首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
抽穗期(headingdata,HD)和株高(plantheight,PH)是水稻(Oryza sativaL.)非常重要的农艺性状。本研究利用金23B(Jin23B)和青谷矮1号(QGA-1)构建的BC3F1群体及其衍生的BC3F2群体通过分子标记定位水稻抽穗期和株高的QTL(quantitativetraitlocus)。构建的遗传连锁图包含105对SSR标记和8对InDel标记,图谱较好地覆盖了水稻12条染色体。两年来共定位到了9个抽穗期相关QTLs,6个株高相关的QTLs,其中抽穗期和株高最大效应都来源于第7染色体。抽穗期QTLqHD7-3在2011年LOD为37.07,可以解释的表型贡献率为41.05%,加性效应为11.68;株高QTLqPH7-2在2011年LOD为43.73,可以解释的表型贡献率为54.17%,加性效应为21.60;2012年LOD为42.66,可以解释的表型贡献率为54.39%,加性效应为19.95。qHD7-3和qPH7-2位于同一区域RM214-RM5543之间,Ghd7也位于这一区间,该QTL可能是Ghd7的等位基因。抽穗期QTLqHD2定位于第2染色体上标记ZH282和RM71之间,在两年内都能检测到,其LOD值分别为4.56和4.99,可解释的表型贡献率分别为4.31%和7.99%。株高QTLqPH4定位于第4染色体上标记RM241和RM317之间,其两年内的LOD分别为2.89和2.67,解释的表型贡献率为9.42%和8.78%。抽穗期QTL qHD2和株高QTL qPH4所定位的区间没有相关的基因或QTL报道,这两个QTL可能含有控制抽穗期和株高的新基因。本研究通过遗传定位证明了株高和抽穗期是由主效QTL和微效QTL共同控制的,并发掘了新的抽穗期和株高的QTL,为育种家利用分子标记辅助选择培育新品种提供更多的选择。  相似文献   

2.
为了加速大豆主茎节数候选基因的的克隆和功能验证,并为大豆主茎节数分子标记辅助育种提供分子基础,本研究通过高通量测序检测与大豆主茎节数相关数量性状区间(QTL),结合双亲重测序信息开发QTL区间InDel分子标记,实现了大豆主茎节数相关主效QTL区间的精细定位。本研究以少主茎节数C025材料为母本,多主茎节数中119为父本杂交衍生的重组自交系(RIL)102个株系为试验材料,取自交系中极端少主茎节数30株和极端多主茎节数30株,构建两个极端混池,利用传统分群分析法(BSA)和全基因组特异性位点扩增片段测序手段(SLAF-Seq)相结合的方法在4号染色体检测到与大豆主茎节数相关的5个QTL。为了进一步缩小QTL区间,依据双亲材料的高通量重测序信息,获取QTL区间的插入缺失位点(InDel)信息,并开发InDel标记。首先利用InDel标记在F2群体进行基因型分析,结果主效位点落在第3个QTL区间。其次在主效区间开发8个共显性InDel标记,结合RIL群体全部株系进行表型鉴定,最终获得9个交换单株,将主效区间分为6种交换类型,结合表型分析最终将大豆主茎节数位点精细定位到InDel标记Chr04-38和Chr04-46之间,其区间只有171.9 kb,包含候选基因6个,实现了大豆主茎节数的精细定位。本研究通过高通量测序与极端混池相结合的方法可以高效快速地检测与大豆主茎节数相关区间,并结合双亲重测序信息开发关联区间InDel分子标记,精细定位大豆主茎节数。本研究开发的Indel标记Chr04-38和Chr04-46与大豆主茎节数紧密连锁,有利于后期大豆主茎节数分子标记辅助育种。  相似文献   

3.
为创制紧凑型糯玉米种质,本研究以紧凑型普通玉米自交系郑58为供体亲本,以平展型糯玉米自交系通759为轮回亲本,通过标记辅助回交结合叶夹角表型选择的方法,转移玉米叶夹角主效QTL(qLA5)有利等位基因,创制了29份紧凑型BC2F2单株。48个标记背景选择及高密度下株型、抗逆性、产量、品质等18个性状综合鉴定,筛选出株型紧凑、产量高、抗逆性强、品质优良的糯玉米新种质4份,使轮回亲本平均基因组含量由78.48%提高到88.67%,可作为紧凑型糯玉米育种的亲本材料。本研究结果为利用普通玉米改良糯玉米种质,选育紧凑型优质鲜食糯玉米新品种提供了理论参考。  相似文献   

4.
为检测玉米株高、穗位高杂种优势QTL,以121株intermated B73×Mo17(IBM)个体为基础群体,按照三重测交交配设计构建了三重测交群体,通过完备区间作图法对株高、穗位高杂种优势的主效QTL及互作位点进行了分析。在第9染色体上的2个紧密连锁的区段分别定位到了一个株高、穗位高杂种优势加性QTL位点,单个QTL的表型贡献率为14.3%和18.6%。该QTL可能同时对株高、穗位高杂种优势起作用。在第1、第3染色体上检测到2个株高杂种优势超显性QTL,可解释表型变异的9.0%~11.4%;在第1、第6、第8染色体上检测到5个穗位高杂种优势超显性QTL,可解释表型变异的6.6%~16.8%。进一步分析发现,2对加加上位性互作区段及2对显显上位性互作区段对穗位高杂种优势存在上位性贡献,加加互作效应及显显互作效应可共同解释表型变异的40.7%和26.8%。由此可知,加性、显性及两位点互作上位性共同对株高、穗位高杂种优势存在贡献。本研究检测到的主效QTL位点有助于株高、穗位高在杂种优势育种中的进一步应用。  相似文献   

5.
陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究   总被引:2,自引:0,他引:2  
Ari1327是美国引进种质Ari971经60Co γ射线照射后得到的矮化突变体,以陆地棉遗传标准系TM-1为母本和Ari1327组配杂交组合,利用该组合产生的F2群体对株高和纤维品质性状进行QTL分析,共检测到4个与株高相关的QTL,分别位于Chr.3、Chr.11、Chr.14和LG6上,4个位点可解释的联合表型贡...  相似文献   

6.
非洲栽培稻作为重要的水稻种质资源,其基因渗入系可以为普通栽培稻的遗传背景提供新的有利基因,如果能将这些优良基因引入普通栽培稻中,可为水稻分子设计育种提供新的基因资源。本研究以非洲栽培稻基因渗入系YIL60与轮回亲本中9B(Z9B)杂交衍生的包含188个株系的F2和F2:3群体为材料,对粒形性状包括粒长、粒宽、籽粒长宽比、千粒重,剑叶形态性状包括剑叶长、剑叶宽进行数量性状点位(QTL)检测。结果共检测到16个QTL,包括2个粒长QTL、3个粒宽QTL、2个籽粒长宽比QTL、2个千粒重QTL、1个剑叶长QTL、6个剑叶宽QTL,分布于第1、第6、第7、第10和第11号染色体上,贡献率为2.25%~25.64%;有4个多效性QTL区间,有4个QTL qGW7-1、qFLL10、qFLW10、qTGW7在F2和F2:3群体中被重复检测到,其中在第7号染色体RM3859-RM3394区间检测到同时控制粒长、粒宽、籽粒长宽比和千粒重的QTL,贡献率最高达17.10%,是一个来源于非洲栽培稻的新粒形QTL。本研究为进一步开展粒形、剑叶形态性状基因的精细定位、克隆和分子标记辅助育种工作奠定了一定的理论基础。  相似文献   

7.
水稻幼苗根际联合固氮能力的QTL定位   总被引:1,自引:0,他引:1  
以珍汕97明恢63杂交组合的重组自交系(RIL)群体的241个株系和高效固氮菌株W12以及固氮菌株FY为材料,在严格限菌条件下,利用改进的SpermosphereModel技术,测定RIL群体及其亲本与两个固氮菌株的联合固氮能力表型值。采用MAPMAKER/QTL软件对获得的表型性状进行QTL定位分析,在第2染色体上,检测到控制与W12联合固氮能力(W12.NFA)和与FY联合固氮能力(FY.NFA)的QTL各1个;前者位于标记区间RM208~RM207,后者位于标记区间R712~RM324。分别对这两个QTLs的等位标记RM208与R712作单因子方差分析,得W12.NFA在RM208不同标记基因型间差异的F值为8.28,达0.0044显著性水平;FY.NFA在等位R712不同标记基因型间差异的F值为13.81,达0.0003显著性水平。显然,本研究检出的控制固氮菌株W12和FY与水稻根际联合固氮能力的QTL是相互独立的。  相似文献   

8.
为探究玉米苗期耐盐性状的遗传调控机理,以耐盐的热带自交系CML298与盐敏感的温带自交系Zong31构建得到200份F2:3家系的初定位群体为试验材料,结合Illumina Maize 6K芯片获取相应的基因型数据,通过调查苗期盐胁迫处理前后的株高比率(SHR)、株高差值(SHD)、鲜重比率(SFWR)、鲜重差值(SFWD)4个耐盐指标,对玉米苗期的耐盐性进行评价。结果表明,共检测到2个与SHR相关的QTL位点q SHR4、q SHR8,分别解释7.08%和9.40%的表型变异;2个与SHD相关的QTL位点q SHD4、q SHD8,分别解释7.87%、9.21%的表型变异;3个与SFWR相关的QTL位点q SFWR3-1、q SFWR3-2和q SFWR9,分别解释6.15%、11.14%和6.27%的表型变异;2个与SFWD相关的QTL位点q SFWD4与q SFWD7,分别解释6.89%和6.04%的表型变异。其中,在第4号染色体129 c M位置与第8号染色体8c M位置都定位到了与SHR、SHD相关的QTL位点。本研究结果为玉米苗期耐盐相关基因的挖掘奠定了理论基础。  相似文献   

9.
不同氮水平下玉米苗期根系形态和氮吸收量的 QTL 定位   总被引:4,自引:2,他引:2  
【目的】玉米的根系形态与氮素吸收能力关系密切,利用单片段代换群体对玉米苗期根系形态相关性状和植株氮吸收量进行 QTL 定位,可为进一步精细定位并克隆控制玉米低氮下优异根系形态和氮吸收的主效 QTL 奠定基础。【方法】以氮效率差异显著的两亲本许 178 和综 3 构建的 150 个玉米单片段代换系 (SSSL) 群体作为研究材料,进行水培试验。以 Ca (NO3)2 作为氮源,设置高氮 (4 mmol/L NO3– )和低氮 (0.05 mmol/L NO3– ) 两个处理,培养 20 d 后分根、冠收获植株,测定生物量和氮含量。通过 WinRHIZO 根系分析系统获得根系的总根长、根表面积、根体积、根直径和根尖数等指标。根据代换系与亲本许 178 表型值的 T-test 结果,利用该群体 SSR 遗传连锁图谱,在 P ≤ 0.001 条件下定位所调查性状的 QTL。【结果】高氮条件下 SSSL 群体除了根直径与总根长和根尖数没有显著相关性以外,其它各性状之间均显著或极显著正相关,并且植株氮吸收量也与根系各性状呈显著或极显著正相关;低氮条件下,除了根直径以外,植株氮吸收量与其他根系性状均呈极显著正相关,并且地上部和根部氮累积量均与根表面积的相关性最大。在高氮条件下共检测到 102 个 QTL 位点,包括 40 个根形态相关 QTL、34 个植株生物量 QTL 和 28 个氮吸收量 QTL;在低氮条件下共检测到 85 个 QTL 位点,包括 47 个根形态 QTL、22 个植株生物量 QTL 和 16 个氮吸收量 QTL。所检测到的根形态相关 QTL 与生物量和氮积累量 QTL 成簇存在,同一 QTL 区间多同时检测到根形态 QTL 和氮吸收量 QTL。高氮条件下,在代换系 1428、1376、1282、1266 和 1473 的代换区间上检测到高氮特异的 QTL 簇,同时包括多个根形态和氮吸收量 QTL,贡献率从–43% 到 84%。低氮下,在代换系 1419 和 1314 的代换区间上同时检测到低氮特异的多个根形态和氮吸收量 QTL,贡献率从–32% 到 55%。【结论】单片段代换系 1419 和 1314 所包含的代换片段 bnlg182—bnlg2295 和 umc1013—umc2047 检测到多个低氮特异的 QTL,并且这两个区间在前人的研究中均有玉米氮效率相关 QTL 检测到,说明该区间包含有玉米根系形态和氮吸收量的主效 QTL,在玉米氮高效吸收中可能起重要作用。  相似文献   

10.
玉米强优势组合7个主要穗部性状在3种环境下的QTL分析   总被引:1,自引:0,他引:1  
玉米产量是遗传基础复杂的数量性状。利用玉米(Zea mays L.)单交种烟单 14 号杂交组合的 F1(Mo17×黄早四)自交后形成的 191 个 F2单株作为构图群体,构建了由扩增片段长度多态性(AFLP)和简单重复序列(SSR)两种标记组成的遗传图谱。F2继续自交衍生的 184 个相应 F2∶3家系用于玉米 7 个穗部性状表型的田间鉴定。采用以混合线性模型为理论基础的复合区间作图法和配套软件 QTLmapper/V2.0,在 3个环境下共检测到 76 个穗部性状的数量性状基因座(QTL)。其中穗粒重、穗重、出籽率、穗长、秃尖长、穗粗和轴粗的 QTL 数目分别为 8、8、11、10、9、10 和 20 个。大多 QTL 仅在单一环境下被检测到,单个 QTL解释的表型变异率很低,仅有 5 个 QTL 的加性效应贡献率大于 10%,绝大多数 QTL 显性效应贡献率小于 1%。基因作用方式 29%的 QTL 为加性,47%为部分显性,11%为显性,13%为超显性。控制玉米穗部性状的 QTL 在染色体间分布不均匀,且呈现成簇分布、毗邻分布等特征。各个 QTL 位点上起增效和减效作用的等位基因在双亲间分布不均匀,两个亲本均可以提供增效或减效等位基因。本研究结果对于玉米高产分子育种中分子标记辅助选择(MAS)和亲本选配等问题具有启发和指导作用。  相似文献   

11.
低氮胁迫下玉米幼苗氮素和蔗糖分配特性   总被引:1,自引:1,他引:0  
  【目的】  明确玉米自交系幼苗氮素吸收、转运与利用特性,探究低氮胁迫下其不同表型和生理性状的变化规律。  【方法】  以玉米自交系XY4和PH4CV为供试材料,进行了水培试验。设置正常氮 (N 2 mmol/L,NN) 和低氮 (N 0.04 mmol/L,LN) 两个氮水平,从培养3 h起,每3天测定一次幼苗生物量、光合特性、根系性状及氮素和蔗糖含量,直至第12天。  【结果】  玉米幼苗根系对低氮胁迫的反应早于地上部,与NN处理相比,LN处理PH4CV和XY4的根干重分别在培养第3和第6天时增加了65.15%和84.63%,而从培养第9天开始,LN处理下两自交系幼苗地上部干重显著低于NN处理,由此导致根冠比增加;与NN处理相比,LN处理下除了胞间CO2浓度 (Ci) 和水分利用效率 (WUE) 外,两自交系幼苗叶片的SPAD值、净光合速率 (Pn)、蒸腾速率 (Tr) 和气孔导度 (Gs) 等光合特性均显著降低,且XY4下降幅度均大于PH4CV;LN处理下两自交系幼苗根干重的变异来源并不一致,XY4根干重的增加与总根长、根表面积、根体积、侧根数和初生根长增加有关,而PH4CV主要与侧根数目增加有关;与NN处理相比,LN处理两自交系幼苗地上部的氮素积累量和蔗糖含量显著降低,且XY4老叶的氮素含量下降速率明显快于PH4CV,而根系的氮素积累量、单株氮素生理利用效率和根中蔗糖含量均显著增加,且XY4增加的幅度均大于PH4CV。  【结论】  低氮胁迫促使玉米幼苗分配给地上部的氮素和蔗糖相对较少,因此限制地上部生物量积累及叶片光合能力的发挥,而分配给根系的氮素和蔗糖相对较多,从而促进根系形态建成,以利于吸收更多的氮素。  相似文献   

12.
  【目的】  探明不同钾供应条件下控制产量及钾效率相关性状的稳定的显著关联分子标记位点,为小麦产量及钾效率相关性状的遗传控制机理研究及相关基因的克隆提供参考。  【方法】  利用134个小麦品种 (系) 组成的群体为试验材料,设置正常供钾 (T1) 和不施钾 (T2) 两个处理,进行了2年田间试验 (E1、E2)。对小麦成熟期株高、穗长、穗粒数及钾吸收、利用效率等23个性状进行了表型鉴定,分别定义了同年同一处理和同一处理两年平均共6个环境平均值。采用GLM+Q一般线性模型和MLM+K+Q混合线性模型相结合的方法,利用群体差异SNP分子标记 (90K SNP芯片) 对小麦产量和钾效率相关性状进行全基因组关联分析。  【结果】  与正常钾处理相比,不施钾处理条件下籽粒钾利用效率显著升高,单株钾累积量、单株钾含量及总小穗数等性状显著降低。供试小麦各性状的群体变异系数为6.98%~350.38%,有14个性状的遗传力在50%以上,以株高的遗传力最高 (92.03%)。利用保留的7485个多态性好的群体差异 (SNP) 进行了全基因组关联分析,共检测到1420个分子标记位点与供试23个性状在P ≤ 0.001水平存在显著关联,分布在21条染色体上。有1097个 (77.25%) 分子标记位点仅在一个关联分析环境中被检测到;能在至少两个关联分析环境中被检测到的相对稳定分子标记位点有323个,其中113个位点与钾效率相关性状有关,Tdurum_contig26281_139、Kukri_c307_2053等分子标记位点可以提高钾吸收效率,Ex_c19038_571、BS00039148_51等分子标记位点能够提高钾利用效率。在至少4个关联分析环境中被检测到的位点有22个,分别与株高、千粒重、穗粒数等5个性状相关。与株高和千粒重显著关联的分子标记位点RFL_Contig4069_2628和BS00003632_51可同时在全部6个关联分析环境中检测到,平均贡献率为9.59%和13.66%,环境稳定性非常好,与株高的降低和千粒重的提高显著关联。  【结论】  不同钾供应水平下与产量及钾效率相关性状显著关联的分子标记位点存在显著差异,77.25%的分子标记位点仅在特定环境下被检测到。但也有22个显著关联分子标记位点 (涉及9个产量及钾效率相关性状) 在至少4个关联分析环境 (共6个环境) 下被检测到,形成高频表达分子标记位点。其中与株高和千粒重分别显著关联的两个分子标记位点在所有6个关联分析环境中均稳定被检测到,能显著降低株高和提高千粒重。这些分子标记位点的相关基因对相关性状的调控效应受钾处理环境影响小,具有较高的理论和应用价值,值得深入研究。  相似文献   

13.
玉米叶夹角和叶向值的QTL定位   总被引:4,自引:0,他引:4  
叶夹角和叶向值是评价玉米株型的重要指标。本研究以甜玉米自交系组合T14×T4的F2为作图群体,构建了包含192个SSR标记位点的遗传连锁图谱,覆盖玉米基因组1260cM,平均图距6.56cM。通过测定F2、F2:3家系的叶夹角和叶向值,应用复合区间作图法在两个世代中共检测到26个QTL,其中14个与叶夹角相关的QTL,分别位于第2、5、6、7和8染色体上,单个QTL可解释的表型变异为3.3%~26.2%;12个与叶向值相关的QTL,分布于第1、2、3、7和10染色体上,单个QTL可解释的表型变异为3.1%~20.7%。在第2、3、5染色体上分别检测到1、1、2个同时在F2、F2:3家系都稳定表达的QTL,分别落在区间bnlg1329~bnlg1613、umc1148~umc2275和umc1097~umc1692,可作为相关数量性状基因的候选基因。发现1个同时控制叶夹角和叶向值性状的QTL,位于第2染色体上的bnlg1017-umc2129区间,对两性状的表型贡献率分别为10.8%和10.6%。本研究的结果有望为玉米耐密型育种及分子辅助选择育种提供一定的理论依据。  相似文献   

14.
小麦磷素利用效率的基因位点及其交互作用   总被引:12,自引:0,他引:12  
利用小麦W7984和Opata85作亲本 ,通过一粒传而获得F7重组近交系 (RIL)群体。对该群体的 114个株系分别在正常供磷和低磷胁迫下探讨小麦地上部磷素利用效率 (SPUE)和全株磷素利用效率 (WPUE) ;并根据该群体而构建的遗传图谱包括覆盖整个染色体组的 918个RFLP标记 ,研究 2种供磷情况下小麦磷素利用效率的基因位点及基因间互作。结果表明 ,正常供磷 ,有 2个与SPUE有关的QTL ,分别位于染色体 1B和 5A上 ,变异解释率分别为 6.55 %和 1 1.61 % ;与WPUE有关的QTL有位于染色体 2B、5A和 7A上的 3个 ;SPUE和WPUE还分别受一对互作位点的影响。在磷胁迫下 ,有 3个QTL与SPUE有关 ,分别位于染色体 2D、3B和6D上 ,变异解释率分别为 14.2 %、7.73%和 6.58% ;与WPUE相关的 2个QTL分别位于染色体 2D、7A上 ,变异解释率分别为 18.01 %和 10.73 % ;SPUE受上位效应的影响。 7A染色体对于小麦的磷素利用效率有着重要的作用 ,位于该染色体上的片段Xfba354 Xfba69在 2种供磷情况下都显著影响WPUE ,同时此片段在正常供磷下还与其它基因互作而影响WPUE。此外 ,5A染色体在正常供磷、2D染色体在低磷胁迫下分别对磷素利用效率 (PUE)有较强的作用。  相似文献   

15.
玉米主要株型性状与产量的全基因组关联分析   总被引:1,自引:0,他引:1  
为了深入剖析玉米的株型性状和产量性状的遗传基础及其相关关系,本研究以204份玉米自交系作为关联群体,利用分布于玉米全基因组上的558 529个单核苷酸多态性标记(SNPs)对5个相关性状进行全基因组关联分析。结果表明,供试自交系各性状基本呈正态分布,且各性状间存在丰富的变异,变异系数在9.00%~50.00%之间;通过相关性分析和热图层次聚类分析株型和产量相关性状间彼此紧密关联;且由主成分分析筛选出总体方差累计贡献率达到71.667%的主成分2个;以P≤1×10-5为显著阙值,利用Q+K模型对供试材料的5个相关性状进行全基因组关联分析,在株高、穗位高和单穗重间共检测到13个显著的SNP位点,分别分布于玉米的第3、第5、第6、第7号染色体上,而在总叶片数和穗上叶数间未检测到显著的SNP位点;在显著SNP上下游各50 kb范围共搜索到39个相关候选基因,其中有注释的基因12个,并对株高与穗位高最佳候选基因进行了预测。本研究通过对玉米株型及产量相关性状进行全基因组关联分析,为后期基因功能的验证与新功能的开发奠定了良好的基础。  相似文献   

16.
  【目的】  种植绿肥是实现化肥减施的重要措施,研究稻田系统中不同绿肥翻压量对土壤供氮及主作物水稻吸氮规律的影响,以期为江西双季稻区合理利用紫云英,提高水稻产量提供理论依据。  【方法】  田间试验位于江西双季稻区。在早稻氮磷钾肥用量减施20%条件下,设置冬种并翻压紫云英鲜草15000 (G1F80)、22500 (G1.5F80)、30000 (G2F80)、37500 (G2.5F80) kg/hm2,以及冬闲且水稻不施化肥对照(CK)、冬种紫云英水稻不施化肥(GM)和冬闲常规施肥(F100)共7个处理。分析了水稻产量、植株吸氮量、氮肥利用率,以及水稻生育期土壤无机氮含量,并分析了土壤性状和水稻产量、植株吸氮量之间的关系。  【结果】  与F100相比,G1F80处理早稻产量显著增加11.64%;G2F80处理晚稻产量显著增加7.81%;G1F80、G1.5F80和G2F80处理双季稻总产量分别显著增加5.79%、5.38%和7.17%。其余不同紫云英翻压量处理的产量相比F100均未降低。冬种紫云英配施80%化肥可显著提高早稻稻谷吸氮量、早稻当季氮肥利用率和早稻氮肥偏生产力,提高早稻和晚稻收获期土壤全氮和有机质含量,提升土壤肥力水平。早稻孕穗期、早稻收获期和晚稻收获期,G2.5F80处理土壤铵态氮含量均显著高于F100处理,且为各处理中含量最高。从早稻孕穗期到早稻收获期,不同紫云英翻压量处理氮素累积速率均为正值,水稻植株吸氮量增加,而冬闲常规施肥处理氮素累积速率为负值,水稻吸氮量降低。在水稻生育期,紫云英翻压量小于22500 kg/hm2时,水稻植株吸氮量随翻压量增加而增加,而翻压量大于22500 kg/hm2时,水稻植株吸氮量明显降低。土壤速效钾含量对水稻产量和吸氮量的贡献率最大,对早稻产量和早稻吸氮量的贡献率分别为35.17%和40.16%,对晚稻产量和吸氮量的贡献率分别为21.22%和25.22%,对双季稻产量和吸氮量的贡献率分别为34.83%和27.86%。  【结论】  在减施常规量20%化肥条件下,种植翻压适量紫云英可提高早稻稻谷吸氮量,促进水稻增产。翻压高量紫云英有利于培育土壤碳库和氮库,提高土壤供氮能力。综合各项分析,在江西双季稻区紫云英翻压量为30000 kg/hm2时效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号