首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ten inactivated vaccines containing one of four adjuvants and varying concentrations of pseudorabies virus (PRV) antigens were compared in order to select a vaccine suitable for commercial production. A genetically engineered strain of PRV lacking the gene coding for glycoprotein X (gpX) was used in these vaccines. Vaccinated pigs were challenged intranasally with virulent PRV to determine the efficacy of vaccines. Vaccination of pigs with one dose of experimental vaccines adjuvanted with 50% Montanide ISA 50 or 20% Syntrogen induced a protective immunity at least equal to that induced by two commercially available killed PRV vaccines also evaluated. An experimental vaccine containing 20% Syntrogen was selected and further evaluated according to United States Department of Agriculture licensing requirements. None of the pigs vaccinated with this vaccine produced gpX antibodies detectable by the HerdChek: Anti-PRV-gpX assay. Therefore, this assay could differentiate PRV vaccine induced antibodies from antibodies induced by natural exposure when used in conjunction with this killed gpX deleted PRV vaccine.  相似文献   

2.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV) (Aujeszky's disease virus) -infected pigs from those immunized with a glycoprotein g92 (gIII) deletion mutant, PRV (dlg92dltk) [OMNIMARK-PRV]. This blocking ELISA test utilizes an anti-PRV gIII monoclonal antibody (mAbgIII)-horseradish peroxidase (HRPO) conjugate, TMB for color development and a cloned PRVg92 (gIII) antigen to coat wells of microtiter test plates. Undiluted sera are used to block the binding of the mAbgIII-HRPO conjugate to the antigen. The gIII blocking ELISA is specific and has a sensitivity comparable to screening ELISA and latex agglutination tests. PRV-negative sera and sera from pigs vaccinated once, twice, or four times with the gIII-negative vaccine all showed negative S/N values of greater than 0.70 (S/N defined as the optical density at 630 nm of test sera/optical density at 630 nm of negative control sera). Sera from PRV-infected herds, sera from pigs experimentally infected with virulent PRV, and sera from pigs vaccinated with modified-live or inactivated gIII+ vaccines were positive for gIII antibodies (S/N less than 0.7). Sera from pigs experimentally infected with 200 PFU virulent PRV seroconverted to gIII+ antibodies 7-10 days postinfection. Sera from pigs vaccinated with gpX- and gI- vaccines seroconverted to gIII+ antibodies 7-8 days after vaccination. The gIII antibodies persisted after gIII+ vaccinated for at least 376 days postvaccination. Sera from pigs protected by vaccination with PRV (dlg92dltk) and then challenge exposed to virulent PRV at 21 days postvaccination showed gIII+ antibodies by 14 days postchallenge. The specificity and sensitivity of the gIII blocking ELISA assay was further demonstrated on the United States Department of Agriculture-National Veterinary Services Laboratory (USDA-NVSL) sera from the 1988 PRV check set and the 1989 gIII PRV check set by comparing the gIII blocking ELISA assay with virus neutralization, screening/verification ELISA and latex agglutination assays.  相似文献   

3.
The use of an ELISA that can differentiate between swine infected with pseudorabies virus (PRV) and swine vaccinated with a specific PRV vaccine was evaluated on an individual and herd basis, and a system for interpreting ELISA results on a herd basis was developed. In 17 herds, recently introduced replacement gilts, seronegative for PRV, were vaccinated with a thymidine kinase- and glycoprotein X (gpX)-deleted vaccine. After vaccination, blood samples were collected from these gilts approximately every 1 to 2 months for up to 19 months. Serum samples were analyzed for antibodies to gpX antigen, using a commercially available ELISA kit according to the manufacturer's protocol. Herd status was determined as positive, suspect, or negative, according to the serum sample:negative control (S:N) values of the samples collected from the herd. From the 17 herds, 130 evaluations were performed. On 49 (38%) of the 130 herd evaluations, 1 or more gilts had suspect test results. Additional testing was required in 19 (39%) of these 49 herd evaluations to determine the PRV infection status of the herd. Status of herds having gilts with suspect results and no positive results was usually negative after retesting. Herds having gilts with positive results were unlikely to have negative status after retesting.  相似文献   

4.
The potential of a pseudorabies virus (PRV) nucleocapsid protein (NC)-based enzyme-linked immunosorbent assay (ELISA) as a screening assay for PRV infection in subunit-vaccinated and nonvaccinated pigs was studied. The NC-ELISA compared favorably to a commercial ELISA for detecting PRV infection in nonvaccinated pigs. Virus-specific antibody was first detected by the NC-ELISA between days 14 and 21 in 5 pigs challenged intranasally with 10(4) PFU of virus. Antibody continued to be detected in these pigs through day 42, when the experiment was terminated. The NC-ELISA also detected antibody in 23 of 24 pigs from PRV-infected herds. In contrast, the commercial ELISA detected antibody 1 week earlier than the NC-ELISA in experimentally infected pigs but failed to detect antibody in 3 naturally exposed pigs that were identified by the NC-ELISA. Infection in these animals was confirmed by radioimmunoprecipitation analysis. The potential usefulness of the NC-ELISA for detecting infection in vaccinated pigs was also evaluated. The nucleocapsid-specific antibody responses of 10 PRV envelope glycoprotein subunit-vaccinated pigs were monitored prior to and following nasal exposure to a low dose (10(2.3) PFU) of PRV. Sera were collected periodically for 113 days after infection. Nucleocapsid-specific antibody responses measured by the NC-ELISA remained below the positive threshold before challenge but increased dramatically following virus exposure. Maximum ELISA responses were obtained on day 32 postchallenge (p.c.). Mean ELISA responses decreased thereafter but remained well above the positive threshold on day 113 p.c. PRV nucleocapsid protein can be used effectively as antigen in the ELISA for detecting PRV infection in both nonvaccinated and subunit-vaccinated pigs.  相似文献   

5.
A thymidine kinase (TK)-negative (TK-) deletion mutant of the Bucharest (BUK) strain of pseudorabies virus (PRV) was isolated. The mutant, designated as PRV (BUK d13), did not revert to TK-positive (TK+), even when propagated in medium that selected for TK+ viruses. The mutant also replicated equally well at 39.1 C and 34.5 C, and was easily distinguished from other PRV strains by molecular hybridization experiments, restriction nuclease fingerprints, and plaque autoradiography or other assays for the TK phenotype. The PRV (BUK d13) had greatly reduced virulence for mice and rabbits, compared with parental TK+ strains, PRV (BUK-5) and PRV (BUK-5A-R1), and provided mice with solid protection against the TK+ BUK and Aujeszky strains of PRV. Experiments were done in 5- to 6-week-old pigs to assess the safety and efficacy of PRV (BUK d13) in the natural host. In one experiment, pigs were vaccinated IM with 7.5 X 10(8) plaque-forming units of TK- PRV (BUK d13), and were then challenge exposed intranasally (IN) with 4.3 X 10(8) TCID50 of virulent PRV [Indiana-Funkhauser (IND-F)]. Vaccinated pigs did not have clinical signs of illness after vaccination or after challenge exposure. One nonvaccinated control pig died on postchallenge day 4; a 2nd nonvaccinated control pig became moribund, but eventually recovered. Pigs developed virus-neutralizing antibodies after vaccination, and had a secondary immunologic response after challenge exposure; however, PRV was not isolated from the tonsils or trigeminal ganglia of vaccinated pigs at postchallenge exposure day 11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Six 5-week-old pigs were inoculated intranasally (IN) with 10(7.6) TCID50 of bovine herpesvirus-1 (BHV-1). Three of the pigs also were inoculated IV with a similar dose of BHV-1. Clinical responses were not observed in these 6 pigs before oronasal challenge exposure with 10(7.8) TCID50 of virulent pseudorabies virus (PRV) at postinoculation day 42. Two pigs inoculated IN with BHV-1 and challenge exposed with PRV remained healthy, whereas the remaining 4 pigs developed severe clinical signs of pseudorabies and were moribund at postinoculation day 50 (8 days after challenge exposure). Anti-BHV-1 antibodies were demonstrable by ELISA in all 6 pigs and by serum neutralization (SN) in 5 pigs before challenge exposure with PRV. Anti-PRV antibody was not detected by ELISA or SN before challenge exposure to PRV. After challenge exposure to PRV, pigs with humoral antibody to BHV-1 responded anamnestically, and anti-PRV antibody activity was demonstrable by ELISA and SN in the 2 surviving pigs.  相似文献   

7.
A study of pseudorabies virus (PRV)-vaccinated pigs comparing the immune responses detected by the latex agglutination test (LAT) with responses detected by other routine tests for pseudorabies antibodies indicated that LAT was more sensitive than either the enzyme-linked immunosorbent assay (ELISA) or the serum virus neutralization test (SVNT). The LAT detected antibodies sooner than ELISA and SVNT in unvaccinated pigs after challenge with virulent PRV. The specificities of the 3 tests were found to be near 100%. The LAT is a good alternative to SVNT or ELISA for detection of PRV-specific antibodies.  相似文献   

8.
The avirulent Bartha's K strain of pseudorabies virus (PRV) was used to vaccinate 8 pigs at 10 weeks of age by the intransal route (experiment 1). On postvaccination days (PVD) 63 and 91, pigs were treated with corticosteroids. Viral shedding could not be detected. Explant cultures of trigeminal ganglia and tonsils did not produce virus. Four pigs with maternal antibody were vaccinated intranasally with Bartha's (attenuated) K strain of PRV at 10 weeks of age and were challenge exposed with a virulent strain of PRV on PVD 63 (experiment 2). Corticosteroid treatment, starting on postchallenge exposure day 70 (PVD 133) resulted in viral shedding in 1 of 4 pigs. In another pig of these 4, a 2nd corticosteroid treatment was required to trigger reactivation. In both pigs, sufficient reactivated virus was excreted to infect susceptible sentinel pigs. Restriction endonuclease analysis indicated that viruses isolated from the 2 pigs after challenge exposure and corticosteroid treatment were indistinguishable from the virulent virus. Evidence was not obtained for simultaneous excretion of vaccinal and virulent virus. Of 4 pigs without maternal antibody vaccinated twice with 1 of 2 inactivated PRV vaccines, challenge exposed on PVD 84, and treated with corticosteroids on postchallenge exposure day 63 (PVD 147), 1 was latently infected, as evidenced by the shedding of PRV (experiment 3). However, its sentinel pig remained noninfected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV)-infected pigs from those immunized with a glycoprotein g92(gIII) deletion mutant, PRV(dlg92dltk). The blocking ELISA utilizes 96-well microtiter test plates coated with a cloned PRV g92(gIII) antigen, a mouse monoclonal antibody against gIII antigen (moMCAgIII): horseradish peroxidase (HRPO) conjugate, and undiluted test sera. Analyses can be completed in less than 3 hours with results printed out by an automated plate reader. Analyses on over 300 pig sera from PRV-free farms, on sera from other species, and on control sera containing antibodies to microorganisms other than PRV showed that the ratio of the optical density at 405 nm for the test sample to the optical density at 405 nm for the negative control (S/N value) was greater than 0.7 for all sera. No false positives were identified. Likewise, the S/N values were greater than 0.7 for over 400 sera obtained from pigs vaccinated twice with more than 1,000 times the standard PRV (dlg92dltk) dose or 1-4 times with the standard dose (2 x 10(5) TCID50/pig). Following challenge exposure to virulent PRV, the S/N values of the vaccinates were 0.1, showing that g92(gIII) antibodies in the sera of experimentally challenged pigs strongly blocked the binding of the moMCAgIII:HRPO conjugate to the antigen-coated wells. Sera of 233 pigs from PRV-infected herds with virus neutralization (VN) titers of 1:4 or greater were tested. All except 2 of these sera had S/N values less than 0.7 and more than 175 had S/N values less than 0.1. Sixteen sera from fetal pigs with VN titers of 1:4 or greater had S/N values of 0.24 or less, but 2 sera with VN titers of 1:4 when tested 5 years prior to the PRV g92(gIII) blocking ELISA test gave false negative S/N values. Twenty-four of 29 pig sera from PRV-infected herds with VN titers less than 1:4 were positive for g92(gIII) antibodies, illustrating the sensitivity of the PRV g92(gIII) blocking ELISA test. Analyses on 7 sera with VN titers of 1:4-1:64 showed that titers obtained with the PRV g92(gIII) blocking ELISA test were from 2- to 16-fold greater than the VN titers. The accuracy and sensitivity of the PRV g92(gIII) blocking ELISA test was further demonstrated by analyses of 40 unknown sera supplied in the National Veterinary Services Laboratories 1988 PRV check test kit.  相似文献   

10.
为了解湖南省规模化猪场猪伪狂犬病免疫状况及猪伪狂犬病毒感染情况,2018年在湖南省14个市州208个规模猪场采集4288份猪血清,采用ELISA方法检测血清中的伪狂犬病毒抗体。结果显示,免疫猪PRV gB抗体个体阳性率为78.1%,PRV gE抗体个体阳性率为21.0%,场阳性率为38.9%;从不同养殖规模来看,存栏量在1000头以上的大型猪场PRV gE抗体阳性率最高,为22.9%;在季节分布上,夏季猪群的PRV gE抗体阳性率最高,为25.1%;在不同的年龄阶段中,以种母猪PRV gE抗体阳性率最高,为36.2%。表明猪伪狂犬病在湖南地区仍广泛流行,野毒感染情况较为普遍。  相似文献   

11.
During monitoring of certified pseudorabies (PRV)-free herds to confirm their PRV -free status, occasional individual gE-seropositive pigs are detected. These single-reactor pigs remain gE-seropositive when further serum samples are collected and tested. For the eradication programme to proceed, it is important to determine whether these pigs are only false positives or are; in fact, infected with field PRV. The purpose of this study was to determine whether the polymerase chain reaction (PCR) could detect field PRVDNA in single-reactor pigs and so confirm positive reactions in the serologic monitoring programme. First, DNA samples of various tissues from 15 single-reactor pigs all from different herds were examined for field PRV by PCR. Additionally, serum samples from these pigs were analyzed in a gE-confirmation enzyme linked immunosorbent assay (gE-confirmation ELISA). PCR detected PRVDNA in five of the 15 pigs, and these results were confirmed by the gE-confirmation ELISA. The remaining 10 pigs that tested negative in the PCR also tested negative in the gE- confirmation ELISA. We conclude that PCR can be used to discriminate between true and false serological positive single-reactor pigs and, moreover, that the gE-confirmation ELISA confirms these PCR results.  相似文献   

12.
To study the antibody response to glycoprotein I (gI) of pseudorabies virus (PRV) in maternally immune pigs, 3 groups of 6 pigs were given low doses of the mildly virulent Sterksel strain of PRV at 3 and 11 weeks of age. Group A consisted of seronegative pigs; groups B and C consisted of pigs with maternal antibodies deficient of antibodies to gI. At 3 weeks of age, 3 pigs of each group were inoculated intranasally with 10(2.5) plaque-forming units (groups A and B), or with 10(3.5) plaque-forming units (group C) of PRV. The 3 other pigs in each group were contact-exposed to the inoculated pigs. In group A, 4 of 6 pigs shed virus and all developed antibodies to gI of PRV and produced PRV-specific IgM and virus-neutralizing antibodies. In groups B and C, 10 pigs shed virus and all developed low and inconsistent titers of gI antibodies, whereas only 3 pigs produced PRV-IgM antibodies with low titers. Thus, after PRV infection of pigs with high concentrations of maternal antibodies deficient of gI antibodies, the antibody responses to PRV were severely inhibited. The pigs were reinoculated with 10(3) plaque-forming units of the same virus 8 weeks after the first inoculation. The pigs in group A did not respond at all, as they were immune. The pigs in groups B and C shed considerable amounts of virus. Three pigs had a clear secondary antibody response to gI, whereas the others developed an early to normal antibody response to gI. None of the pigs mounted a secondary neutralizing antibody response to PRV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
三种检测猪伪狂犬病抗体的方法比较   总被引:1,自引:0,他引:1  
应用血清中和试验(SNT)、乳胶凝集试验(LAT)和PRVgpI抗体鉴别ELISA三种方法检测了42份猪血清中的伪狂犬病抗体效价并进行了比较。结果表明SNT与LAT二种方法的阳性符合率为87.1%(27/31),阴性符合率为90.1%(10/11),总符合率为88.1%(37/42),且SNT的敏感性高于LAT,但PRVgpI抗体与SN和LA抗体无相关性。  相似文献   

14.
The immune response was compared in pigs given inactivated pseudorabies virus (PRV) antigens (with or without adjuvant) or PRV antigens covalently conjugated with a fatty acid (lauric acid) to enhance delayed-type hypersensitivity. The pigs were given 2 inoculations, 14 days apart, and were challenge exposed 28 days after the 1st inoculation. Pibs inoculated with PRV antigens, with or without adjuvant, had significant virus-neutralizing (VN) antibodies before challenge exposure, but the pigs inoculated with lipid-conjugated PRV antigens had no detectable VN antibodies, with the exception of 1 pig. All inoculated pigs were positive by the microimmunodiffusion test at postinoculation day 14 and remained positive throughout the experiment. The inoculated pigs had delayed-type hypersensitivity reactions when skin tested a postinoculation day 25; the pigs inoculated with lipid-conjugated PRV antigens had a more pronounced reaction. Inoculated pigs had mild respiratory signs on the 3rd through the 6th days after challange exposure, with no observable difference in severity between the inoculated groups. The control pigs had acute signs of PRV, and 3 or 4 pigs died 5 to 8 days after challenge exposure. The average VN titers of the different inoculated groups of pigs were nearly equal 2 weeks after challenge exposure. Results indicated that both humoral antibodies and cell-mediated immunity have a role in PRV infections in swine.  相似文献   

15.
Pseudorabies virus (PRV) is endemic in some regions of Japan. We investigated the effects of PRV infection status on herd productivity. Serum samples were obtained from 48 swine herds in Japan. Within each herd, three serum samples were obtained from growing pigs at four different ages, as well as from sows in low and high parity groups. Sera were tested for antibodies against wild-type PRV via competitive ELISA. Herds were classified into PRV positive and negative groups based on serological results. Herds infected with PRV exhibited postweaning mortalities (6.84%) that were significantly (P=0.0018) higher than those in unaffected herds (4.73%). Because of the reduced productivity in PRV positive herds, the current PRV eradication program must be strengthened.  相似文献   

16.
Cellular immunity in pigs inoculated with pseudorabies virus (PRV) was studied by the agarose plate technique of direct leukocyte migration-inhibition procedure. Migration of leukocytes from PRV-infected pigs was inhibited in the presence of PRV antigen, whereas migration of leukocytes from nonexposed pigs was not inhibited in the presence of the same antigen. The migration of leukocytes collected 4 days after intranasal exposure to PRV was inhibited; humoral antibodies could not be detected until 7 days after exposure. Cellular immunity was present in pigs 14 days after inoculation with inactivated PRV antigens; low concentrations of neutralizing and precipitating antibodies were present at this time. The leukocyte migration-inhibiton procedure was found to be a useful tool in studying the role of cellular immunity in PRV infections.  相似文献   

17.
2009年1月—2011年12月,从河南省信阳和驻马店地区62个猪场共收集免疫过猪瘟病毒(CSFV)、伪狂犬病毒(PRV)、猪繁殖与呼吸综合征病毒(PRRSV)和猪圆环病毒2型(PCV2)疫苗的猪血液,利用ELISA方法对样品进行抗体水平的检测。结果显示:该地区猪场猪群的疫苗免疫合格率最高是PRV疫苗(87.06%);其次是CSFV疫苗(76.24%);PRRSV和PCV2的疫苗免疫合格率较低,分别为65.20%和50.78%。4种疫苗免疫抗体合格率在不同规模的猪场有较大的差别,规模猪场的猪群某些疫病的抗体未必比散养猪群高。种猪群的4种疫苗的免疫合格率最高,商品猪中各个生长阶段的免疫后抗体合格率比较后发现,断奶仔猪群PRRSV抗体合格率明显高于哺乳仔猪,育肥猪群合格率要比哺乳仔猪群和断奶仔猪群的抗体合格率低。  相似文献   

18.
Data were collected from 39 Minnesota swine farms quarantined for pseudorabies virus (PRV) infection. Each herd was serologically evaluated for antibodies to PRV in the sows, boars, and finishing pigs. To identify PRV-seropositive swine herds, the Kappa statistic was used to estimate the effectiveness of evaluating the PRV serostatus of boars or of finishing pigs. Using the serostatus of all herd boars, the sensitivity (with 95% confidence interval) of identifying PRV-infected herds was 58 +/- 22%, and the specificity was 100 +/- 0%; Kappa statistic was 0.55. Using the serostatus of a representative sample of finishing pigs, the sensitivity of identifying PRV-infected herds (with 95% confidence interval) was 63 +/- 22%, and specificity was 87 +/- 23%; Kappa statistic was 0.40. The PRV serostatus of herd boars or of a representative sample of finishing pigs did not accurately reflect the PRV serostatus of the herd.  相似文献   

19.
Pseudorabies (Aujeszky disease) virus (PRV) was eliminated from domestic swine in many countries using glycoprotein E (gE)-deleted vaccines and serum antibody gE ELISAs, but PRV continues to circulate in some regions and in most feral swine populations in the world. We created a dual-matrix (serum and oral fluid) indirect IgG gE ELISA (iELISA) and evaluated its performance using samples from 4 groups of 10 pigs each: negative control (NC), vaccination (MLV), PRV inoculation (PRV), and vaccination followed by challenge (MLV-PRV). All serum and oral fluid samples collected before PRV challenge and all NC samples throughout the study were negative for gE antibodies by commercial blocking ELISA (bELISA) and our iELISA. Nasal swab samples from 9 of 10 animals in the PRV group were gB quantitative PRC (qPCR) positive at 2 days post-inoculation (dpi). The oral fluid iELISA detected a significant S/P response in the PRV (p = 0.03) and MLV-PRV (p = 0.01) groups by 6 dpi. ROC analyses of serum bELISA (n = 428), serum iELISA (n = 426), and oral fluid iELISA (n = 247) showed no significant differences in performance (p > 0.05). Our data support the concept of PRV surveillance based on oral fluid samples tested by an indirect gE ELISA.  相似文献   

20.
An indirect solid-phase microradioimmunoassay (IRIA) was developed for detection and quantitation of antibodies to pseudorabies virus (PRV) in swine serum. Qualitative results of the IRIA compared closely with results of the serum neutralization test (NT) and the microimmunodiffusion test (MIDT). The IRIA was more sensitive than the NT for detection of antibodies to PRV in swine serum. The IRIA result is expressed numerically. With the IRIA and NT, antibody to PRV was first detectable in 3 experimentally infected pigs at 9 days after inoculation. With MIDT, antibody was detected in the 3 experimentally infected pigs at 9 days after inoculation. With the MIDT, antibody was detected in the 3 experimentally infected pigs at 7, 8, and 9 days after inoculation. The IRIA results are obtainable within a few hours; the NT and MIDT require 48 hours for completion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号