首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了促进温室大棚内作物在适宜和充足的光照环境下生长,采用LED技术设计了温室大棚智能补光自适应控制系统,系统主要由补光区控制节点、数据集中管理服务器和农户智能手机组成。补光区控制节点基于嵌入式处理LPC2129设计,利用光感器件采集红/蓝光强信息,并根据数据集中管理服务器上的农业专家系统的指导,输出不同占空比的PWM信号给LED,将光强自适应调整到合适状态。同时,农户可通过智能手机登陆数据集中管理服务器查看温室大棚内的光照和设备运行状态等信息,实现了对温室大棚的远程管理。通过番茄对比试验结果表明,设计的LED智能补光系统对温室内光照控制精准,比固定光强LED补光和未补光的产量分别提高了10.73%和38.47%,而消耗的电量则比固定LED补光方式降低了38.5%。  相似文献   

2.
张慧颖 《湖北农业科学》2014,(14):3402-3406,3411
针对传统温室大棚参数监测存在繁琐的布线问题,设计了基于新型物联网技术的温室大棚智能监测系统。该系统以CC2530无线传输模块结合温湿度传感器、光照传感器和CO2浓度传感器构成无线采集节点,对温室环境参数进行检测;检测数据通过由ZigBee模块构成的路由节点选取最优路径实现数据的无线传输;采用STM32作为核心处理器设计嵌入式网关,并利用GPRS技术将现场检测到的数据实时传送给监测中心,实现对温室环境的实时监测和报警。结果表明,该系统运行稳定、测量准确、网络覆盖性好、布点灵活、低功耗并且使用方便。  相似文献   

3.
针对在传统日照温室大棚管理中存在收放保温卷帘和通风劳动强度大等问题,设计了自动卷帘与智能通风控制系统,系统主要由环境监测节点、执行节点和控制决策中心组成。节点在控制器C8051F020平台上开发而成,实现了对棚内温湿度、CO2浓度和光照度的监测,并通过无线模块n RF905上传到控制决策中心,根据作物生长专家知识库对风机和自动卷帘机进行控制,达到调节棚内环境参数的目的。结果表明,该系统能准确测量棚内的环境参数,并通过控制风机对温湿度进行自动调节,为作物的高产创造了条件,实现了温室大棚种植的精准化和智能化管理。  相似文献   

4.
为提高温室大棚管理与监控水平,基于物联网技术构建一种温室大棚智能管理系统。该系统通过对农作物生长环境参数采集存储、WEB客户端信息处理、预警分析和温室设备的智能控制等,实现了大棚的科学化管理和对农业大棚的实时监测和自动控制。系统结合各种信息技术和智能温室大棚的生产管理需求,采用感知层、网络层、应用层的3层体系结构进行系统构建,包含了实时数据采集、网络监控、大数据分析平台、设备操控模块。  相似文献   

5.
为实现温室大棚中的智能浇灌,设计一套以STM32为核心的智能滴灌系统。该系统具有土壤检测、水流控制和声光报警功能。系统采用湿度传感器检测土壤湿度,用步进电机控制水流开关,若发生情况用蜂鸣器和发光二级管(LED灯)进行声光报警。  相似文献   

6.
多功能智能温室监控系统设计   总被引:3,自引:1,他引:2  
王秀 《安徽农业科学》2011,(13):8086-8088
设计了一个基于无线传输的单片机控制智能温室监控系统,该系统能实现实时采集温室参数信息,利用红外对射模块实现入侵报警。给出了该智能温室控制系统的硬件部分和软件部分设计,结合有线和无线通讯技术,将从机的采集信号实时传送计算机,经过数据比较处理,发送控制命令,实现温室大棚的最优控制,从而提高温室大棚的农产品产量。  相似文献   

7.
《农技服务》2017,(6):152-153
设计一种大棚智能遮光系统来实现对大棚遮光帘的自动和手动控制,进而对光照强度进行调节。自动控制通过光敏传感器采集光照信息,将信息传给单片机进行处理,根据设置的阈值由单片机驱动电动机展开或收起遮光帘,改变大棚光照强度。手动控制通过SC2262/SC2272编码解码芯片收发控制信号,再由单片机驱动电动机展开或收起遮光帘来改变大棚光照强度。经实验验证,本温室大棚智能遮光系统能够实现温室大棚光照强度的智能控制。  相似文献   

8.
温室大棚温度控制是一个复杂的系统,对于多种变量的控制都有着较高的要求,这也是长期以来温室大棚都需要人工介入的重要原因。针对目前温室大棚种植中自动化和智能化程度不高的现状,结合自动控制理论、智能控制算法和物联网通信技术,本文设计了嵌入式温室大棚温度自动控制系统,介绍了系统整体方案、主要电路和控制系统软件的设计,以期为该系统在温室大棚的智能管理中推广应用提供参考。  相似文献   

9.
本文阐述了温室大棚的智能化设计及硬件系统选择,结合智能温室大棚系统软件设计特点,我们指出智能温室大棚系统能够实现对外界的四季变化与恶劣天气进行抵挡,也能让整个农作物生长环境得到优化的功能。  相似文献   

10.
本文以ZigBee技术为核心,采用通用性思想和模块化设计的思路,用无线传感网络技术解决温室大棚内的农作物生长的智能自动监控系统。设计了基于ZigBee组网技术的数据采集节点,采集温室内环境因子的数据,搭建了基于ZigBee的网状网络,实现了采集数据与控制数据的无线传输。利用单片机作为控制机构,根据已经设置的环境阈值控制相应的执行机构,启动相应调控设备,若温室环境发生了变化,控制系统通过Zig Bee连接自动控制温室内的执行机构,可使温室环境一直处于最适合农作物生长的条件。同时,由于ZigBee的可扩展性,可添加新的功能执行机构,例如杀虫系统,从而实现多功能的智能温室控制系统。  相似文献   

11.
温室远程测控系统由基于TI的Zigbee SoC的无线监测网络和GPRS远程数据传输与控制网络组成,实现了智能温室大棚土壤环境的远程监测.通过以CC2530为核心的传感器节点获取实时数据,采用ARM微处理器(S3C6410)的控制器,配置相应外围接口和显示器件,实现节点的数据汇总;并通过互联网,完成远程数据传输.后台服务器作为远程数据中心,负责数据存储、检索、控制和查询等服务.该系统的设计开发是物联网在现代农业的实践应用案例.  相似文献   

12.
基于物联网的温室大棚智能控制系统总体方案设计   总被引:1,自引:1,他引:0  
我国设施农业产业规模巨大,但技术水平不足,严重制约了温室大棚生产效率的提高。为了达到温室大棚现代化管理的目标,在深入分析温室大棚内部主要环境因子及环境特点的基础上,吸收采用物联网技术,制定系统的总体控制方案,确定了控制系统3层体系架构,实现温室大棚信息的全面感知、可靠传输和智能处理。  相似文献   

13.
针对目前温室大棚环境监测系统存在布线困难、灵活性低和成本高等问题,构建了基于无线传感器网络(WSN)的温室大棚环境监测系统,并重点对传感节点和网关节点进行了设计。该系统的传感器节点负责对环境参数进行采集,并通过无线传感器网络将数据发送到网关节点,网关节点再向远程监测平台传输数据。节点硬件的微处理器模块采用MSP430F149单片机进行数据处理和控制;无线通信模块由nRF905射频芯片及其外围电路组成,负责对数据进行传输和接收;传感器模块采用AM2301传感器进行数据测量;电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5.0 V电源。节点的无线路由协议和时间同步算法均采用C语言开发,实现节点数据采集与处理、规则转发和远程传输等功能。远程监测软件采用NET.ASP、HTML和C#开发,为用户提供形象直观的Web模式远程数据管理平台。该系统在青海省西宁市温室大棚进行了组网测试,结果表明系统运行稳定可靠,网络平均丢包率为2.4%,有效解决了温室环境监测系统中存在的问题,满足温室大棚栽培环境监测的应用要求。  相似文献   

14.
在传统温室自动化监控系统的基础上,针对目前温室大棚面积不断增大、温室内传感器种类及数量不断增多,且不易连栋管理的现状,设计了基于ARM CORTEX-M3核的以STM32单片机为核心的智能温室控制系统。系统采用CAN总线技术对连栋大棚的主要环境因子,如温度、湿度及光照度等进行智能控制,通过串行通信实现上位机控制,增强了温室大棚的智能化和实用性。  相似文献   

15.
新时期下,温室大棚已经逐渐实现了智能化管理模式,改善了传统温室大棚人工管理的弊端。但是目前有很多智能管理系统成本高、使用不便,无法充分发挥智能管理的效能。基于此,本文提出一种基于物联网的温室大棚智能管理系统,探究该系统的构建方案。  相似文献   

16.
设施农业温室大棚智能控制技术的现状与展望   总被引:3,自引:0,他引:3  
设施农业的发展是农业现代化的重要标志,也是现代化农业发展的重要建设任务。温室大棚智能控制作为设施农业种植与生产过程中的关键环节,是提高生产效率、保障农作物品质的重要措施,近年来,已成为国内外热门研究课题。温室环境是一种非线性、强耦合性、多干扰性、时滞性的动态环境系统,温室内环境因子与环境因子、植物生长情况与环境因子之间都存在复杂的能量关系。因此,如何高效经济地实现温室内多因子间的复合控制是温室环境控制过程要解决的关键问题。我国的智能温室大棚技术较国外发展晚,在控制方法、控制技术和控制成本等方面都与国外先进技术存在较大差距。为了促进我国设施农业温室大棚智能控制技术的快速发展,推动设施农业领域的技术进步,总结了国内外温室大棚智能控制技术的发展过程,重点对模糊控制、神经网络控制和专家系统控制等温室控制算法进行了分析和比较,展望了设施农业温室大棚智能控制技术的发展方向。  相似文献   

17.
不同作物的生长发育对土壤湿度有不同的需求,为了给温室大棚农作物提供一个最适宜的生长环境,结合温室大棚现有滴灌系统的特点,设计了一套以ARM11为控制核心、土壤湿度传感器为采集模块、WIFI模块为通信模块的土壤湿度自动控制系统。此系统通过控制与滴灌系统连接的电磁阀保证土壤湿度在适宜的范围内,实现了温室大棚内土壤湿度的远程监测与自动控制;温室大棚管理人员不仅能使用HTTP协议随时、随地访问嵌入式Boa WEB Server来获取实时的土壤湿度数据,还可以通过SQLite嵌入式数据库查询存储的土壤湿度的历史数据。系统测试结果表明,该系统能实现农作物土壤湿度的远程监测与智能调控,运行可靠,测量的土壤湿度绝对误差为±3%,有一定的实用性。  相似文献   

18.
温室大棚气象环境监测网络系统设计   总被引:1,自引:1,他引:0       下载免费PDF全文
温室大棚在农业生产中可以有效减少自然灾害的影响,因此温室大棚的气象要素监测成为了迫切的需要。本设计中大棚不再是1个孤立的个体,而是将大棚组合为1个网络,单个大棚是1个节点,单个区域也可以是1个节点。设计了基于ADAM-4000系列的温室大棚气象环境监测网络系统,系统由环境参数采集端和监控中心2部分组成,采集终端以ADAM-4000系列为控制核心,负责采集温室大棚内的环境信息,通过串口把监测到的数据传送到监控中心上进行显示,并备份到数据库SQL Server里进行历史数据查询。  相似文献   

19.
发展自动化与智能化的温室大棚智能控制系统,对温室大棚内的设备进行科学合理的设计,不但能节省人力物力,提高作物产量,而且也是应对水资源短缺和农业现代化的必然选择。通过采集温室大棚内的温度、湿度、光照、CO_2浓度等温室大棚数据,结合ZigBee和GPRS技术研发了一种远程智能控制系统,并设计了灰色预测策略,实现了无人值守的智能及远程监控。结果表明,该系统鲁棒性高,智能控制快,具有较高的应用推广价值。  相似文献   

20.
为了提高温室大棚的透光率,使作物增产增收,文章在温室大棚智能清洁机的整体机械设计方案基础上研究设计一款温室棚顶智能清洁系统,清洁系统行走的过程当中,通过毛刷将灰尘清扫干净,实现温室大棚顶部的半自动或全自动清洁。温室棚顶自动清洁系统包含主控单元、执行电机部分、传感器部分、遥控部分和电源部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号