首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the experiment was to compare pregnancy rates resulting from fixed-time AI after administration of either 1 of 2 controlled internal drug release (CIDR)-based protocols. Heifers at 3 locations (location 1, n = 78; location 2, n = 61; and location 3, n = 78) were assigned to 1 of 2 treatments within reproductive tract scores (1 = immature to 5 = cycling) by age and BW. Heifers assigned to CIDR Select received a CIDR insert (1.38 g of progesterone) from d 0 to 14 followed by GnRH (100 mug, i.m.) 9 d after CIDR removal (d 23) and PGF2alpha (PG, 25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to CO-Synch + CIDR were administered GnRH and received a CIDR insert on d 23 and PG and CIDR removal on d 30. Heifers at location 1 were fitted with a HeatWatch estrus detection system transmitter from the time of PG until 24 d after fixed-time AI to allow for continuous estrus detection. Artificial insemination was performed at predetermined fixed times for heifers in both treatments at 72 or 54 h after PG for the CIDR Select and CO-Synch + CIDR groups, respectively. All heifers were administered GnRH at the time of AI. Blood samples were collected 10 d before and immediately before treatment initiation (d 0) to determine pretreatment estrous cyclicity (progesterone > or = 0.5 ng/mL). At location 1, the estrous response during the synchronized period was greater (P = 0.06; 87 vs. 69%, respectively), and the variance for interval to estrus after PG was reduced among CIDR Select- (P < 0.01) compared with CO-Synch + CIDR-treated heifers. Fixed-time AI pregnancy rates were significantly greater (P = 0.02) after the CIDR Select protocol (62%) compared with the CO-Synch + CIDR protocol (47%). In summary, the CIDR Select protocol resulted in a greater and more synchronous estrous response and significantly greater fixed-time AI pregnancy rates compared with the CO-Synch + CIDR protocol.  相似文献   

2.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

3.
We determined the effects of hCG on ovarian response, concentration of progesterone, and fertility in a fixed-time AI (TAI) protocol. Four hundred forty-four crossbred beef heifers were synchronized with the CO-Synch + CIDR (controlled internal drug-releasing insert) protocol. In addition, heifers were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments with main factors being 1) pretreatment, no treatment (control), or treatment with 1,000 IU of hCG 14 d before the initiation of the CO-Synch + CIDR protocol and 2) treatment, administration of 1,000 IU of hCG or 100 μg of GnRH at CIDR insertion of the CO-Synch + CIDR protocol. Blood samples were collected from all heifers on d -21, -14, -7, 0, and 2 relative to PGF(2α) injection. Transrectal ultrasonography was used to examine ovaries in a subset of heifers (n = 362) on d -7 and 0 relative to PGF(2α), and to determine pregnancy status of all heifers on d 33 and 82 relative to AI. Pregnancy rates were similar for heifers pretreated with control (33.0%) or hCG (36.4%), whereas pregnancy rates were greater (P < 0.01) for heifers treated with GnRH (40.1%) compared with hCG (29.0%) at CIDR insertion. Heifers pretreated with hCG had more (P < 0.01) corpora lutea present on the day of CIDR insertion and the day of CIDR removal compared with untreated heifers. A greater proportion (P < 0.01) of heifers ovulated as a result of administration of hCG at the time of CIDR insertion (59.0%) compared with GnRH (38.7%). Heifers treated with hCG at CIDR insertion had greater (P < 0.01) concentrations of progesterone compared with those receiving GnRH at the time of CIDR removal (2.42 ± 0.13 vs. 1.74 ± 0.13 ng/mL; P < 0.01) and at fixed-time AI (0.52 ± 0.03 vs. 0.39 ± 0.03 ng/mL; P < 0.01). Therefore, hCG was more effective than GnRH in its ability to ovulate follicles and to increase concentrations of progesterone in beef heifers. Presynchronization with hCG 14 d before CIDR insertion did not alter pregnancy rates, whereas replacing GnRH with hCG at CIDR insertion decreased pregnancy rates.  相似文献   

4.
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based protocols. Estrus in 2,075 replacement beef heifers at 12 locations was synchronized, and AI was preceded by 1 of 4 treatments arranged as a 2 x 2 factorial design: 1) Estrus detection + TAI (ETAI) (n = 516): CIDR for 7 d plus 25 mg of prostaglandin F2alpha (PG) at CIDR insert removal, followed by detection of estrus for 72 h and AI for 84 h after PG (heifers not detected in estrus by 84 h received 100 microg of GnRH and TAI); 2) G+ETAI (n = 503): ETAI plus 100 microg GnRH at CIDR insertion; 3) Fixed-time AI (FTAI) (n = 525): CIDR for 7 d plus 25 mg of PG at CIDR removal, followed in 60 h by a second injection of GnRH and TAI; 4) G+FTAI (n = 531): FTAI plus 100 microg of GnRH at CIDR insertion. Blood samples were collected (d -17 and -7, relative to PG) to determine ovarian status. For heifers in ETAI and G+ETAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed according to the a.m.-p.m. rule. Pregnancy was diagnosed by transrectal ultrasonography. The percentage of heifers exhibiting ovarian cyclic activity at the initiation of treatments was 89%. Pregnancy rates among locations across treatments ranged from 38 to 74%. Pregnancy rates were 54.7, 57.5, 49.3, and 53.1% for ETAI, G+ETAI, FTAI, and G+FTAI treatments, respectively. Although pregnancy rates were similar among treatments, a tendency (P = 0.065) occurred for pregnancy rates in the G+ETAI treatment to be greater than in the FTAI treatment. We concluded that the G+FTAI protocol yielded pregnancy rates similar to protocols that combine estrus detection and TAI. Further, the G+FTAI protocol produced the most consistent pregnancy rates among locations and eliminated the necessity for detection of estrus when inseminating replacement beef heifers.  相似文献   

5.
The objective was to test the efficacy of an intravaginal progesterone insert and injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in cattle. Cattle were assigned to one of three treatments before a 31-d breeding period that employed artificial insemination. Control cattle were not treated, and treated cattle were administered PGF2alpha or an intravaginal progesterone-releasing insert (CIDR) for 7 d and treated with PGF2alpha on d 6. The treatments were applied in one of three experiments that involved postpartum beef cows (Exp. 1; n = 851; 56+/-0.6 d postpartum), beef heifers (Exp. 2; n = 724; 442.5+/-2.8 d of age), and dairy heifers (Exp. 3; n = 260; 443.2+/-4.5 d of age). Luteal activity before treatment was determined for individual cattle based on blood progesterone concentrations. In Exp. 1, there was a greater incidence of estrus during the first 3 d of the breeding period in CIDR+PGF2alpha-treated cows compared with PGF2alpha-treated or control cows (15, 33, and 59% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001). The improved estrous response led to an increase in pregnancy rate during the 3-d period (7, 22, and 36% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001) and tended to improve pregnancy rate for the 31-d breeding period for cows treated with CIDR+PGF2alpha, (50, 55, and 58% for control, PGF2alpha, and CIDR+PGF2alpha, respectively, P = 0.10). Improvements in rates of estrus and pregnancy after CIDR+PGF2alpha, were also observed in beef heifers. Presence of luteal activity before the treatment period affected synchronization and pregnancy rates because anestrous cows (Exp. 1) or prepubertal heifers (Exp. 2) had lesser synchronization rates and pregnancy rates during the first 3 d of the breeding period as well as during the entire 31-d breeding period. The PGF2alpha, and CIDR+PGF2alpha but not the control treatments were evaluated in dairy heifers (Exp. 3). The CIDR+PGF2alpha-treated heifers had a greater incidence of estrus (84%) during the first 3 d of the breeding period compared with the PGF2alpha-treated heifers (57%), but pregnancy rates during the first 3 d or during the 31-d breeding period were not improved for CIDR+PGF2alpha compared with PGF2alpha-treated heifers. In summary, the concurrent treatment of CIDR and PGF2alpha improved synchronization rates relative to PGF2alpha alone or control. Improved estrus synchrony led to greater pregnancy rates for beef cows and beef heifers but failed to improve pregnancy rates for dairy heifers.  相似文献   

6.
Objectives of this study were to evaluate synchronization, conception, and pregnancy rates of heifers synchronized with melengestrol acetate (MGA)-prostaglandin F (PGF,), Select Synch, or Select Synch preceded by MGA (MGA-Select Synch). Heifers in the MGA-PGF group (n = 209; BW = 378 kg) received MGA (0.5 mg/ d per heifer) for 14 d and PGF (25 mg) 19 d later. Select Synch heifers (n = 213; BW = 374 kg) received gonadotropin-releasing hormone (GnRH; 100 μg) followed by PGF (25 mg) 7 d later. The MGA-Select Synch heifers (n = 210; BW = 373 kg) were fed MGA (0.5 mg/d per heifer) for 7 d, GnRH (100 μg) the day following the last MGA feeding, and PGF (25 mg) 7 d after GnRH. More (P<0.01) heifers were in estrus 1 to 4 d before PGF2a administration in both the Select Synch (20%) and MGA-Select Synch (24%) groups than in the MGA-PGF (4%) group. Pregnancy rates for heifers in estrus early (d 1 to 4 before PGF) were greater (P<0.05) for both Select Synch (55%) and MGA-Select Synch (63%) compared with MGA-PGF heifers (18%). Synchronization rate (detected after PGF) was greater (P<0.01) for MGA-PGF heifers (86%) compared with Select Synch (66%) and MGA-Select Synch (68%) heifers; however, conception rate did not differ (P=0.13) and averaged 72, 63, and 62% for MGA-PGF, Select Synch, and MGA-Select Synch heifers, respectively. Select Synch (52%), MGA-Select Synch (58%), and MGA-PGF protocols (61%) provided similar (P=0.18) overall AI pregnancy rates; however, more heifers were in estrus before PGF administration in protocols using GnRH.  相似文献   

7.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

8.
Two experiments were conducted to determine whether extending the interval between removal of melengestrol acetate (MGA) from feed and injection of prostaglandin F (PGF) from 17 to 19 d would affect synchronization of estrus, conception, and pregnancy rates of beef heifers. In both experiments, heifers were fed MGA for 14 d, and PGF was given at either 17 or 19 d after cessation of MGA feeding. Heifers were observed for estrus and artificially inseminated for 5 d after PGF injection. In Exp. 1, 240 yearling heifers were randomly assigned to either a 17- or a 19-d treatment group according to estrous status and day of the estrous cycle. In Exp. 2, 1409 yearling heifers on a cooperating ranch were randomly assigned to the same two treatment groups without knowledge of estrous status. The PGF injection at 19 d (Exp. 1) caused a higher (P<0.05) percentage of heifers to exhibit estrus by 72 h after the injection compared with heifers receiving the injection at 17 d. A greater percentage (P<0.01) of heifers in the 19-d group were in the late luteal phase of the estrous cycle at the time of PGF injection compared with the heifers in the 17-d group, and pregnancy rates were higher for the heifers in the late luteal phase. In Exp. 2, heifers injected with PGF at 19 d after MGA had a greater (P<0.05) percentage in estrus (10%) during the 5-d breeding period, and had higher (P<0.05) pregnancy rates in 5 d (7.6%) and 50 d of breeding (5.5%), compared with heifers injected with PGF 17 d after withdrawal of MGA. These results indicate that the PGF injection given at 19 d after removal of MGA from the diet increases synchronized estrous response and results in higher pregnancy rates in heifers compared with the 17-d injection treatment.  相似文献   

9.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

10.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with 1 of 2 protocols to synchronize estrus and ovulation. Cross-bred, suckled beef cows (n = 650) at 4 locations (n = 210; n = 158; n = 88; and n = 194) were assigned within a location to 1 of 2 protocols within age group by days postpartum and BCS. Cows assigned to the melengestrol acetate (MGA) Select treatment (MGA Select; n = 327) were fed MGA (0.5 mg x head(-1) x d(-1)) for 14 d, GnRH (100 microg of Cystorelin i.m.) was injected on d 26, and prostaglandin F2alpha (PG; 25 mg of Lutalyse i.m.) was injected on d 33. Cows assigned to the CO-Synch + controlled internal drug release (CIDR) protocol (CO-Synch + CIDR; n = 323) were fed a carrier for 14 d, were injected with GnRH and equipped with an EAZI-BREED CIDR insert (1.38 g of progesterone, Pfizer Animal Health, New York, NY) 12 d after carrier removal, and PG (25 mg of Lutalyse i.m.) was injected and the CIDR were removed on d 33. Fixed-time AI was performed at 72 or 66 h after PG for the MGA Select or CO-Synch + CIDR groups, respectively. All cows were injected with GnRH (100 microg of Cystorelin i.m.) at the time of insemination. Blood samples were collected 8 and 1 d before the beginning of MGA or carrier to determine estrous cyclicity status of the cows (estrous cycling vs. anestrus) before treatment [progesterone > or = 0.5 ng/mL (MGA Select, 185/327, 57%; CO-Synch + CIDR, 177/323, 55%); P = 0.65]. There was no difference (P = 0.20) in pregnancy rate to FTAI between treatments (MGA Select, 201/327, 61%; CO-Synch + CIDR, 214/323, 66%). There was also no difference (P = 0.25) between treatments in final pregnancy rate at the end of the breeding period (MGA Select, 305/327, 93%; CO-Synch + CIDR, 308/323, 95%). These data indicate that pregnancy rates to FTAI were comparable after administration of the MGA Select or CO-Synch + CIDR protocols. Both protocols provide opportunities for beef producers to utilize AI and potentially eliminate the need to detect estrus.  相似文献   

11.
In Exp. 1, 187 lactating beef cows were treated with injections of GnRH 7 d before and 48 h after prostaglandin F2alpha (PGF2alpha; Cosynch) or with Cosynch plus a 7-d treatment with an intravaginal progesterone (P4)-releasing insert (CIDR-B; Cosynch + CIDR). In Exp. 2, 183 lactating beef cows were treated with the Cosynch protocol or with Cosynch plus a 7-d treatment with norgestomet (Cosynch + NORG). In Exp. 1 and 2, blood samples for later P4 analyses were collected on d -17, -7 (first GnRH injection), 0 (PGF2alpha injection), and at timed artificial insemination (TAI; 48 h after PGF2alpha). In Exp. 3, 609 lactating beef cows were treated with the Cosynch + CIDR protocol or were fed 0.5 mg of melengestrol acetate (MGA) per day for 14 d before initiating the Cosynch protocol 12 d after the 14th d of MGA feeding (MGA + Cosynch). Blood samples were collected as in Exp. 1 and 2, plus additional samples on d -33 and -19 before PGF2alpha. In Exp. 4, 360 lactating beef cows were treated with a Cosynch + CIDR protocol, with TAI occurring at either 48 or 60 h after PGF2alpha, while receiving either GnRH or saline to form four treatments. Blood samples were collected as in Exp. 1 and 2. In Exp. 1, addition of P4 reduced the ability of the first GnRH injection to induce ovulation in anestrous cows with low P4 before PGF2alpha but improved (P = 0.06) pregnancy rates (61 vs 66%). In Exp. 2, the addition of NORG mimicked P4 by likewise increasing (P < 0.01) pregnancy rates (31 vs 51%) beyond those after Cosynch. In Exp. 3, the Cosynch + CIDR protocol increased (P < 0.001) pregnancy rates from 46 to 55% compared to the MGA + Cosynch protocol. In Exp. 4, administration of GnRH at TAI improved (P < 0.05) pregnancy outcomes (50 vs 42%), whereas timing of TAI had limited effects. We conclude that a progestin treatment concurrent with the Cosynch protocol improved pregnancy outcomes in all experiments, but pretreatment of cows with MGA was not as effective as the CIDR insert or NORG implants in this Cosynch-TAI model. Most of the improvement in pregnancy rates was associated with the increase in pregnancy rates of anestrous cows, regardless of whether ovulation was successfully induced in response to GnRH 7 d before PGF2alpha. Injection of GnRH at TAI following the Cosynch + CIDR protocol increased pregnancy rates in cycling cows with high P4 before the PGF2alpha injection and in anestrous cows with low P4 before PGF2alpha injection.  相似文献   

12.
Angus × Gelbvieh rotationally crossbred yearling heifers (n = 99, yr 1; n = 105, yr 2) were used in a 2-yr randomized complete block design experiment with repeated measures to determine the effect of feeding camelina biodiesel coproducts (meal and crude glycerin) on serum concentrations of triiodothyronine, thyroxine, insulin, β-hydroxybutyrate, and glucose, as well as on growth and reproductive performance. Heifers were assigned to 1 of 15 pens, and pens were assigned initially to receive 7.03 k·?heifer(-1)·d(-1) of bromegrass hay plus 0.95 kg·heifer(-1)·d(-1) of 1 of 3 supplements for 60 d before breeding: 1) control (50% ground corn and 50% soybean meal, as-fed basis); 2) mechanically extracted camelina meal; or 3) crude glycerin (50% soybean meal, 33% ground corn, 15% crude glycerin, 2% corn gluten meal; as-fed basis). Preprandial blood samples were collected via the jugular vein on d 0, 30, and 60 of the feeding period. A 2-injection PGF(2α) protocol (d 60 and 70 of the study) was used to synchronize estrus. Heifers were artificially inseminated 12 h after estrus was first detected. Heifers not detected in estrus within 66 h received a GnRH injection and were artificially inseminated. Dietary treatment × sampling period interactions were not detected (P = 0.17 to 0.87). Dietary treatment did not affect BW (P = 0.44 to 0.59) or serum concentrations of thyroxine (P = 0.96), β-hydroxybutyrate (P = 0.46), glucose (P = 0.59), or insulin (P = 0.44). Serum concentrations of triiodothyronine were greater (P = 0.05) in heifers fed camelina meal. Additionally, dietary treatment did not affect the percentage of heifers detected in estrus before timed AI (P = 0.83), first-service pregnancy rates of those heifers detected in estrus (P = 0.97), or overall first-service pregnancy rates (P = 0.58). Heifers fed camelina meal, however, had greater (P = 0.05) first-service pregnancy rates to timed AI than did heifers fed the control and crude glycerin supplements. The cost per pregnancy was similar for heifers fed the crude glycerin or the control supplement, whereas the cost per pregnancy was the least for heifers fed camelina meal. We conclude that camelina coproducts can replace conventional corn-soybean meal supplements in the diets of developing replacement beef heifers.  相似文献   

13.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) at 54 or 66 h after administration of the CO-Synch + controlled internal drug-release (CIDR) protocol. Cows (n = 851) at 2 locations over 2 yr (yr 1, n = 218 and 206; and yr 2, n = 199 and 228 at the 2 locations, respectively) were stratified by age, BCS, and days postpartum to 1 of 2 FTAI intervals. Cows were administered GnRH (100 mug, i.m.) and were equipped with a CIDR insert (1.38 g of progesterone) on d 0. Controlled internal drug-release inserts were removed 7 d later at the time PGF(2alpha) (25 mg, i.m.) was administered (d 7). Continuous estrus detection was performed at location 2 by using the HeatWatch Estrus Detection System; the transmitters were fitted at the time of PGF(2alpha) and removed at the time of AI. Artificial insemination was performed at predetermined fixed times [54 h (FTAI 54; n = 424) or 66 h (FTAI 66; n = 427) after PGF(2alpha)] and all cows were administered GnRH (100 mug, i.m.) at AI. Two blood samples were collected on d -10 or -8 and immediately before treatment initiation to determine the pretreatment estrous cyclicity status of cows [progesterone >/=0.5 ng/mL (FTAI 54, 288/424 = 68%; FTAI 66, 312/427 = 73%; P = 0.07)]. Pregnancy rates were greater (P < 0.01) among cows that exhibited estrus than among those that did not (123/163 = 76% and 150/270 = 56%, respectively). There were no treatment x location interactions within year (P > 0.10) for age, days postpartum, or BCS; thus, the results were pooled for the respective treatments. Pregnancy rates were greater for FTAI 66 than FTAI 54 (P = 0.05; 286/426 = 67% vs. 257/424 = 61%, respectively). Pregnancy rates resulting from FTAI did not differ between year (P = 0.09), farm (P = 0.80), AI sire (P = 0.11), or technician (P = 0.64). There was no difference between pregnancy rates resulting from FTAI based on pretreatment cyclicity status (P = 0.30), and there was no difference between treatments in final pregnancy rates (P = 0.77). In summary, pregnancy rates resulting from FTAI following CO-Synch + CIDR at 66 h were greater than those resulting from FTAI at 54 h.  相似文献   

14.
The objective of this study was to determine whether administration of hCG approximately 5 d after AI would increase plasma progesterone concentrations and conception rates in beef heifers. Heifers from two locations (Location 1: n = 347, BW = 367 +/- 1.72 kg; Location 2: n = 246, BW = 408 +/- 2.35 kg) received melengestrol acetate (0.5 mg.heifer(-1).d(-1)) for 14 d and an injection of PGF2alpha (25 mg i.m.) 19 d later. Heifers were observed for estrus continuously during daylight from d 0 to 4.5 after PGF2alpha and artificially inseminated approximately 12 h after the onset of estrus. Half of the heifers inseminated at Location 1 were assigned randomly to receive an injection of hCG (3,333 IU i.m.) 8 d after PGF2alpha, and a blood sample was collected from all heifers 14 d after PGF2alpha for progesterone analysis. Half of the heifers inseminated at Location 2 were administered hCG on d 9 after PGF2alpha, and a blood sample was collected from all heifers 17 d after PGF2alpha. Heifers at Location 1 had a 94% synchronization rate, exhibited estrus 2.45 +/- 0.03 d after PGF2alpha, and received hCG 5.55 +/- 0.03 d after AI. Heifers at Location 2 had an 85% synchronization rate, exhibited estrus 2.69 +/- 0.03 d after PGF2alpha, and received hCG 6.31 +/- 0.03 d after AI. Progesterone concentrations were greater (P < 0.01) for hCG-treated heifers than for controls at both locations (8.6 vs. 4.6 ng/mL for treatment vs. control at Location 1, and 11.2 vs. 5.6 ng/mL for treatment vs. control at Location 2). Pregnancy status was determined by ultrasound approximately 50 d after AI. Conception rates (65 vs. 70% for treatment vs. control, respectively) did not differ at Location 1. Conception rates tended (P = 0.10) to be increased with hCG treatment at Location 2 (61 vs. 50% for treatment vs. control, respectively). A second experiment was conducted with 180 heifers at a third location to determine the effects of hCG administration 6 d after timed insemination at approximately 60 h after PGF2alpha in heifers synchronized as in Exp. 1. Pregnancy rate to timed AI did not differ between hCG-treated (62%) and control heifers (59%). Final pregnancy rate after timed AI and bull exposure (92%) was not affected by treatment. In summary, administration of hCG 5 to 6 d after AI did not improve conception or pregnancy rates at two out of three locations evaluated, suggesting insufficient progesterone is not a major factor contributing to early pregnancy failure in beef heifers.  相似文献   

15.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

16.
The objective of the experiment was to compare follicular dynamics, ovulatory response to GnRH, and synchrony of estrus and ovulation among estrous-cycling and prepubertal beef heifers synchronized with a controlled internal drug-release (CIDR)- based or GnRH-PGF(2alpha) (PG) protocol. Estrous-cycling beef heifers were randomly assigned to 1 of 4 treatments (C1, C2, C3, C4), and prepubertal beef heifers were randomly assigned to 1 of 2 treatments (P1, P2) by age and BW. Blood samples were taken 10 and 1 d before treatment to confirm estrous cyclicity status (progesterone > or =0.5 ng/mL estrous cycling). The CIDR Select (C1, n = 12; P1, n = 14)-treated heifers received a CIDR insert (1.38 g of progesterone) from d 0 to 14, GnRH (100 microg, i.m.) on d 23, and PG (25 mg, i.m.) on d 30. Select Synch + CIDR (C2, n = 12; P2, n = 11)-treated heifers received a CIDR insert and GnRH on d 23 and PG at CIDR removal on d 30. The CIDR-PG (C3, n = 12)-treated heifers received a CIDR insert on d 23 and PG at CIDR removal on d 30. Select Synch (C4, n = 12)-treated heifers received GnRH on d 23 and PG on d 30. HeatWatch transmitters were fitted at CIDR removal (C1, C2, C3, P1, and P2) or at GnRH administration (C4) for estrus detection. Ultrasound was used to determine the response to GnRH and the timing of ovulation after estrus. Among the estrous-cycling heifers, ovulatory response to GnRH and estrous response did not differ (P > 0.05). Among the prepubertal heifers, more (P = 0.02) P1 heifers responded to GnRH than P2 heifers, but estrous response did not differ (P > 0.05). Among the estrous-cycling heifers, variance for interval to estrus after PG was reduced (P < 0.05) for C1 compared with each of the other treatments, and C3 [corrected] was reduced (P < 0.05) compared with C2 [corrected] Variance for interval to ovulation after PG was reduced (P < 0.05) for C1 compared with each of the other treatments. Among the prepubertal heifers, there was no difference (P > 0.05) in variance for interval to estrus or ovulation. Results from C1 and P1 (T1) and C2 and P2 (T2) were combined to compare T1 and T2 among mixed groups of estrous-cycling and prepubertal heifers. Response to GnRH was greater (P < 0.01; 81% T1 and 39% T2), and variances for interval to estrus and ovulation for T1 were reduced (P < 0.01) compared with T2. In summary, CIDR Select improved (P < 0.01) the synchrony of estrus and ovulation compared with Select Synch + CIDR.  相似文献   

17.
Three experiments were conducted to evaluate methods to decrease or eliminate the detection of estrus inherent to a melengestrol acetate (MGA)-PGF2alpha (PGF) protocol for synchronization of estrus in heifers. In each experiment, all heifers received 0.5 mg of MGA x animal(-1) x d(-1) for 14 d (d -32 to -19) and PGF (25 mg, i.m.; d 0, 0 h) 19 d after the last feeding of MGA (MGA-PGF protocol). In Exp. 1, heifers (n = 709) were assigned to each of the following protocols: 1) the MGA-PGF protocol with AI 6 to 12 h after detection of estrus (estrus AI; MGA-PGF); 2) MGA-PGF plus 100 microg, i.m. of GnRH on d -7 (1x GnRH) and estrus AI; or 3) MGA-PGF, GnRH on d -7, and GnRH (100 microg, i.m.) at 48 h after PGF, coincident with insemination (2x GnRH-TB48). In Exp. 2, heifers (n = 559) received the MGA-PGF protocol and were inseminated by either estrus AI or fixed-time AI (TAI) at 60 h, coincident with an injection of GnRH (GnRH-TB60). In Exp. 3, all heifers (n = 460) received the MGA-PGF protocol and were inseminated by estrus AI when detected up to 73 h. Heifers not observed in estrus by 73 h received TAI between 76 and 80 h. Half the heifers inseminated by TAI received no further treatment (TB80), and the remaining half was injected with GnRH at insemination (GnRH-TB80). Variance associated with the interval to estrus and the proportion in estrus from d 0 to 5 was similar for 1x GnRH and MGA-PGF treatments in Exp. 1. Pregnancy rate (d 0 to 5) did not differ for the MGA-PGF and 1x GnRH treatments (62.5 and 60.4%, respectively), and both were greater (P < 0.05) than TAI pregnancy rate in the 2x GnRH-TB48 treatment (42.3%). In Exp. 2, the peak estrous response occurred 60 h after PGF. Pregnancy rate during the synchrony period was greater (P < 0.05) for the MGA-PGF (255/401; 63.6%) than the GnRH-TB60 (74/158; 46.6%) treatment. In Exp. 3, 75.7% of heifers (348/460) were detected in estrus by 73 h and were inseminated, with a conception rate of 74.4%. Pregnancy rates after TAI did not differ between TB80 and GnRH-TB80 (14/56 = 25% and 19/ 56 = 33.9%, respectively). Total pregnancy rate was 63.5% for heifers inseminated after detected estrus and by TAI. Collectively, these data indicate that the exclusive use of TAI for heifers treated with the MGA-PGF protocol resulted in lower pregnancy rates than when AI was performed after detection of estrus. However, estrus AI for 3 d and TAI at the end of d 3 could result in pregnancy rates similar to those achieved after a 5-d period of detecting estrus.  相似文献   

18.
Whole raw soybeans (SB), wet corn gluten feed (WCGF), and corn dried distillers grains (DDG) are sources of protein in heifer development rations. The objectives of this study were to compare puberty status before synchronization of estrus, response to synchronization, and AI and final pregnancy rates in heifers developed on diets containing SB, WCGF, or DDG that were formulated to be similar in energy and CP. These ingredients vary substantially in fat content, which may affect reproductive performance. Rate of gain during the feeding period and post-AI performance were also compared. In a preliminary experiment, 104 crossbred heifers were fed diets containing either 1.25 kg of SB/d or 2.0 kg of WCGF/d for 110 d (DM basis), beginning at 10 mo of age. In Exp. 1, 100 crossbred heifers received either 1.25 kg of SB/d or 2.5 kg of WCGF/d from approximately 7 to 10 mo of age (91 d; 4 pens/diet), and then were fed 1.25 kg of SB/d for an additional 114 d (4 pens/diet). In Exp. 2, 1.25 kg of SB/d or 1.25 kg of DDG/d was fed to 100 crossbred heifers for 226 d, beginning at 6 mo of age (4 pens/diet). At approximately 13 mo of age, heifers were fed melengestrol acetate (0.5 mg/d) for 14 d, followed by an i.m. injection of PGF(2 alpha) (25 mg) 19 d later to synchronize estrus. Heifers (14 mo of age) received AI for 5 d after PGF(2 alpha), at which time the dietary treatments were ended. Heifers were commingled while grazing on native pasture and were exposed to bulls for approximately 60 d beginning 10 d after the last day of AI. Pregnancy to AI was determined by ultrasound 45 d after the last day of AI. Heifers fed SB in the preliminary experiment had a lower (P < 0.05) synchronization rate (81 vs. 96%) and longer interval (P = 0.05) from PGF(2 alpha) to estrus (76.6 vs. 69.2 h) compared with heifers fed WCGF. In Exp. 1, the age at which the heifers were begun on SB diets did not alter (P > 0.10) the synchronization rate (79%) or timing of estrus after PGF(2 alpha) (77.8 h). In Exp. 2, the synchronization rate (86%) and timing of estrus after PGF(2 alpha) (69.3 h) did not differ (P > 0.10) because of diet. No differences (P > 0.10) were due to diet for AI conception rates (overall mean for each experiment: 76.5, 60, and 68.5%), percentage of all heifers becoming pregnant to AI (67, 46, and 59%), or final pregnancy rates (92, 90, and 90%) in the preliminary experiment, Exp. 1, or Exp. 2, respectively. In summary, SB, DDG, and WCGF can be used as sources of protein in heifer development diets at the inclusion rates used in these studies.  相似文献   

19.
Three experiments were conducted to induce estrus and(or) ovulation in 1,590 suckled beef cows at the beginning of a spring breeding season. In Exp. 1, 890 cows at three locations were allotted to three treatments: 1) GnRH on d -7 + prostaglandin F2alpha (PGF2alpha) on d 0 (Select Synch); 2) GnRH on d -7 + PGF2alpha on d 0 (first day of the breeding season) plus a norgestomet implant (NORG) between d -7 and 0 (Select Synch + NORG); or 3) two injections of PGF2alpha given 14 d apart (2xPGF2alpha). More (P < 0.05) cycling cows were detected to have been in estrus after both treatments that included GnRH, whereas, among noncycling cows, the addition of norgestomet further increased (P < 0.05) the proportion in estrus. Pregnancy rates were greater (P < 0.01) among noncycling cows after treatments that included GnRH. For cows that calved >60 d before the onset of the breeding season, conception rates were greater (P < 0.01) than those that calved < or =60 d regardless of treatment, whereas days postpartum had no effect on rates of detected estrus. When body condition scores were < or =4 compared with >4, rates of detected estrus (P < 0.05) and conception (P = 0.07) were increased. In Exp. 2, 164 cows were treated with the Select Synch + NORG treatment and were inseminated either after estrus or at 16 h after a second GnRH injection (given 48 h after PGF2alpha). Conception and pregnancy rates tended (P = 0.08) to be or were less (P < 0.05), respectively, for noncycling cows inseminated by appointment, but pregnancy rates exceeded 53% in both protocols. In Exp. 3, 536 cows at three locations were treated with the Select Synch protocol as in Exp. 1 and inseminated either: 1) after detected estrus (Select Synch); 2) at 54 h after PGF2alpha when a second GnRH injection also was administered (Cosynch); or 3) after detected estrus until 54 h, or in the absence of estrus, at 54 h plus a second GnRH injection (Select Synch + Cosynch). Conception rates were reduced (P < 0.01) in cows that were inseminated by appointment. An interaction of AI protocol and cycling status occurred (P = 0.05) for pregnancy rates with differing results for cycling and noncycling cows. Across experiments, variable proportions of cows at various locations (21 to 78%) were cycling before the breeding season. With the GnRH or GnRH + NORG treatments, ovulation was induced in some noncycling cows. Conception rates were normal and pregnancy rates were greater than those after a PGF2alpha program, particularly when inseminations occurred after detected estrus.  相似文献   

20.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号