affiliated with a single ‘Candidatus Phytoplasma’ species (‘Ca. Phytoplasma aurantifolia’) and a single ribosomal subgroup (16SrII-A). While presence of subgroup 16SrII-A phytoplasma in this geographic region was reported previously, such widespread infections in diverse plant hosts are unveiled for the first time in this study. In pursuing the source of the infections, we found that areas surrounding the affected vegetable fields were extensively invaded by parthenium weeds (Parthenium hysterophorus); and many of the weed plants exhibited abnormal morphologies that were suspicious of, and later diagnosed with, phytoplasmal infections. Results from genotyping of 16S rRNA and lineage-specific immunodominant membrane protein genes revealed that the vegetable-infecting phytoplasmas and the parthenium weed phytoplasma belong to the same genetic lineage. The findings indicate that parthenium weed poses a substantial risk as a reservoir of phytoplasmal infection of nearby agricultural crops in the geographic region since the ecosystems of Yuanmou are insect-rich, and parthenium weed is known to attract diverse leafhoppers. Further studies are warranted to assess the impact of farmland invasions by the noxious weed and to devise practical measures for improved weed control.  相似文献   

8.
利用植原体16SrⅠ组通用引物对secYF1/secYR1,应用PCR技术从采白海南省儋州地区的表现典型丛枝症状的苦楝植株总DNA中扩增到约1.4kb的特异片段,将此片段克隆后进行序列测定,序列分析及系统关系树构建的结果表明,该片段长1358bp,苦楝丛枝病海南株系(Chinaberry witches'-broom phytoplasma strain Hainan,CWB-Hn)与玉米丛矮(Maize bushy sttmt,MBS)植原体聚类在同一条进化枝上;AluⅠ,MseⅠ和Tsp509Ⅰ这3种酶的电子酶切图谱表明,CWB-Hn与MBS的酶切图谱一致,故初步判定苦楝丛枝病植原体海南株系属于secY-L亚组,在亚组水平上进一步明确了苦楝丛枝病植原体海南株系的分类地位。  相似文献   

9.
槟榔是海南省重要的热带经济作物,受多种病害组成的槟榔病理性黄化的影响,尤其是槟榔黄化病,使槟榔产量造成严重损失。为明确当前海南省槟榔病理性黄化的发生分布情况及槟榔黄化病的危害情况,本研究对全省槟榔病理性黄化的发生分布进行调查,并对全省采集的槟榔黄化样品进行植原体检测分析。结果显示,当前海南省槟榔病理性黄化发生面积为38 300.04 hm2,占全省槟榔种植面积的33.27%,主要发生在海南东部、南部及中部市(县),三亚市发生率最高,为77.48%,万宁市发生面积最大,为9734.66 hm2,西部市(县)的病理性黄化发生率均低于10%;当前海南省槟榔黄化病发生面积为32 102.38 hm2,占全省槟榔种植面积的27.89%,全省各市(县)均有槟榔黄化病发生,主要在海南中部和东部地区的发病率较高,琼海市、定安县、文昌市、屯昌县及琼中县的植原体检出率分别高达100%、100%、100%、98%、95.38%,除临高县、白沙县及东方市外,其余市(县)检出率均高于50%,万宁市槟榔黄化病发生面积最大,为7909.41 hm2,其次为琼海市;每个市(县)槟榔植原体在各树体间的含量分布差异较大,定安县植原体的平均含量最高,为1443.36 copies/μL,向周边市(县)递减,除了在海南东北部市(县)的槟榔植原体含量较高外,其他市(县)植原体含量较低。以上研究表明,当前海南槟榔病理性黄化发生严重,植原体是造成海南省槟榔病理性黄化的主要病原之一。  相似文献   

10.
In the last decade, some disease occurred on our experimental farms that had caused serious losses. They were not caused by fungi, bacteria or viruses. By loop-mediated isothermal amplification (LAMP) technique, the detection results pointed to the possible pathogen as phytoplasma. The investigation results implied that phytoplasmas could cause more than 13 kinds of symptoms in almost all parts of plants in B. napus L., including witches’ broom, multi-stems, aggregate main inflorescences, and flat stems. The incidences of these phytoplasma-associated diseases in our experimental farms rose from 1.61% in 2010 to 6.00% in 2021. Some phytoplasma infected plants died without any growing points. These studies would be helpful for detecting phytoplasmas diseases, selecting disease resistant germplasm and improving varieties with disease resistances in B. napus L.  相似文献   

11.
本研究分别利用植原体16S rDNA和核糖体蛋白(ribosomal protein,rp)基因的通用引物对自然表现变叶症状的海南长春花样品总DNA进行PCR扩增,获得16S rDNA基因片段长为1 432 bp,rp基因片段长为1 211 bp。BLAST程序比较、系统进化树构建及iPhyClassifier分析表明:海南长春花变叶病是由植原体引起的,该植原体株系属于16S rⅠ-B亚组,与候选种Ca.Phytoplasma asteris相关,将其暂命名为长春花变叶病植原体海南株系(Periwinkle phyllody strain Hainan,PP-Hn)。  相似文献   

12.
A commercial preparation of the plant resistance elicitor benzothiadiazole (BTH) (Bion, Syngenta Crop Protection) was tested for its capacity to induce systemic resistance against chrysanthemum yellow phytoplasma (CYP) infection in the Chrysanthemum carinatum plant. Following one 2.4 mM BTH application, plants were exposed to CYP-infective Macrosteles quadripunctulatus leafhoppers. Symptom development and phytoplasma multiplication in the test plants were measured over time. BTH application delayed symptom development and phytoplasma multiplication in treated plants compared with the control ones. CYP titre and symptom severity were significantly lower for the first two weeks post-inoculation in treated plants compared with the control ones, suggesting that systemic acquired resistance (SAR) induced by BTH in C. carinatum is temporary. Higher concentrations of BTH resulted in phytotoxic effects involving the whitening of apical leaves. BTH application was ineffective in reducing the transmission efficiency of CYP by its leafhopper vector. Actually, in both single and group transmission tests, the proportion of infected plants was similar among BTH-treated and untreated plants. The survival of M. quadripunctulatus was unaffected by feeding on BTH-treated daisy plants. Moreover, when leafhoppers were allowed to choose between treated and untreated plants, they showed no preference. We conclude that SAR induced in daisy plants by BTH has no detrimental effects on the vector leafhopper. If the activity of BTH against phytoplasmas is confirmed also on other phytoplasma/host–plant associations, BTH applications might be included in new, more environmentally friendly, integrated management strategies of phytoplasmoses.  相似文献   

13.
海南槟榔黄化病病原物的分子鉴定   总被引:1,自引:0,他引:1  
槟榔黄化病是槟榔上的一种重要病害,如何快速检测该病原菌是防治该病的重要基础。利用植原体16SrDNA通用引物对海南感染黄化病的槟榔花苞总DNA进行巢式PCR扩增,获得约1.2kb的特异片段,并对扩增产物进行核苷酸序列测定。通过BLAST程序比较、系统进化树构建及iPhyClassifier分析表明,引起海南槟榔黄化病病原植原体属于翠菊黄化植原体组(16SrⅠ组),且为该组中一个新的亚组,即G亚组,现将其暂命名槟榔黄化植原体(Arecanut yellow leaf phytoplasma,AYL)。  相似文献   

14.
海南长春花小叶病植原体16S rDNA基因片段的比较分析   总被引:1,自引:1,他引:0  
从海南儋州地区的长春花上采集了表现小叶症状,疑似植原体感染的病样,利用植原体165 rDNA通用引物对R16mF2/R16mR1,应用PCR技术从该样品的总DNA提取物中扩增到预期大小的特异片段(约1.4kb),该片段的序列分析及系统关系树构建的结果表明,该片段与16Sr Ⅰ组中的植原体同源率均达到99%以上,而与其它组的植原体16S rDNA序列的同源率均低于96%,与16Sr Ⅰ组植原体缬草黄化、翠菊黄化、桑萎缩和玉米丛矮等在同一条进化枝上.故初步认为引起海南长春花小叶病的植原体应归属于16Sr Ⅰ组,将其暂命名为长春花小叶植原体海南株系(Periwinkle little leaf phytoplasma strain Hainan,PLL-Hn).  相似文献   

15.
利用真菌核糖体rDNA区通用引物ITS1和ITS4,扩增采集自香蕉的13株镰刀菌包括18S rDNA部分序列、ITS1-5.8S-ITS2全部序列和28S rDNA部分序列的片段,通过BLAST序列比对分析,确定13株菌为尖孢镰刀菌[Fusarium oxysporum]。采用最大简约法,以层出镰刀菌[F.proliferatum(EU151490)]和茄病镰刀菌[F.solani(GQ376116)]为外群,将13株菌的序列与BLAST检索获得的尖镰孢古巴专化型(F.oxysporum f.sp.Cubense)相应序列构建了系统发育树。系统发育分析结果显示,13株菌与NCBI登录的4个尖镰孢古巴专化型菌株一起被分成3个亚群,亚群聚类结果与回接鉴定结果及文献报道的生理小种结果完全一致。  相似文献   

16.
为推进Ogu CMS不育系统杂种优势利用,探知甘蓝型油菜Ogu CMS优良恢复系16C外源导入恢复基因Rfo携带的染色体片段大小并比较其与欧洲Ogu CMS恢复系R2000的异同,以Ogu CMS不育系81A与恢复系16C为双亲构建F2分离群体,结合38对依据萝卜参考基因组开发的SSR引物进行育性性状差异标记筛选,并构建Rfo基因连锁标记图谱。SSR标记筛选结果显示:12对SSR引物在F2分离群体不育与可育DNA混合池间表现出差异,其中R9SSR2416与R9SSR3326为两侧边缘标记位点;16C与R2000差异比较结果显示:11对SSR标记在16C与R2000间扩增有差异,其中R9SSR2421与R9SSR3282为16C特有标记位点,其余9对为R2000特有标记位点。综上结果表明,甘蓝型油菜Ogu CMS恢复系16C外源导入恢复基因染色体片段来源于萝卜R9染色体,片段大小约为3.30 Mb(Chromosome_R9:8480586-11779992),与欧洲Ogu CMS恢复系R2000恢复基因携带的外源染色体片段大小与来源均不同。  相似文献   

17.
Distributions of pubescences on leaf blade and hull in japonica rice were observed under an optical microscope. Numbers of leaf and hull pubescences in P1, P2, F1, B1, B2 and F2 generations were investigated in three combinations of japonica rice (Sidao 10A/Wuyujing 3R, Wuyujing 3A/Sidao 10R and Liuyan 189A/HR-122), and genetic analysis for these two traits were conducted by using the joint analysis method of P1, P2, F1, B2, B2 and F2 generations with the mixed major gene plus polygene inheritance models. Leaf pubescences characterized by swollen base and fine tip distributed regularly on the boundary between dark green stripe and light green stripe of leaf blade. Hull pubescences with various lengths distributed irregularly on the whole hull. Numbers of leaf pubescences in the reciprocal combinations of Sidao 10A/Wuyujing 3R and Wuyujing 3A/Sidao 10R and numbers of hull pubescences in all the three combinations were controlled by one pair of additive major genes plus additive-dominant polygenes. In the combination of Liuyan 189A/HR-122, number of leaf pubescences was controlled by one pair of additive-dominant major genes plus additive-dominant polygenes. Both numbers of leaf and hull pubescences were mainly governed by major genes.  相似文献   

18.
Canola seedling blight, caused by Rhizoctonia solani, and Fusarium spp., can result in large yield losses to canola (Brassica napus) at high inoculum pressure. The effect of inoculum density was studied by mixing different amounts of R. solani AG-2-1 and Fusarium avenaceum into a sterilized natural soil and soil-less mix (2:1, v:v) separately, and recording seedling emergence, damping-off and seedling height within ten days after seeding; root rot severity at 12 days after seeding and seed yield at harvest on canola cultivars ‘45H29’ and ‘73-77RR’. Root rot severity increased and emergence, plant height and seed yield decreased with increased inoculum density of both R. solani and F. avenaceum. For quantification of R. solani AG-2-1, a primer and TaqMan probe set (Rs21F/Rs21R/Rs21P) was designed based on the nuclear ribosomal internal transcribed spacer (ITS) region of R. solani AG-2-1. From a conventional PCR amplification, an 88-bp product was amplified from all isolates classified as AG-2-1 with the primers Rs21F and Rs21R. No product was amplified with DNA from isolates belonging to other anastomosis groups of R. solani, other pathogens or the host plant. By using quantitative PCR, DNA amounts as low as 100 fg of R. solani AG-2-1 were detected. The quantity of DNA from soil samples with different inoculum densities estimated using qPCR was highly correlated to the number of colony-forming units (cfu) obtained from the same soil samples for both R. solani AG-2-1 and F. avenaceum.  相似文献   

19.
The DNA fragments about 1 600 bp were amplified using random amplified polymorphism DNA (RAPD) primer OPA12 with the templates of mitochondrial DNA of Zhenshan 97A and Zhenshan 97B,and were sequenced.The nucleotide sequences and lengths of the fragments from Zhenshan 97A and Zhenshan 97B showed no difference.The precise length of the fragment was 1 588 bp.Sequence characterized amplification region (SCAR) primers were then developed to discriminate the cytoplasmic male sterile (CMS) lines and their maintainer lines.A specific 1 588 bp fragment could be amplified with SCAR primers,CHI19F2/CHI19R2 and CHI20F3/CHI23R3,in the mitochondrial DNA of Zhenshan 97A,but not Zhenshan 97B.Furthermore,the specific fragment could be also amplified from the total DNA from green leaf tissues of Zhenshan 97A with SCAR primers,but not Zhenshan 97B.With the corresponding primers,the specific fragment could also be amplified from the total DNA of green leaves of other two CMS lines with wild abortive type cytoplasm (CMS-WA),namely Zhenpin A and Tianfeng A,but not in their maintainer lines.Moreover,using total DNA as template,each of the four pairs of SCAR primers could also be used to amplify the 1 588 bp fragment in CMS-ID (Indonesia paddy type) line Ⅱ-32A,but not in II-32B,and the specific fragment was amplified from the DNA of both F1 and F2 seedlings of Shanyou 63.The results of detecting the genetic purity of a man-made mixture of the seeds of Zhenshan 97A using CHI20F3/CHI23R3 were completely consistent with the phenotypes.Taken together,these results indicated that the specific 1 588 bp-fragment amplified by CHI20F3/CHI23R3 was the unique amplification products of CMS mitochondrial DNA,and could be used to distinguish CMS-WA and CMS-ID lines from their corresponding maintainer lines at the seedling stage.  相似文献   

20.
利用分子标记辅助育种技术选育高抗白叶枯病恢复系   总被引:13,自引:2,他引:13  
通过常规回交育种结合分子标记辅助选择技术,已将来自IRBB24的2个抗白叶枯病基因, Xa21和Xa4, 聚合到感病的杂交稻恢复系绵恢725中。通过分子标记检测目标基因和亲本遗传背景差异分析快速获得了4个高抗白叶枯病的恢复系姊妹系R207 1、R207 2、R207 3和R207 4。采用与目标抗性基因相应的菲律宾菌系P1、P6 和7个中国病原型代表菌系(CⅠ~CⅦ)对4个姊妹系及其杂交组合进行田间接种。结果表明,这些姊妹系及所配制的杂交组合抗病性强、抗谱广,其中杂交组合G46A/R207 2具有良好的产量潜力,将R207 2定名为蜀恢207。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号