首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Non-symbiotic N2 fixation was studied under laboratory conditions in two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) incubated in a 15N-enriched atmosphere. N2 fixation was greatest with the Drummer soil (18–122 g g–1 soil, depending upon the soil treatment) and lowest with the Khurrarianwala soil (4–81 g g–1 soil). Fixation was increased by the addition of glucose, a close correlation being observed between the amount of glucose added and the amount of N2 fixed in the three soils (r = 0.96). Efficiency of N2 fixation varied with soil type and treatment and was greatest in the presence of added inorganic P. Application of Mo apparently had a negative effect on the amount and efficiency of N2 fixation in all the soils. The percentage of non-symbiotically fixed 15N in potentially mineralizable form (NH 4 + -N released in soil after a 15-day incubation period under anaerobic conditions) was low (2%–18%, depending upon the soil treatment), although most of the fixed N (up to 90%) was recovered as forms hydrolysable with 6N HCl. Recovery in hydrolysable forms was much greater for the fixed N than for the native soil N, indicating that the former was more available for uptake by plants.  相似文献   

2.
Incorporation of newly-immobilized N into major soil organic matter fractions during a cropping period under paddy and upland cropping systems in the tropics was investigated in Jawa paddy fields with and without fish cultivation and a Sumatra cassava field in Indonesia. 15N-labelled urea (15N urea) was applied as basal fertilizer, and the soil samples were collected after harvest. The percentage of distribution of the residual N in soil from 15N urea into the humic acids, fulvic acid fraction, and humin were 13.1–13.9, 19.0–20.5, and 53.4–54.3%, respectively, for the Jawa paddy soils, and 14.9, 27.4, and 52.4%, respectively, for the Sumatra cassava soil. These values were comparable to the reported ones for other climatic zones. The percentage of distribution of 15N urea-derived N into humic acids was larger than that of total N into the same fraction in all the soils. The distribution into the fulvic acid fraction was also larger for 15N urea-derived N than for total N in the Jawa soils. Humic and non-humic substances in the fulvic acid fraction were separated using insoluble polyvinylpyrrolidone (PVP) into the adsorbed and non-adsorbed fractions, respectively. Less than 5% of the 15N urea-derived N in fulvic acid fraction was detected in the PVP-adsorbed fraction (generic fulvic acids). The proportion of non-hydrolyzable N remained after boiling with 6 M HCl in the 15N urea-derived N was 9.4–13.5%, 17.3–26.7%, and 8.4–16.6% for the humic acids, generic fulvic acids, and humin, respectively. The significantly low resistance to acid hydrolysis suggested that the 15N urea-derived N was less stable than the total N in soil regardless of the fractions of humus.  相似文献   

3.
Variations in the amount and composition of immobilized nitrogen (N) in major soil organic matter fractions were investigated in a 730-day soil incubation experiment using 15N-labeled urea and 15N nuclear magnetic resonance spectroscopy with the cross polarization/magic angle spinning (15N CPMAS NMR) method. After 730 days, 24.7% of the applied N was recovered from the soil as organic N. The urea-derived N recovered from humic acids and humin decreased from 11.2 and 33.8% of the applied amount after 14 days to 1.6 and 20.4% after 730 days, respectively. When these values were corrected for the microbial biomass (MB) N, they ranged from 9.0 to 1.2% and 28 to 18%, respectively. The proportion of urea-derived N recovered from fulvic acids was low, ranging between 0.4 and 5.8% (with MB N) or 5.6% (without MB N) of the applied amount, whereas that from water-soluble nonhumic substances (WS-NHS; NHS in the fulvic acid fraction) remained high, 28–33% of the applied amount after correction for the contribution of MB N up to day 365, and decreased to 0.9% thereafter. The 15N CPMAS NMR spectra of humic acids, fulvic acids, and humin showed the largest signal at −254 to −264 ppm, corresponding to peptide/amide N. The proportions of heterocyclic, peptide/amide, guanidine/aniline, and free amino N in the urea-derived humic acid N were 3–7, 83–90, 5–7, and 2–4%, respectively. More than 80% loss of the urea-derived humic acid N did not markedly alter their composition. No time-dependent variations were also observed for the proportions of respective N functional groups in humin N, which were 3–5, 71–78, 12–17, and 6–10% in the same order as above. These results suggest the greater importance of physical stability than structural variation for the initial accumulation of organic N in soil.  相似文献   

4.
X-ray photoelectron spectroscopy(XPS) was applied to examine the N structures of soil humic substances and some of their analogues.It was found that for soil humic substances XPS method gave similar results as those obtained by ^15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method.70%-86% of total N in soil humic substances was in the form of amide,and 6%-13% was presented as ammes,with the remaining part as heterocyclic N.There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones.For fulvic acid from weathered coal and benzoquinone-(NH4)2SO4 polymer the XPS results deviated significantly from the ^15N CPMAS NMR data.  相似文献   

5.
Summary The application of liquid anhydrous NH3 to soil leads to chemical fixation of NH3 by organic matter and of NH inf4 sup+ by clay minerals. A laboratory study was conducted to ascertain the biological transformations of newly fixed liquid anhydrous 15NH3 in a Drummer silty clay loam by incubation of the 15N-labelled soil with glucose for 0, 7, 30, and 90 days and by sequential extraction of organic-matter-fixed 15NH3 with 0.15 M Na4P2O7, 0.15 M KOH, 0.1 M NaOH, and acidified dimethyl sulfoxide. About 16% of the 15NH3 injected was fixed, of which 52% was accounted for by clay fixation. The various humic fractions (fulvic acid, humic acid, and humin) were obtained, and the distribution patterns of the fixed 15NH3-N in these fractions were compared. The potential availability of the fixed 15NH3-N was also estimated. The percentage of the 15NH3 recovered as organic-matter-fixed 15NH3 decreased as the length of incubation increased (to 28% after 90 days); the decrease was attributed in part to an increase in the amount recovered as clay-fixed NH inf4 sup+ (from 52 to 64%). Changes in the distribution of the organic-matter-fixed 15NH3-N in the humic fractions included: (1) an increase in the relative amount of the fixed 15NH3 as humic acid in both the Na4P2O7 and KOH extracts, (2) an increase in the percentage of organic-matter-fixed 15NH3-N in the fulvic acid fractions as high-molecular-weight components (determined by dialysis) or as generic fulvic acid (determined by sorption-desorption from XAD-8 resin), and (3) an increase in the percentage of the organic-matter-fixed 15NH3 as humin. The potential availability of the organic-matter-fixed 15NH3-N decreased as the length of the incubation increased, from 22 to 4% over the 90-day incubation period, and was correlated significantly (0.05 level) with Na4P2O7-extractable N. These results suggest that organic-matter-fixed liquid anhydrous NH3 is initially more labile than the native soil N but becomes less labile with time.  相似文献   

6.
Summary Four soils with 6, 12, 23, and 47% of clay were incubated for 5 years with 15N-labeled (NH4 2SO4 and hemicellulose. The incubations took place at 20°C and 55% water-holding capacity. Samples of whole soils, and clay- (<2 m) and silt-(2–20 m) size fractions (isolated by ultrasonic dispersion and gravity sedimentation) were analysed for labeled and native mineral-fixed ammonium. Mineral-fixed ammonium in non-incubated soil samples accounted for 3.4%–8.3% of the total N and showed a close positive correlation with the soil clay content (r 2 = 0.997). After 5 years of incubation, the content of mineral-fixed ammonium in the clay fraction was 255–430 g N g–1, corresponding to 71%–82% of the mineral-fixed ammonium in whole soils. Values for silt were 72–166 g N g–1 (14%–33% of whole soil content). In the soils with 6% and 12% clay, less than 1 % of the labeled clay N was present as mineral-fixed ammonium. In the soil with 23% clay, 3% of the labeled N in the clay was mineral-fixed ammonium. Labeled mineral-fixed ammonium was not detected in the silt fractions. For whole soils, and clay and silt fractions, the proportion of native N present as mineral-fixed ammonium varied between 3% and 6%. In contrast, the proportion of labeled N found as mineral-fixed ammonium in the soil with 4701o clay was 23%, 38% and 31% for clay, silt, and whole-soil samples, respectively. Corresponding values for native mineral-fixed ammonium were 12%, 16%, and 10%. Consequently, studies based on soil particle-size fractions and addressing the N turnover in clay-rich soils should consider the pool of mineral-fixed ammonium, especially when comparing results from different size fractions with those from fractions isolated from soils of a widely different textural composition.  相似文献   

7.
Summary Laboratory batch incubation experiments were conducted to determine in fate of urea-15N applied to floodwater of four rice soils with established oxidized and reduced soil layers. Diffusion-dependent urea hydrolysis was rapid in all soils, with rates ranging from 0.0107 to 0.0159 h-1 and a mean rate of 0.0131 h-1. Rapid loss of 53%–65% applied urea-15N occurred during the first 8 days after application, primarily by NH3 volatilization. At the end of 70 days, an additional 20%–30% of applied urea-15N was lost, primarily through nitrification-denitrification processes. The soil types showed significant differences in total applied urea-15 recovery. Conversion of urea-15N to N2-15N provided direct evidence of urea hydrolysis followed by nitrification-denitrification in flooded soils.Joint contribution from the University of Florida and Louisiana State University. Florida Experimental Stations Journal Series No R-00501  相似文献   

8.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

9.
Summary The major agronomic concern with NH3 loss from urea-containing fertilizers is the effect of these losses on crop yields and N fertilizer efficiency. In this 2-year study, NH3 volatilization from surface-applied N fertilizers was measured in the field, and the effects of the NH3 losses detected on corn (Zea mays L.) and orchardgrass (Dactylis glomerata L.) yield and N uptake were determined. For corn, NH4NO3 (AN), a urea-AN solution (UAN), or urea, were surface-broadcast at rates of 0, 56 and 112 kg N ha–1 on a Plano silt loam (Typic Argiudoll) and on a Fayette silt loam (Typic Hapludalf). Urea and AN (0 and 67 kg N ha–1) were surface-applied to grass pasture on the Fayette silt loam. Significant NH3 losses from urea-containing N sources were detected in one of four corn experiments (12%–16% of applied N) and in both experiments with grass pasture (9%–19% of applied N). When these losses occurred, corn grain yields with UAN and urea were 1.0 and 1.5 Mg ha–1, respectively, lower than yields with AN, and orchardgrass dry matter yields with urea were 0.27 to 0.74 Mg ha–1 lower than with AN. Significant differences in crop N uptake between N sources were detected, but apparent NH3 loss based on N uptake differences was not equal to field measurements of NH3 loss. Rainfall following N application markedly influenced NH3 volatilization. In corn experiments, NH3 loss was low and yields with all N sources were similar when at least 2.5 mm of rainfall occurred within 4 days after N application. Rainfall within 3 days after N application did not prevent significant yield reductions due to NH3 loss from urea in grass pasture experiments.  相似文献   

10.
A sandy loam soil was mixed with three different amounts of quartz sand and incubated with (15NH4)2SO4 (60 g N g-1 soil) and fresh or anaerobically stored sheep manure (60 g g-1 soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days of incubation at 20°C. After 7 days, the amount of unlabelled inorganic N in the manure-treated soils was 6–10 g N g-1 soil higher than in soils amended with only (15NH4)2SO4. However, due to immobilization of labelled inorganic N, the resulting net mineralization of N from manure was insignificant or slightly negative in the three soil-sand mixtures (100% soil+0% quartz sand; 50% soil+50% quartz sand; 25% soil+75% quartz sand). After 84 days, the cumulative CO2 evolution and the net mineralization of N from the fresh manure were highest in the soil-sand mixutre with the lowest clay content (4% clay); 28% fo the manure C and 18% of the manure N were net mineralized. There was no significant difference between the soil-sand mixtures containing 8% and 16% clay, in which 24% of the manure C and -1% to 4% of the manure N were net mineralized. The higher net mineralization of N in the soil-sand mixture with the lowest clay content was probably caused by a higher remineralization of immobilized N in this soil-sand mixture. Anaerobic storage of the manure reduced the CO2 evolution rates from the manure C in the three soil-sand mixtures during the initial weeks of decomposition. However, there was no effect of storage on net mineralization of N at the end of the incubation period. Hence, there was no apparent relationship between net mineralization of manure N and C.  相似文献   

11.
The fate of fertilizer N applied with different irrigation amounts in tobacco fields was quantitatively studied by applying 15N double-labelled NH4NO3 in lysimeters. The 15N (fertilizer N originating from the fertilizer applied in 2011) in tobacco plants, 15N in soils and 15N loss were observed continuously from 2011 to 2014. The results showed that 21.6% of 15N was utilized by tobacco plants, 72.1% remained in the 0–60 cm soil layer and 6.3% was lost from the soil–plant system after the first season’s harvest (2011) of flue-cured tobacco. During the four seasons from 2011 to 2014, cumulative utilization of 15N by tobacco plants was 34.3%, while 54.2% remained in the 0–60 cm soil layer, and 11.5% was lost via mechanisms such as leaching and volatilization. The fate of 15N in terms of accumulation in plants and soils or losses from the soil–plant system from 2012 to 2014 was greatly affected by the fertilizer and irrigation management strategies in 2011. The results of this investigation suggest that the major amount of fertilizer N applied during the first season remains available in the soil for utilization by tobacco plants after 4 years.  相似文献   

12.
In a sandy soil containing 15N-labeled active (soluble and easily degradable) and non-labelled passive (recalcitrant) fractions of soil organic matter, the rate of net N mineralization (solubilization) was determined during a 55-day incubation at 25°C, 63% water-holding capacity and different levels of soil extracellular-enzyme activities. The active fraction of soil N was labelled by preincubation (at 5°C and 74% water-holding capacity for 6 months) of soil amended with 15N-labeled plant material. Increases in the activity of extracellular-enzymes in soil were induced by the addition of glucose and KH2PO4 at the beginning of the incubation. The results show that the contents of total soluble N (NO 3 –N+NH 4 + –N + soluble organic N) were significantly higher in glucose-amended soil compared to the unamended soil. The increases in soluble N in soil amended with 1 and 2 mg glucose g-1 dry soil corresponded to a mean rate of net solubilization of 7.9±1.4 and 18.8±0.7 nmol N g-1 dry soil day-1, respectively. The mean rate of net N solubilization (3.6±1.0 nmol N g-1 dry soil day-1) in unamended soil was significantly lower than those of glucose amended soils. The content of 15N in total soluble N in soil amended with 2 mg glucose, for example, was diluted from 3.11±0.08 atom% before the incubation to 2.77±0.03 atom% after 55 days. This indicates that 89% of soluble-N accumulated in soil by the end of the incubation originated from the active fraction of soil N and the rest, estimated at 11%, originated from the passive fraction. The activities of soluble and total proteases as well as the rate of N solubilization in the soil increased with the application of glucose. The activity of these extracellular enzymes was highly correlated with the rates of net N solubilization. Thus, increases in extracellular-enzyme activities in glucose-amended soils had a priming effect on the solubilization of 15N-labeled active and non-labeled passive fractions of soil organic N. It seems that the activity of extracellular-enzymes expressed in terms of total and soluble protease activities could be a rate-limiting factor in the processes of soil organic N solubilization.  相似文献   

13.
Measurements of N transformation rates in tropical forest soils are commonly conducted in the laboratory from disturbed or intact soil cores. On four sites with Andisol soils under old-growth forests of Panama and Ecuador, we compared N transformation rates measured from laboratory incubation (at soil temperatures of the sites) of intact soil cores after a period of cold storage (at 5 °C) with measurements conducted in situ. Laboratory measurements from stored soil cores showed lower gross N mineralization and NH4+ consumption rates and higher gross nitrification and NO3 immobilization rates than the in-situ measurements. We conclude that cold storage and laboratory incubation change the soils to such an extent that N cycling rates do not reflect field conditions. The only reliable way to measure N transformation rates of tropical forest soils is in-situ incubation and mineral N extraction in the field.  相似文献   

14.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

15.
Soil organic matter was extracted by a mixture of O.IM Na4P2O: O.IM NaOH from a chronosequence of weakly weathered soils developed on aeolian sand, and fractionated into humin (non-extractable), humic acid, and fulvic acid. The mass of total organic carbon in the profiles, the 14C content and the 13C/12C ratios were also determined. The weight of total carbon increased rapidly at first and then gradually without attaining a steady state. This trend was also shown by the humin and fulvic acid fractions, but the humic acid fraction appeared to have reached a maximum after about 3000 years. The order of total weights of the organic fractions was humin > fulvic acid > humic acid. The evidence suggests that the proportions of the humic fractions formed by decomposition are related to soil differences but not to vegetation. The greater part of the plant material found in the soils appears in the humin and fulvic acid fractions.  相似文献   

16.
Management of N fertilization depends not only on the mineral N measured at the beginning of the growing season but also on the status of the low-molecular-weight organic-N fraction. Our study was conducted to analyze how much of the 15N applied in labeled cornshoot tissue would be recovered in 0.01 M CaCl2-extractable 15N fractions and wheter a decrease in the CaCl2-extractable 15N fraction quantitatively followed the trend in net mineralization of the 15N applied in corn-shoot tissue during an incubation period. The effects of adding 15N-labeled young corn-shoot tissue to a sandy soil and a clay soil were investigated for 46 days in an aerobic incubation experiment at 25°C. The application of 80 mg N kg-1 soil in the form of labeled corn-shoot tissue (24.62 mg 15N kg-1 soil) resulted in a significant initial increase, followed by a decrease the labeled organic-N fraction in comparison with the untreated soils during the incubation. The labeled organic-N fraction was significantly higher in the sandy soil than in the clay soil until the 4th day of incubation. The decrease in labeled organic N in the sandy soil resulted in a subsequent increase in 15NO inf3 sup- during the incubation. Ammonification of applied plant N resulted in a significant increase in the 1 M HCl-extractable non-exchangeable 15NH inf4 sup+ fraction in the clay soik, owing to the vermiculite content. The 15N recovery was analyzed by the 0.01 M CaCl2 extraction method; at the beginning of the incubation experiment, recovery was 37.0% in the sandy soil and 36.7% in the clay soil. After 46 days of incubation, recovery increased to 47.2 and 43.8% in the sandy and clay soils, respectively. Net mineralization of the 15N applied in corn-shoot tissue determined after the 46-day incubation was 6.60 mg 15N kg-1 soil (=34.9% of the applied organic 15N) and 4.37 mg 15N kg-1 soil (=23.1% of the applied organic 15N) in the sandy and the clay soils, respectively. The decrease in the labeled organic-N fraction extracted by 0.01 M CaCl2 over the whole incubation period was 3.14 and 2.33 mg 15N kg-1 soil in the sandy and clay soil, respectively. These results indicate that net mineralization of 15N was not consistent with the decrease in the labeled organic-N fraction. This may have been due to the inability of 0.01 M CaCl2 to extract or desorb all of the applied organic 15N that was mineralized during the incubation period.  相似文献   

17.
A laboratory soil incubation and a pot experiment with ryegrass were carried out in order to examine the extractability of microbial biomass N by using either 10-mM CaCl2 extraction or the electro-ultrafiltration (EUF) method. The aim of the experiment was to test the hypothesis whether the organic N (Norg) extracted by EUF or CaCl2 from dried soil samples represents a part of the microbial biomass. For the laboratory incubation a 15N-labelled Escherichia coli suspension was mixed with the soil. For the pot experiment a suspension of 15N-labelled bacteria was applied which had previously been isolated from the soil used. Soil samples of both treatments, with and without applied bacterial suspension, were extracted by EUF and CaCl2. The extractability of applied microbial biomass was estimated from the difference in extractable Norg between the two treatments. In addition, the N isotopic composition in the upper plant matter, in the soil, and in organic and inorganic N fractions of EUF and CaCl2 extracts was analysed. Both experiments showed that the applied microbial biomass was highly accessible to mineralization and thus represented potentially mineralizable N. However, this mineralizable N was not extractable by CaCl2 or by the EUF method. It was, therefore, concluded that the organic N released on soil drying and which was thus extractable was derived from the non-biomass soil organic matter. The result suggests that both extraction methods may provide a suitable index for mineralizable N only in cases where the decomposable organic substrates are derived mainly from sources other than the living soil biota.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

18.
Summary Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using 15N isotopic dilution were carried out in nutrient solution and saline soil. In the nutrient solution, E. coli inoculated plants were taken as non-nitrogen-fixing control. It was observed that nearly 60%–80% of the plant N was derived from atmospheric fixation. Estimations based on the N difference method gave much lower values (18%–35%). In experiments with saline soil which was initially sterilized with chloroform fumigation, a mixed culture of N2-fixing rhizospheric isolates from kallar grass roots was inoculated and planted to kallar grass. Uninoculated treatments were regarded as controls. The soil was previously labelled with 15N by adding cellulose and (15NH4)2SO4. The results of these studies showed fixation values of 6%–32% when estimated by 15N dilution, whereas by the N difference method 54% of the plant N was estimated to be derived from fixation. This discrepancy is due to the increase in root proliferation due to inoculation, which results in greater uptake of soil N. The distribution of 15N in different fractions of the soil-N indicted isotopic dilution due to bacterial fixation of atmospheric N2.  相似文献   

19.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

20.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号