首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The serological reactivity in indirect ELISA of five different bluetongue virus (BTV) serotypes (4, 10, 15, 16 & 20) was compared using polyclonal antisera raised against virus particles and an outer structural protein, VP2. Rabbit and sheep antisera against BTV-10 produced higher ELISA values with their homologous antigens than with heterologous serotypes. A hyperimmune rabbit serum specific for virus particles was able to distinguish heterologous serotypes from each other, but a sheep serum from an infected animal was not. An antiserum directed against VP2, the protein responsible for serotype specificity in neutralization tests, was not serotype-specific in ELISA and cross-reacted with other serotypes. The discriminatory ability of a BTV-4 antiserum was improved by cross-absorption with heterologous antigens. This greatly reduced the ELISA signals with heterologous serotypes and produced an antiserum that was effectively serotype-specific.  相似文献   

2.
The double-stranded RNA genome from 117 field isolates of bluetongue virus (BTV) serotypes 10, 11, 13, and 17 was blotted onto nitrocellulose paper and hybridized with a radioactively labeled cloned copy of DNA genome segment 2 of BTV-17. Viral RNA from BTV prototype strains 2, 10, 11, 13, and 17 were used as controls. The probe hybridized only with the viral RNA from prototype BTV-17 virus and field isolates of BTV-17. There was no cross hybridization with field isolates of BTV serotypes 10, 11, and 13. A complementary DNA probe developed from genes coding for BTV serotype specificity was effectively used in a slot-blot hybridization system for efficiently characterizing the viral serotype.  相似文献   

3.
Thirty-two bovine field isolates of bluetongue virus (BTV), 6 field isolates of epizootic hemorrhagic disease virus (EHDV) from deer, 4 BTV prototype serotypes (10, 11, 13, and 17), and 2 EHDV prototype serotypes (1 and 2) were coelectrophoresed, using polyacrylamide gels. Field isolates were obtained from various regions of the United States. Analysis of polyacrylamide gels and scattered plots generated for comparison of migration patterns for different isolates within each serotype of BTV revealed wide variation among the individual segments. The BTV serotypes 10 and 11 had more variation, compared with BTV serotypes 13 and 17, especially for migration of genome segment 5. A definitive correlation was not seen between the double-stranded RNA migration profiles on polyacrylamide gel electrophoresis, geographic origin, herd of origin, or year of collection. One BTV field isolate contained more than 1 electropherotype, with 2 bands at the segment-7 position, and it was further characterized as BTV serotype 11. Segments 2 and 5 of EHDV isolates were more variable in their migration than were the other gene segments. Generally, migration profiles for EHDV double-stranded RNA were more variable, compared with those of BTV isolates. Although a correlation was found between migration profiles and serotype of 2 isolates of EHDV, a study of additional EHDV isolates is required before the diversity of electrophoretic patterns of EHDV can be determined.  相似文献   

4.
Genome segments 2, 6, 8, and 9 of bluetongue virus (BTV) serotype 11, coding for P2, NS1, NS2, and P6, respectively, were cloned into pUC 8. Sizes of segment-2 and segment-6 clones indicated partial copies (55% and 80% of full length, respectively), whereas segment 8 and 9 clones represented full-length copies. Northern blot hybridizations of the clones to the 5 United States BTV prototypic serotypes (2, 10, 11, 13, and 17) revealed segment-2 clone to be serotype-specific to BTV-11, whereas segment 6, 8, and 9 clones were able to detect all serotypes to varying degrees. All clones failed to detect the related orbivirus, epizootic hemorrhagic disease virus.  相似文献   

5.
A shotgun-cloning method incorporating all 10 bluetongue virus genome segments can simultaneously produce complete and partial copies of any of the genome segments. We report here 4 different cloned probes derived from 3 genome segments and individually defined by different hybridization recognition capabilities. One probe hybridized strongly with all 5 United States prototype strains of the 5 different bluetongue virus (BTV) serotypes existing in the United States and, as such, is a strong candidate for a broad BTV diagnostic probe in the United States. Another probe derived from genome segment 2 of BTV-17 hybridized only with the BTV-17 prototypic serotype, thereby demonstrating serospecific hybridization diagnostic potential. The implications for diagnostic and genetic relationship studies on BTV, using various genetic probes, are discussed.  相似文献   

6.
The 10 double-stranded RNA (dsRNA) genome segments of various isolates of bluetongue virus (BTV) were separated on a polyacrylamide gel, denatured in NaOH, and blotted onto 2-aminophenylthioether paper. Blotted dsRNA segments were detected, using radioactive probes, a cloned copy of DNA 70% fragment of genome segment 7 of BTV-17, whole genome BTV-17 copy DNA, or whole genome BTV-17 dsRNA. These probes detected sequence diversities in different isolates of BTV and these diversities are discussed in relation to the serotype and the electrophoretic migration patterns of the isolates.  相似文献   

7.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immunodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconverted as assessed by results of the BTV IDT. In the 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no cattle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.  相似文献   

8.
The 10 double-stranded RNA gene segments of 2 vaccinal strains of bluetongue virus (BTV) serotype 10 that are used in the United States (BTV CA8 California and BT-8 Colorado), and a BTV-10 isolate recently obtained from infected sheep in Washington (state) were characterized by oligonucleotide fingerprint analyses. It was determined that although the 2 BTV-10 vaccinal strains are genotypically distinct, they are closely related both to each other and to the United States prototype BTV-10 virus. The BTV-10 field isolate appears to be a naturally occurring reassortment virus with genome segments derived from both United States prototype BTV-10 and BTV-11 viruses. However, one RNA segment of the isolate was totally unlike the corresponding segments of United States prototype BTV-10, -11, -13 and -17 viruses.  相似文献   

9.
A recombinant cDNA probe from genome segment 5 obtained from a virulent US bluetongue virus strain (BTV-11 strain UC8) was hybridized to US and Israeli BTV prototypes and field isolates. The cloned genetic probe hybridized with US BTV prototype 10, but not with US prototypes 2, 11, 13, and 17; with the avirulent BTV-11 strain UC2; and with the Israeli prototype 10. When the probe was hybridized to field isolates from the US serotypes, it hybridized to 12 of 14 BTV-10 isolates and 4 of 17 BTV-11 samples, but not to the BTV-13 and BTV-17 samples tested. Hybridization was not observed with the Israeli field isolates studied. Results indicate that a reassortant event occurred between a strain of US BTV-10 and US BTV-11 that originated the BTV-11 strain UC8.  相似文献   

10.
After 44 years of epidemiological silence, bluetongue virus (BTV) was reintroduced in Portugal in the autumn of 2004. The first clinical cases of bluetongue disease (BT) were notified in sheep farms located in the South of Portugal, close to the Spanish border. A total of six BTV, five of serotype 4 and one of serotype 2 were isolated from sheep and cattle during the 2004-2006 epizootics. The nucleotide sequence of gene segments L2, S7 and S10 of BTV-4 prototype strain (BTV4/22045/PT04) obtained from the initial outbreak and of BTV-2 (BTV2/26629/PT05) was fully determined and compared with those from other parts of the world. The phylogenetic analysis revealed that BTV4/22045/PT04 is related to other BTV-4 strains that circulate in the Mediterranean basin since 1998, showing the highest identity (99%) with BTV-4 isolates of 2003 from Sardinia and Corsica, whereas BTV2/26629/PT05 is almost indistinguishable from the Onderstepoort BTV-2 live-attenuated vaccine strain and its related field strain isolated in Italy. Since live-attenuated BTV-2 vaccine was never used in Portugal, the isolation of this strain may represent a natural circulation of the vaccine virus used in other countries in Mediterranean Europe.  相似文献   

11.
The Australian bluetongue virus (BTV-20) was compared with six serotypes isolated in southern Africa and North America by peptide mapping of the virus proteins with group antigen properties. The p7 group antigens from each of the seven serotypes analysed did not have identical primary structures and a comparison of shared and unique tryptic peptides has been used as a means of estimating virus relationships. Whereas serological studies have suggested that BTV-20 is closely related to BTV serotypes 4 and 17, comparative peptide mapping of p7 indicates a different set of relationships with viruses from both southern Africa and North America. In contrast with cross-immune precipitation results, peptide mapping of p3 suggest that this protein is not a group specific antigen.  相似文献   

12.
13.
Genome segment 10 of bluetongue virus (BTV) serotype 11 UC8 strain was cloned and subsequently hybridized to viral double-stranded RNA extracted from 90 field isolates of BTV serotypes 10, 11, 13, and 17; the prototype strains of BTV 2, 10, 11, 13, and 17; the prototype strain epizootic hemorrhagic disease virus (EHDV) serotype 1; and 4 field isolates of EHDV serotype 2. The 90 field isolates were obtained from different counties in California, Louisiana, and Idaho during the years 1979, 1980, and 1981. The cloned genetic probe hybridized with all the BTV samples tested, showing different degrees of cross-hybridization at the stringency conditions used in this study. This indicated that BTV genome segment 10 has conserved nucleotide sequences among the BTV serotypes 2, 10, 11, 13, and 17. No cross-hybridization signals were detected between the cloned genome segment 10 of BTV 11 UC8 strain and the prototype strain of EHDV serotype 1 and the field isolates of serotype 2. This probe recognized a wide variety of BTV isolates.  相似文献   

14.
The double-stranded (ds) RNA genome segment 4 of bluetongue virus (BTV) serotype 2 was cloned and used as a serogroup-specific complementary (c) DNA probe for BTV diagnosis. A cDNA representing a 60% copy of genome segment 4 BTV-2 prototype was produced. The specificity of the cDNA probe was determined by hybridizing this probe to a northern blot of dsRNA (separated by polyacrylamide gel electrophoresis) of plaque-purified BTV-2 prototype. This cDNA probe was then used to hybridize to the RNA samples. Because the probe hybridized to all BTV samples but not to epizootic hemorrhagic disease virus samples, it appears to be a group-specific probe that could be used in BTV diagnosis.  相似文献   

15.
From 2008 to 2011, seven distinct bluetongue virus (BTV) serotypes (BTV-2, BTV-4, BTV-5, BTV-8, BTV-15, BTV-16 and BTV-24) have been identified to be circulating in diseased sheep and cattle in Israel. This paper describes the array of clinical manifestations caused by BTV in cattle in Israel. Each set of clinical manifestations has been categorised as a syndrome and six distinct clinical syndromes have been observed in dairy cattle: 'footrot-like syndrome', 'sore nose syndrome', 'subcutaneous emphysema syndrome', 'red/rough udder syndrome', 'bluetongue/epizootic haemorrhagic disease systemic syndrome' and 'maladjustment syndrome'.  相似文献   

16.
Genetic relatedness of 2 strains of bluetongue virus (BTV) serotype 11 that were isolated from the same geographic site--one from host (sheep) and the other from the vector Culicoides variipennis during an enzootic of bluetongue at Bruneau, Idaho, in August 1973--was determined by comparing the oligonucleotide fingerprint analyses of the individual double-stranded RNA segments of the genomes. It was observed that the 2 strains of BTV-11 exhibit considerable differences in their genotypes, the percentage of diversity being different for each of the corresponding RNA species of the 2 strains of BTV-11. These results indicate that more than one genotype of BTV can circulate in juxtaposition in a given geographic site. The observed genotypic diversity might be due to the accumulation of point mutations on specific RNA species or antecedent reassortment of RNA segments between different BTV in nature or both.  相似文献   

17.
In August 2000, bluetongue virus (BTV) appeared for the first time in Sardinia and, since then, the infection spread across Sicily and into the mainland of Italy involving at the beginning serotypes 2 and 9 and then, from 2002, 4 and 16. To reduce direct losses due to disease and indirect losses due to new serotype circulation, the 2004 Italian vaccination campaign included the modified-live vaccines against BTV-4 and 16 produced by Onderstepoort Biological Product (OBP), South Africa. Few months after the end of the campaign, BTV-16 was reported broadly in the country and the need of differentiating field from the BTV-16 vaccine isolate became crucial. In this study, the gene segments 2, 5, 6 and 10 of both the Italian and vaccine BTV-16 strains were sequenced and their molecular relationship determined. As sequences of segment 5 were those showing the highest differences (17.3%), it was possible to develop a new diagnostic tool able to distinguish the Italian BTV-16 NS1 gene from that of the homologous vaccine strain. The procedure based on the use of a RT-PCR and the subsequent sequencing of the amplified product showed a high degree of sensitivity and specificity when samples from either BTV-16 vaccinated or infected sheep were tested.  相似文献   

18.
The complete nucleotide sequences of the VP2 segments of bluetongue virus (BTV) isolates recovered from Italy, Greece and Israel, from 1998 to 2003, were determined. Phylogenetic analysis of these sequences, those from related viruses and the South African vaccine strains, were used to determine the probable geographic origin of BTV incursions into Italy. Results indicated that viruses from each of the four serotypes isolated in Italy (2, 4, 9 and 16) possibly had a different origin. Analysis of the bluetongue virus serotype 2 (BTV-2) isolates gave evidence that this serotype probably moved from Tunisia. BTV-4 results showed probable incursion from the southwest and not from Greece or Israel. BTV-9 isolates clearly have an eastern origin (most probably Greece), whereas BTV-16 isolates are indistinguishable from the BTV-16 live attenuated vaccine strain. The phylogenetic findings were supported by polyacrylamide gel electrophoresis (PAGE) analysis of the complete amplified genome of each isolate except for BTV-16 Italian field isolate, which showed a slightly different PAGE profile. A combination of the complete VP2 sequencing and PAGE analysis of complete genomes, allowed not only phylogenetic analysis, but also vaccine detection and assessment of reassortment events.  相似文献   

19.
To determine potential mechanisms of differential disease expression in ruminants infected with bluetongue virus (BTV), clinically normal, BTV-seronegative, yearling sheep and cattle were infected subcutaneously with a standardized insect-source inoculum of BTV serotype 17 (BTV-17) (three infected and one contact control each) or animal adapted BTV serotype 10 (BTV-10) (three sheep only). BTV was isolated from peripheral blood cell components of infected sheep and cattle and all infected animals showed evidence of seroconversion by 14 days post infection (PI). Sheep infected with both serotypes of BTV developed pyrexia, oral lesions, and leukopenia which were most severe on days 7-8 PI. Analysis of peripheral blood mononuclear leukocytes with specific monoclonal antibodies and flow cytometry revealed panlymphocytopenia on day 7 PI. This response was further characterized by an increase in the CD4/CD8 ratio (greater than 3) resultant from a greater decrease in absolute numbers of circulating SBU-T8(CD8+) ("cytotoxic/suppressor") lymphocytes compared to SBU-T4 (CD4)+ ("helper") lymphocytes. SBU-T19+ lymphocytes were also decreased below baseline values on days 5-14 post infection. On day 14 PI there were increased CD8+ lymphocytes and decreased CD4/CD8 ratios (approximately 0.6) in these sheep. Clinical and hematologic changes in cattle infected with BTV-17 were minimal and consisted of mild pyrexia (rectal temperature 103 degrees F) on day 9 PI in two of three infected animals and mild leukopenia on several days PI in one animal. This leukopenia was the result of a pan T lymphocytopenia with CD4/CD8 ratios in the expected range (1-2). Similar to infected sheep, infected cattle did have a shift (decrease, approximately 0.8) in the peripheral CD4/CD8 ratio associated with an increase in circulating BoT8 (CD8)+ lymphocytes on day 14 post infection. Lymphocytes in the peripheral blood of all sheep and cattle infected with BTV-17 proliferated in vitro in response to purified BTV-17. These results confirm and extend those of previous studies that indicate species differences in the hematologic response to an equivalent BTV infection in domestic ruminants.  相似文献   

20.
Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号