首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭存杰  张来斌  陈喆  梁伟  郭晓燕 《油气储运》2016,(10):1092-1097
为了研究陕京管道滑坡灾害监测预警技术,以管道地质灾害监测方法为理论依据,选取研究区内典型滑坡体为研究对象,综合考虑地灾点的发育情况、典型性、对管道的威胁程度、设备的保存安全性等条件,设计监测方案,安装一体化专业监测设备,收集地灾点的降雨量、滑坡地表裂缝位移及深部位移等监测数据。分析监测数据发现:陕京管道沿线滑坡现阶段变形量很小,整体较稳定,不会因发生滑坡而威胁管道隧道安全。预警分析发现:无雨状态下,滑坡体最稳定,滑坡体最大位移最小。随着降雨量的增多,滑坡体稳定性下降,最大位移变大,体现在滑坡体上即裂缝增大。为了得到一个预警的变形值,分别取3种工况时的80%位移值为预警标准值,分级确定了预警标准位移。  相似文献   

2.
管道在外部载荷的作用下会发生局部位移及弯曲变形,当与管体腐蚀、制造或焊缝等缺陷叠加时,在应力集中点将引起管体失效,严重威胁人员安全、造成环境污染及经济损失。基于惯性测绘的内检测技术是一种准确识别管道弯曲变形及检测弯曲应变的有效方法,在对管道全线实施检测的同时以弯曲应变的形式反映管道在外部载荷作用下的弯曲状态。中俄东线天然气管道境内段途经沼泽、高寒冻融等地质不稳定区域,洪水、地震等自然灾害引起土体移动也会对管体施加外部载荷,在外力作用下管体发生弯曲的可能性较大,易因局部应力集中形成高风险点,通过分析管道弯曲应变数据,结合几何/漏磁内检测发现的管体缺陷,可以更加精确地识别定位对管道安全运行构成潜在威胁的高风险点,有针对性地制定监测、修复计划,为中俄东线天然气管道的安全运行提供有效保障。(图7,参21)  相似文献   

3.
长输油气管道在一般地段埋地敷设,当经过季节性斜坡冻土区时,由于冻融引起的坡体蠕滑作用导致管道产生附加应力。通过安装管道轴向应变传感器可监测坡体蠕滑作用导致的管道轴向应力变化,但开展管道强度评价时,需要明确管道应变监测初始应力,由于应力检测技术多在实验室环境下使用,工程上并不成熟,目前行业内一般通过有限元建模计算方法获取管道应变监测初始应力。以涩宁兰一线某穿越斜坡季节性冻土地貌埋地管道为例,介绍了位于季节性冻土区的管道当前面临的主要风险、土体位移分布形式与位移的确定,以及季节性冻土区斜坡体位移作用下管道的受力和变形情况。采用向量式有限元方法,利用空间梁单元和非线性土弹簧模型对灾害点管道进行了数值模拟,并得到管道现状应力分布,为确定管道本体应变监测截面位置、估计管道现状应力分布及管道安全评价提供依据。  相似文献   

4.
为了研究陕京管道滑坡灾害监测预警技术,以管道地质灾害监测方法为理论依据,选取研究区内典型滑坡体为研究对象,综合考虑地灾点的发育情况、典型性、对管道的威胁程度、设备的保存安全性等条件,设计监测方案,安装一体化专业监测设备,收集地灾点的降雨量、滑坡地表裂缝位移及深部位移等监测数据。分析监测数据发现:陕京管道沿线滑坡现阶段变形量很小,整体较稳定,不会因发生滑坡而威胁管道隧道安全。预警分析发现:无雨状态下,滑坡体最稳定,滑坡体最大位移最小。随着降雨量的增多,滑坡体稳定性下降,最大位移变大,体现在滑坡体上即裂缝增大。为了得到一个预警的变形值,分别取3种工况时的80%位移值为预警标准值,分级确定了预警标准位移。  相似文献   

5.
基于精细化设计水下盾构隧道管道支座的目的,以西气东输三线中卫黄河盾构穿越为例,通过采用CAESAR_Ⅱ软件对整个穿越段管道进行应力和位移分析,最终指导管道支座的设计。中卫黄河盾构隧道穿越处设计压力为12 MPa,管径为1 219 mm。盾构隧道两岸竖井中心之间水平投影长度为450 m,隧道内预留西四线管道。盾构内管道安装分为竖井内管道安装和平巷内管道安装,竖井内管道作为穿越段整体管道进行补偿计算。平巷内输气管道均安装在已浇筑好的钢筋混凝土管道支座上,西三线和西四线并排敷设,管道中心距为2.08 m,支座沿管道轴向间距每15 m一组,与管道之间铺10 mm厚绝缘橡胶板,并用管卡固定管道,防止管道运营时侧移和上浮。盾构隧道竖井中心两侧25 m外各设置固定墩1个,西三线和西四线管道合用1个固定墩。经软件计算得出支座管箍与管道之间的间隙距离,模拟了管道的位移情况,从而使管道支座设计更加精细化。  相似文献   

6.
李强  陈德利  屈洋 《油气储运》2015,(2):190-194
通过管道震动加速度动态实时监测和管道本体变形实时监测相结合的方法,对受爆破影响区域的管道进行监测,并通过数据处理和分析,得到了爆破发生时管道的最大震动加速度和速度,以及爆破发生时刻和爆破前后的管道本体实时应变。结果表明:爆破时,垂直于管道的水平方向冲击最大,但与之相关的最大震动速度远远小于安全指标,平行于管道的水平方向和垂直于管道方向的加速度测量值较小。爆破对管道的变形有一定影响,但这种影响极其微弱,对管体不会产生破坏性影响。综合管道动态监测结果和管道本体应变监测结果表明,在与管道垂直距离200 m外及相当的爆破能量下的爆破对管道本体的影响极其微弱,管道处于安全状态。  相似文献   

7.
中俄东线天然气管道黑龙江穿越段采用内径为2.44 m的小断面盾构隧道,安装管道直径为1 422 mm,无法采用在盾构隧道平巷内焊接的常规方法。基于此,设计了针对小断面、长隧道内安装大口径管道的技术方案。该方案在始发井内完成管道组对、焊接、检验及防腐等工作,在接收井内通过牵引设备将管道牵引到接收井一端,实现盾构内管道安装。基于此,研制了适用于工程特殊需要的发送轨道、滚动支座及补偿器等配套设施。数值模拟计算和现场试验结果表明:该管道安装方案可行,可以为小断面、长隧道穿越内安装大口径管道提供可靠的借鉴经验。  相似文献   

8.
梁-壳单元通常被联合用来模拟输气管道,然而梁-壳单元的分布及其连接处的耦合问题一直是一个研究难点。为此,根据地震断层作用下输气管道变形特点,建立了基于梁-壳混合教学单元的输气管道穿越地震断层有限元模型,并考虑管道变形的计算效率和计算精度兼顾的要求,合理配置了梁、壳单元的分布。利用该模型,讨论了管道埋深、穿越角度、位错量、裂缝宽度对输气管道力学行为的影响规律。结果表明:管道埋深、穿越角度及位错量对管道位移及应变的影响较大,裂缝宽度影响较小;管道浅埋可以有效降低输气管道最大轴向应变;随着输气管道穿越角度的增大,最大轴向位移和最大轴向压缩应变明显减小;在断层两侧,应变及位移较大,远离断层,应变及位移迅速下降。研究成果为输气管道穿越地震断层的安全评价提供了理论依据。  相似文献   

9.
针对某长输天然气管道河流穿越管段爆裂失效事故,通过断口形貌、无损检测、化学成分、微观组织、力学性能分析以及有限元模拟计算等方法,进行事故原因分析.结果表明:该管段在穿越施工空管回拖过程中因承受某种集中载荷作用而使管体局部受力发生形变,产生局部屈曲失稳;该失稳管段在输气运行过程中,屈曲形变部位存在明显的应力集中,导致管体外壁形变硬化处的微裂纹扩展并失效.因此,管体失稳至裂纹扩展及防腐层破裂是管体泄漏失效爆裂的主要原因.(表4,图13,参15)  相似文献   

10.
针对冻土区管道易受融沉、冻胀等地质灾害的影响而发生管道位移、形变的问题,开发了一种高精度的惯性导航系统对管道实施内检测,从而获得检测器的位置、姿态信息,并在此基础上,提出了管道弯曲应变及位移的计算方法。在计算位移时,针对管道计算轨迹发散的问题,提出了使用外部特征点修正误差的方法;在计算管道位移或弯曲应变的变化量时,针对重复检测中存在里程差的问题,提出了将固定长度管道数据对齐后再做对比的方法。通过现场实际应用验证了该系统及方法的可行性及检测精度,为管道事故的预防和合理维护提供了科学依据,对保证冻土区长输油气管道的安全运行具有现实意义。  相似文献   

11.
王世伟 《油气储运》2013,32(4):399-401,405
基于隧道穿越管道进出洞口的约束状态及应力分析,提出了隧道进出口弯管设计形状简化的处理方法。推导了弯管参数简化后的受力平衡方程,利用该方程导出最大弯矩状态下的管壁应力σBmax的计算方法。可利用最大计算应力选取或验算弯管壁厚,以保证弯管形式的安全可靠。计算结果全面反映了施工安装阶段的实际情况,体现了隧道内管道施工安装中的工程参数,有利于工程质量的控制。(图4,参6)  相似文献   

12.
振弦式应变传感器已广泛应用于油气管道本体应力应变监测领域,但受管道运行工况、安装工艺等的影响,不同类型振弦式传感器的使用性能存在明显差异。为掌握该类传感器在油气管道应变监测中的实际使用寿命,对比监测数据误差,以点焊型和弧焊型振弦式应变传感器为研究对象,对穿越曲阜煤矿采空区的天然气管道应力状态进行连续监测,通过12年监测数据的对比分析表明:弧焊型传感器的存活率随时间线性下降,而监测数据误差呈线性增长趋势,传感器累计测量误差较大,这是由于弧焊型传感器采用防腐层安装,不能直接获取管道真实应力,且易受外界因素影响脱落所致。与弧焊型传感器相比,点焊型传感器测量数据能够真实反映管道应力应变状态,且使用寿命更长,满足持续监测对传感器最低存活率的要求。(图6,表3,参23)  相似文献   

13.
盾构法是管道穿越江河普遍采用的施工方法。以中俄东线天然气管道黑龙江盾构穿越工程中的管道安装为例,介绍了适用于大口径管道的曲线敷设技术。盾构隧道设计轴线为4%下坡段+弹性敷设段+平巷段+弹性敷设段+4%上坡段,安装直径1 420 mm、壁厚33.4 mm的K65直缝埋弧焊钢管。由于竖井操作空间有限,因此管道牵引过程不可逆。采用轨道小车运输管道+牵引的安装方式,小车面临悬空、脱轨及管道被卡风险,安装极为困难。采用小断面盾构隧道内大管径管道曲线敷设技术,解决了管道牵引系统的设计制造、管道小车在隧道曲线段的脱轨与悬空、竖井内S形管道穿针式吊装的技术难题,为今后此类盾构、顶管隧道内安装大口径管道提供了参考。  相似文献   

14.
索道布管是陡峭山地管道安装的有效施工方法,由于索道布管过程非线性明显,因此传统数值计算无法合理核算实际工况。对中缅管道改线工程中应用的索道吊装系统承载索系和索系支架受力进行建模,利用仿真优化技术分析承载索、索系支架的受力和变形状态,设计和安装了安全经济的索道吊装系统,成功解决了大口径、长距离高陡坡管道安装技术难题。结果表明:采用仿真优化技术可以对管道索道吊装系统非线性受力状态进行准确的受力、位移分析,与传统的解析计算方法相比,可以充分考虑索系的非线性状况,对实际工况进行最大程度的仿真,并能够实时读取全位置受力及位移变化,确保索道在山地管道施工中的安全使用,为以后山地管道建设提供借鉴。  相似文献   

15.
兰州-成都原油管道工程、中卫-贵阳联络线康县隧道穿越段管道双管敷设难度大,传统的隧道管道安装施工设备、机具无法在隧道内使用.针对隧道内管道双管施工空间狭小问题,研制出隧道专用自行龙门架、机械运管炮车和隧道焊接小车,并针对两种不同管材提出焊接施工要求.详细介绍了隧道管道安装流水作业施工方法中施工前准备、运管、布管、管道组对和焊接等安装流程及操作要点.同传统的隧道轨道安装法相比,该管道安装施工操作方便、施工进度快、经济效益显著.(表1,图5,参4)  相似文献   

16.
孙兆强 《油气储运》2004,23(3):59-60
结合魏荆输油管道唐白河穿越段水下隧道改造工程,综合分析了热油管道在水下隧道穿越施工中的安全性、热力性和敷设方式的可行性, 指出热油管道采用水下隧道穿越方式具有安全性高、散热损失小、可满足管道在温差变形作用下的安全运行等特点.  相似文献   

17.
冯新  张宇  刘洪飞  王子豪  钟胜 《油气储运》2017,(11):1251-1257
油气管道结构状态退化以及损伤缺陷的发生具有显著的时空分布不确定性。为了实时评估埋地管道的结构状态,提出一种基于分布式光纤传感器的埋地管道监测方案,建立了基于分布式监测数据的埋地管道结构状态的定量评估方法,并以某埋地燃气管道为例加以应用。结果表明:基于分布式光纤传感器的监测方案,可与埋地管道施工工艺无缝衔接,便于实际操作;分布式光纤传感器可以准确获得埋地管道弯曲应变与管体温度的时空演化行为,克服了常用点式传感器无法覆盖管道整体的局限;利用管道弯曲应变、管体温度的分布式监测数据,再辅以管道的材料、几何参数以及内压监测数据,可以实时、定量评估埋地管道的结构状态,从而为埋地管道全寿命周期结构状态的评估提供依据。  相似文献   

18.
冻胀融沉引起的土壤位移会对埋地管道的结构安全造成重大威胁。基于非线性有限元程序ABAQUS,采用INP编程语言建立融沉位移作用下管道应力应变响应的参数化数值求解模型,并试验验证了模型的准确性。通过影响因素分析,探究了管道的应变分布特性。结果表明:对于穿越多冰冻土区的X65管道,在融沉区宽度较小的情况下,管道内最大轴向应变位于融沉区中心,管道拉应变大于压应变,整体受拉;当融沉宽度大于60 m时,管道随地表一同融沉,管道最大应变体现为弯曲应变,最大应变位于融沉区边缘,融沉区宽度增加不会对管道应变产生明显影响。因此,在冻土融沉区地灾监测中应重点识别融沉区范围,对于小范围融沉,需要对融沉区中心和边缘应变状态加以监控;对于60 m以上融沉区,则需要对融沉区边缘加以监控。(图9,参23)  相似文献   

19.
针对漠大管道在沿线多年冻土区面临的冻胀融沉灾害,提出了基于全站仪测量的管道位移监测技术。详细介绍了管道位移监测原理,设计了基准桩和标志桩结构,采取了3项措施保证基准桩的稳定。在漠大管道漠河首站-加格达奇泵站区间,选取了9个高风险区,安装了62套管道位移监测装置。2010年11月9日管道投产前采集了初始数据,2010年12月-2011年6月完成了5次数据采集,对监测数据进行分析发现:监测段管道未受到冻胀灾害的影响,部分监测段管道受到融沉灾害的影响。验证了该技术的可行性和有效性。  相似文献   

20.
为了保护油气管道安全,完善油气管道现行标准体系,综合研究了油气管道领域及地铁建设领域现行相关技术标准,分析了中国地铁工程建设和防护经验,调研了邻近区域内地铁与管道相互关系,从全生命周期角度系统分析了地铁施工阶段与运行阶段对管道建设和运行的影响,从油气管道安全运行角度提出了油气管道与地铁相互关系标准的制修订建议。研究表明:油气管道领域缺少邻近地铁时管道与地铁相互关系及防护措施的标准,无法对管道安全进行有效保护,应该从地铁施工时沉降及位移量的控制、地铁与管道安全间距、防护措施、沉降及位移监测、杂散电流防护等方面研究制定相关标准条款。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号