首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鉴于三江平原地下水位预测对该地区农林经济的重要性,详细介绍了RPROP的BP神经网络算法思想和数学模型;综合三江平原地下水位埋深的具体情况,建立了弹性BP神经网络地下水位埋深预测模型,而且以单口井为例做了具体的预测和分析.结果证明:使用该方法预测三江平原地下水位埋深值具有准确性和实效性,该理论和方法在地下水动态预测方面具有较好的应用前景.  相似文献   

2.
基于RBF神经网络的地下水动态预测   总被引:1,自引:0,他引:1  
以内蒙古自治区巴彦淖尔市金泉工业园区为例,基于园区B248号长观井2001-2008年的地下水埋深资料,首先建立了地下水埋深RBF神经网络预测模型,而后对该模型的模拟结果作误差分析,并将相应值与BP网络模型进行对比。RBF神经网络模型和BP网络模型的最大相对误差分别为9.88%和19.67%,最大绝对误差分别为0.81和1.56,均方误差分别为0.19和0.98。显然,RBF神经网络具有较高的预测精度和较强的非线性映射能力。用上述训练好的RBF神经网络模型对研究区2009-2013年平水年条件下的地下水埋深进行预测,结果表明,研究区已出现地下水位持续下降的趋势。最后,根据地下水资源保护规划方案,在逐时段压缩地下水开采量10%的情况下,研究区2025年即可恢复到2001年的地下水水位值。  相似文献   

3.
基于ELM模型的浅层地下水位埋深时空分布预测   总被引:1,自引:0,他引:1       下载免费PDF全文
选用石家庄平原区补排因子的多种组合为输入参数,利用28眼水井的实测资料作为预测目标值,首次建立基于极限学习机(Extreme learning machine,ELM)的地下水位埋深时空分布预测模型,讨论补排因子在不同缺失情况下对模型精度的影响;利用Arc GIS分析误差空间分布趋势,并与常用的三隐层BP神经网络模型进行对比。结果表明:基于水均衡理论的ELM地下水位埋深模拟模型能够准确反映人类和自然双重影响下地下水系统的非线性关系,模型输入因子中缺失降水量或开采量的模拟结果均方根误差(RMSE)比缺失其余因子的RMSE高2.00倍及以上,同时模型有效系数(E_(ns))和决定系数(R~2)进一步降低;与BP模型相比,ELM模型可使RMSE减小43.6%,误差区间降低46.4%,Ens和R2提高至0.99,且RMSE在空间相同区域上均明显呈现出ELM模型小于BP模型;ELM模型在南部高误差区的移植精度(RMSE低于1.82 m/a,E_(ns)高于0.95)高于BP模型(RMSE超过3.00 m/a,Ens低于0.85);因此,影响地下水位埋深的主导因素是降水量和开采量,且ELM模型在精度、稳定性和空间均匀性上较优,移植预测效果较好,可利用已知资料推求区域空间内其余未知水井的浅层地下水位埋深;该模型可作为水文地质参数及补排资料缺乏条件下浅层地下水位埋深预测的推荐模型。  相似文献   

4.
以西北干旱典型县域磴口县为研究区,基于增量学习的改进隐马尔可夫预测模型(IL-HMMs),对区域地下水埋深进行了预测研究。为检验IL-HMMs模型预测效果,将模型预测结果与2013年长观井的实测数据进行了比较;同时为检验模型的优劣性,与未经增量学习的隐马尔可夫模型(HMMs)、加权马尔可夫链(WMCP)和BP神经网络(BP neural network,BPNN)预测模型的预测结果进行了比较。结果表明:与其他几种预测模型相比,IL-HMMs模型预测精度显著提高,误差更小,有较好的鲁棒性。并使用IL-HMMs模型对2018年地下水埋深进行了预测,预测结果表明,2018年地下水年平均埋深略有增加、局部区域地下水埋深增量加剧。基于IL-HMMs模型的地下水埋深预测具有很好稳定性的同时对新数据加入又有很好的鲁棒性,可为地下水埋深动态预测提供思路与方法补充,为区域地下水资源开发利用和保护提供重要依据。  相似文献   

5.
地下水埋深预测对于灌区农业生产、水土资源合理利用和生态环境保护等具有重要指导价值与作用。地下水埋深是一个受多种因素影响的多层次复杂系统,其演变具有不确定性、随机性、模糊性和非平稳性。基于EEMD较强的处理非线性问题能力和Elman网络具有适应时变和动态记忆的优点,构建了基于EEMD与Elman神经网络的地下水预测耦合模型,并将其应用于人民胜利渠灌区地下水埋深预测中。研究结果表明:基于EEMD和Elman神经网络耦合模型预测结果的最大相对误差为2.91%,最小相对误差为0.04%,预测合格率为100%,该耦合模型对人民胜利渠灌区地下水埋深的预测精度要高于单一的Elman模型和BP模型。另外,该模型在某种程度上可揭示灌区地下水时间序列的演变机制与影响因素,且计算简单、思路清晰,为地下水埋深预测提供了一种新的途径。  相似文献   

6.
BP神经网络在浅层地下水矿化度预   总被引:2,自引:1,他引:1  
针对导致黄河下游三角洲地区土壤盐渍化的浅层地下水因素,以该地区典型区域为研究对象,将人工神经网络引入地下水矿化度的模拟和预测中,建立了基于土壤盐分、地下水埋深和pH的地下水矿化度预测的BP神经网络模型,并与多元回归模型在拟合精度和预测性能方面进行了比较。结果表明:研究区域地下水矿化度与土壤盐渍化程度呈显著的相关性,多元回归模型能较好地拟合地下水矿化度;通过网络训练确定了地下水矿化度的BP神经网络的拓扑结构为5:8:1,BP神经网络的拟合精度明显优于多元回归模型;统计检验表明BP神经网络的预测性能亦优于多元回归方法,其预测精度提高了50.1%。该研究可为黄河三角洲地区盐渍化的水盐调控和预测预报提供理论基础与决策依据。  相似文献   

7.
基于径向基(RBF)神经网络建模,对西安市渭滨地下水水源地的地下水位埋深进行了模拟和预测。将降雨、径流和人工开采量作为输入变量,对研究区域内的潜水和承压水位埋深分别进行预测。1984—2001年的数据用于径向基网络模型训练,2002-2005年的数据用于模型的验证,最后对2006—2023年共18年的地下水位埋深进行预测。结果表明,径向基神经网络模型对20年左右的数据序列有较好的预测效果,且根据降雨、径流和开采量,能较准确的预测地下水位埋深。  相似文献   

8.
以853农场为例,利用小波分析的多分辨率功能和人工神经网络的非线性逼近功能,建立了基于小波变换和BP神经网络的853农场地下水埋深动态预测小波神经网络模型,对地下水动态变化规律进行分析,精度检验及对比分析结果表明,模型拟合和预测精度均较高。预测结果表明,853农场未来几年内地下水位会持续下降,年平均降幅为0.66 m左右,因此当地应加强地下水的科学管理。该模型揭示了区域地下水动态变化规律,为853农场乃至三江平原井灌区地下水资源的可持续利用提供了科学依据。  相似文献   

9.
为解决果园需水量预测精度低、鲁棒性差等问题,提出了遗传算法(GA)优化BP神经网络的果园需水量预测模型.选取空气温度、土壤含水率、光照强度3个主要环境因子作为BP神经网络的输入量,利用遗传算法的全局搜索能力优化神经网络权值和阈值,建立GA-BP神经网络模型预测果园需水量.仿真结果表明:GA-BP预测模型的预测值比BP模型更加趋近期望需水量,模型评价指标平均绝对百分比误差(MAPE)、均方根误差(RMSE)和平均绝对误差(MAE),均优于单一BP神经网络模型.与传统的BP神经网络算法相比,GA-BP神经网络模型能较好的表达果园需水量与主要环境因子的非线性关系,具有较高的预测精度和适应性.  相似文献   

10.
马铃薯产量的高效预测对于制定马铃薯生长期间的精准管理决策具有重要意义。为此,针对传统BP神经网络在产量预测中存在的精度差、准确度低等问题,选择遗传算法对单一BP神经网络模型开展网格优化。基于朔州市朔城区沙楞河村2010-2019年田间物联网获取的田间环境数据(土壤含水率和土壤温度)、气象环境数据(大气湿度、大气温度、降雨量)和马铃薯产量,采用BP神经网络及GA-BP神经网络模型对所选地区马铃薯产量进行预测分析。研究结果表明:GA-BP神经网络模型下,马铃薯产量的预测精度明显高于BP神经网络模型,R2达到0.993 27,平均相对误差仅为0.88%。试验证明,GA-BP神经网络模型能够更加科学、合理地进行马铃薯产量预测,说明利用遗传算法优化BP神经网络在马铃薯产量预测中是可行且有效的。  相似文献   

11.
针对地下水位动态预测常用方法中存在的不足,在借鉴相似预测理论思想的基础上,提出以最大相似度准则来刻画时间序列预测中各个样本的关联性,给出了以最大联系度来定量测度地下水位历史样本之间的相似度,提出了改进的非参数时间序列模型在地下水位动态预报的建模步骤和求解思路,并将五元联系度模型应用于中牟县18号观测井的地下水埋深年内预报中。预报结果表明,改进的非参数地下水位动态预报模型预测值与实测值具有较好的拟合优度,两者呈现较强的趋势性,同时模型的有效性和可靠性经后验差法检验表明预测精度较高,泛化能力较好。  相似文献   

12.
灰色神经网络在地下水动态预测中的应用   总被引:1,自引:0,他引:1  
以周至201号井为例,选取降雨量、蒸发量、单位面积的引灌水量及人工开采量4个地下水位的主要影响因素为预报因子,地下水位作为输出样本,建立BP神经网络模型。以2002-2011年4个序列的数据分别建立新陈代谢GM(1,1)模型,得到2012-2014年的预测值。再将各新陈代谢GM(1,1)模型得到的4个预报因子的预测值作为BP神经网络的输入,得到的输出即为最终2012-2014年地下水位的预测值。结果表明,灰色理论和BP神经网络耦合模型具有较高的预测精度,可为地下水的动态预报提供参考。  相似文献   

13.
针对地下水埋深变化离散性程度较大的兴平市,利用兴化漏斗区2000-2011年的地下水位埋深数据,采用基于指数预测法、线性回归预测法及灰色预测法的变权组合预测方法,对其进行地下水位埋深的模拟和预测。通过对兴平市地下水动态的预测,对比变权组合预测方法和单纯运用某一种单项预测方法在精度上的差别,证明了变权组合预测模型具有可行性和较高的精度,并在此基础上对兴平市未来地下水埋深进行了预测。  相似文献   

14.
针对白城地区浅层地下水位动态变化的复杂性和非线性,采用小波分析和人工神经网络相结合的小波神经网络模型(WA-ANN)对白城地区浅层地下水埋深进行分析和预报。将研究区5口井2002-2009年逐月的降水量、蒸发量、人工开采量和前期水位埋深4个因素作为输入层,地下水埋深作为输出层,建立浅层地下水埋深预测模型,并采用"后验差"法对模型精度进行检验。检验结果表明,WA-ANN模型能很好地模拟该区地下水埋深变化规律,且拟合和预报精度均较高,相对误差小于10%。2010年以后的预报结果显示研究区地下水位呈逐年下降趋势,预计到2015年将下降1m,应及时加以控制。同时,笔者希望本次研究能为浅层地下水埋深预测提供一种新的途径。  相似文献   

15.
人工神经网络在土壤含盐量预测中的应用   总被引:1,自引:0,他引:1  
土壤含盐量的预测对合理配置水资源.防治土壤次生盐碱化等具有重要的指导意叉.在阐述BP人工神经网络原理的基础上,针对影响土壤含盐量的主要因素,建立了多因子土壤含盐量的3层BP网络模型,以土壤含水率、地下水矿化度、地下水pH值、地下水埋深、相对湿度、降雨量、蒸发量作为模型输入参数,土壤含盐量作为模型输出,对土壤含盐量进行了预测.结果表明,BP神经网络模型预测土壤含盐量的最大误差为8.78%,平均误差为5.99%,模型具有较高的预测精度.  相似文献   

16.
基于Elman和BP神经网络的逐月参   总被引:2,自引:0,他引:2  
参考作物腾发量是估算作物蒸发蒸腾量的关键参数,它的准确预测对提高作物需水预报精度具有十分重要的意义。由于参考作物腾发量随时间变化具有一定的动态特性,将动态的Elman神经网络引用于参考作物腾发量预测中,并以铁岭市为例,对比分析了Elman模型与BP模型的预测结果。分析表明:Elman模型不仅能反应系统的动态特性,还具有比BP模型更高的预测精度、逼近性和稳定性。  相似文献   

17.
采用黄金分割原理优化算法确定BP神经网络的隐含层节点数,进而确定BP神经网络的结构,并针对BP神经网络容易陷入局部极小值和全局搜索能力弱的缺点,引人遗传算法(GA)优化网络权值,建立GA-BP网络模型,预测作物参考腾发量ET0.以北京地区的相关资料为基础,选用6种输入因子组合方案,对该模型进行验证,结果表明该网络模型具有较好的预测能力;同时,对6种方案比较分析表明,方案4最优,该方案只需选用4项输入因子(日序数、平均气温、风速和日照时数),就能以较高的精度预测作物参考腾发量.  相似文献   

18.
传统的BP神经网络拥有良好的逼近非线性映射能力,然而由于其自身存在收敛速度慢,容易陷入局部极小值和泛化能力差的不足,往往难以满足实际中预测精度的需要。采用卡尔曼滤波方法,将观测到的大坝位移原始值进行滤波处理,以尽可能剔除随机误差的干扰,并引入遗传算法,对神经网络的权、阈值进行优化,提高其全局搜索能力,建立了基于卡尔曼滤波的GA-BP模型。以某大坝位移预测为例,证明了此模型比传统的BP模型在预测精度上有所提高,具有一定的实际应用价值。  相似文献   

19.
为研究内蒙古河套地区义长灌域年均地下水矿化度变化规律,选取灌域年蒸发量、引水量和年均地下水埋深作为影响因子,建立基于支持向量机的灌域年均地下水矿化度预测模型,并与多元回归预测模型和BP神经网络预测模型进行对比分析。结果表明:多元回归预测模型预测精度较差,BP神经网络预测模型较多元回归预测模型精度有较大提高,但支持向量机预测模型对灌域年均地下水矿化度的预测效果最好,其决定系数达到0.81,平均误差仅为0.15 g/L。由此可见,支持向量机方法在灌域年均矿化度预测研究中切实可行,为灌域地下水研究和生态环境改善提供新思路。  相似文献   

20.
针对传统BP神经网络预测农业灌水量时存在易陷入局部最小值、难以选择合适学习率的问题,提出了一种基于遗传算法和Adam算法并行优化BP神经网络的农业灌水量预测模型.该模型利用遗传算法对BP神经网络进行初始权值和阈值的预筛选,然后采用Adam算法来实现学习率自适应于参数梯度不断更新.收集黄河流域陇中片灌溉分区内7个典型灌区...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号