首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

2.
This study characterized the [(18)F]2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) findings of encephalitis in dogs and assessed the role of FDG-PET in the diagnosis of meningoencephalitis. The medical records, magnetic resonance (MR), and FDG-PET images of 3 dogs with necrotizing meningoencephalitis (NME), 1 dog with granulomatous meningoencephalitis (GME), and 1 dog with meningoencephalitis of unknown etiology (MUE) were reviewed. On the FDG-PET, glucose hypometabolism was identified in the dog with NME, whereas hypermetabolism was noted in the dog with GME. The T2-weighted images (WI) and fluid attenuated inversion recovery (FLAIR) images were characterized by hyperintensity, whereas the signal intensity of the lesions on the T1-WI images was variable. The metabolic changes on the brain FDG-PET corresponded well to the hyper- and hypointense lesions seen on the MR imaging. This type of tomography (FDG-PET) aided in the differentiation of different types of inflammatory meningoencephalitis when the metabolic data was combined with clinical and MR findings.  相似文献   

3.
The purpose of the study was to describe magnetic resonance (MR) imaging features of histologically confirmed necrotizing encephalitis in four Pugs and to compare those findings with MR imaging characteristics of necrotizing encephalitis in other breeds. All dogs had the following common findings: lesions restricted to the forebrain, both cerebral hemispheres diffusely but asymmetrically affected, lesions affected gray and white matter resulting in loss of distinction between both, most severe lesions in occipital and parietal lobes, lesions were irregularly T2-hyperintense and T1-isointense to slightly T1-hypointense, and no cavitation. There were various degrees of contrast enhancement of brain and leptomeninges. Asymmetry of lateral ventricles and midline shift was seen in one dog each. Two dogs had brain herniation, which may have contributed to the progression of neurologic signs. Hyperintensity on T2-weighted and fluid attenuated inversion recovery images in the hippocampus and piriform lobe was consistent with excitotoxic edema, whereas similar imaging features in other forebrain areas corresponded to areas of inflammation or liquefaction on histopathology. In comparison with necrotizing encephalitis in other canine breeds, Pug dog encephalitis has some unique MR imaging features. Therefore, these characteristics cannot be applied to other breeds, nor should imaging features of necrotizing encephalitis of other canine breeds be used for interpretation of MR images in Pug dogs.  相似文献   

4.
Two young adult Yorkshire terriers had neurologic signs consistent with forebrain and brainstem involvement or forebrain involvement alone. On magnetic resonance imaging studies there were asymmetric bilateral lesions mainly in the cerebral cortex, and in the diencephalon. These areas were hyperintense on T2-weighted and FLAIR images, but hypointense or isointense on T1-weighted images. Lesions had a varying degree of contrast enhancement. Areas which were isointense on T1-weighted images had no contrast enhancement or only foci of contrast enhancement. Lesions with hypointensity in T1-weighted images had no enhancement or more frequently ring-like enhancement around the lesion. Necrotizing encephalitis was confirmed pathohistologically in both dogs. The degree of contrast enhancement appeared to be related to the degree of lymphohistiocytic inflammation on histologic examination.  相似文献   

5.
The magnetic resonance (MR) imaging features of central nervous system lymphoma in eight dogs and four cats are described. Intracranial lesions affected the rostrotentorial structures in six dogs and caudotentorial structures in two cats. Lesions affected the spinal cord in two dogs and in two cats. One dog and one cat with intracranial lymphoma had signs of local extracranial extension and lymphadenopathy. Lesions were considered extraparenchymal in four dogs and three cats, intraparenchymal in two dogs and one cat, and appeared to have both intra- and extraparenchymal components in two dogs. All lesions were hyperintense in T2-weighted images when compared to white matter, most were hypointense in T1-weighted images (7/12), and most were hyperintense in fluid-attenuated inversion recovery (FLAIR) images (5/9). When compared to grey matter, these lesions appear either isointense (5/12) or hyperintense (7/12) on T2-weighted images, half of them were hypointense in T1-weighted images (6/12), and most were isointense in FLAIR images (7/9). Lesion margins were usually indistinct in T2-weighted images (10/12) and had perilesional hyperintensity in FLAIR images (7/9). The majority of lesions (10/12) had abnormal meninges around the lesion and half (6/12) had generalized contrast enhancement. Mass effect was evident in all lesions. Although not specific, when combined with the history and neurologic signs, MR features aid presumptive diagnosis that should be confirmed by cytology or histopathology.  相似文献   

6.
To describe the signs that may be associated with intracranial inflammatory conditions, magnetic resonance (MR) images of 25 dogs that had inflammatory cerebrospinal fluid (CSF) were mixed with those of a control group of 40 dogs that had CSF negative for inflammatory disease and reviewed without knowledge of the clinical signs or diagnosis. CSF was considered inflammatory if the protein level was > 0.25 g/l and the white cell count was > 5 mm(-3). Abnormalities were found by MR imaging in 19 (76%) dogs with inflammatory CSF. Two dogs had focal lesions, 10 had multifocal lesions, and seven had diffuse lesions. Lesions affected all divisions of the brain. Mass effect was identified in seven (28%) dogs, including one that had a choroid plexus carcinoma. Lesions were hyperintense in T2-weighted images in 18 dogs and hypointense in T1-weighted images in six dogs. Multifocal or diffuse intraaxial lesions that were hyperintense in T2-weighted images were observed in 17 (68%) dogs with inflammatory CSF. Administration of gadolinium resulted in enhancement of intraaxial lesions in nine (36%) dogs and enhancement of meninges in seven (28%) dogs. Six (24%) dogs with inflammatory CSF had images interpreted as normal.  相似文献   

7.
A Yorkshire terrier and a Chihuahua were referred for acute onset, generalized tonic‐clonic seizures and were suspected to have meningoencephalitis based on magnetic resonance (MR) imaging findings. Brain lesions appeared hyperintense with T2‐weighted imaging and hypointense with T1‐weighted imaging, and were characteristic of necrotizing meningoencephalitis. Both dogs were diagnosed with necrotizing meningoencephalitis based on pathologic findings. Fluorine‐18 fluorodeoxyglucose positron emission tomography (FDG‐PET) was performed on both animals before euthanasia with the permission of the owner. In FDG‐PET images, these lesions seen in MR images were characterized by multifocal or diffuse hypometabolism. Our FDG‐PET results provided evidence of glucose hypometabolism in areas of necrosis and cavitation associated with necrotizing meningoencephalitis. FDG‐PET has the potential to provide valuable diagnostic information in dogs with suspected necrotizing encephalitis.  相似文献   

8.
The magnetic resonance (MR) imaging findings of foals with infectious and noninfectious arthritis are described. Six foals with infectious arthritis and three foals with noninfectious arthritis were grouped based on synovial fluid analysis results and examined with radiography and MR imaging. Four out of six foals with infectious arthritis had osseous lesions in MR images indicative of osteomyelitis and only 4/19 lesions were detected on digital radiographs. The three foals with noninfectious arthritis had no osseous lesions in MR images or radiographically. Of the six joints that had osseous lesions detected with MR imaging, three had at least one lytic lesion detected radiographically. Osseous lesions in the epiphysis, metaphysis, and physis appeared in MR images as T2W, short tau inversion recovery, and proton density hyperintense foci with a hypointense halo. The same lesions appeared hyperintense in the 3D RSSG water excitation pulse sequence but lacked a surrounding hypointense halo. Most joints of foals with infectious arthritis had heterogenous signals within the synovial fluid whereas all of the nonseptic joints had homogenous synovial fluid signals. MR imaging appears to be better than radiography in the detection of osseous lesions in foals diagnosed with infectious arthritis and may be a valuable screening test for the presence of osteomyelitis.  相似文献   

9.
Medical records and magnetic resonance (MR) images of 14 cats with inflammatory diseases affecting the central nervous system (CNS) were reviewed retrospectively. Cases included eight cats with feline infectious peritonitis and two cats with toxoplasmosis. Abnormalities affecting the CNS were observed in MR images in 10 (71%) cats. Intracranial lesions appeared as slightly hypointense foci in T1-weighted images in two (14%) cats, as hyperintense foci in T2-weighted images in seven (50%) cats and as hyperintense foci after intravenous administration of a gadolinium-based contrast medium in 10 (71%) cats. In six cats with lesions in T1- and/or T2-weighted images, additional lesions were visible in T1-weighted images obtained after gadolinium-based contrast medium administration. In three cats, lesions were visible only after contrast medium administration. In our study, MR imaging (MRI) did not appear to detect all cases of CNS inflammation in the population of cats with inflammatory cerebrospinal fluid (CSF); however, MRI adds information about the sites and morphology of intracranial lesions that should help to distinguish between neoplasia and inflammatory conditions and, possibly, between different inflammatory conditions.  相似文献   

10.
The purpose of this study was to describe the appearance of normal bone marrow in seven adult dogs using low-field (0.3 T) magnetic resonance (MR) imaging. The areas imaged included the lumbar spine, pelvis, and femur. T1-weighted, fast spin-echo T2-weighted, and short tau (T1) inversion recovery (STIR) sequences were obtained at all locations. Histopathology was performed on sections from the sixth lumbar vertebral body, the wing of the ilium, and the femur (head and neck, mid-diaphysis, and condyle) for evaluation of cellularity and fat content. The lumbar spine and pelvic marrow MR images were similar in all dogs. The lumbar vertebral bone marrow was uniform, intermediate signal intensity, and isointense to muscle on all sequences. There was variation between dogs in the bone marrow distribution with MR imaging of the femur. In the proximal and mid-diaphysis of the femur there was patchy high-signal intensity on T1- and T2-weighted images, and hypointense foci on the STIR images. The distal femoral metaphysis had a variable pattern ranging from intermediate-to-high signal on T1- and T2-weighted images and intermediate-to-low signal on STIR images. The femoral condyles were uniformly high signal on T1- and T2-weighted images and hypointense on STIR images. Histopathologically there was a normal variation in the bone marrow cellularity. The marrow was normocellular (25–75% cellularity) for all sites examined except the femoral condyles, which were hypocellular (<25% cellularity).  相似文献   

11.
The magnetic resonance imaging (MRI) findings of presumed cerebrovascular accident in 12 dogs are described. Fourteen lesions were seen, commonly (11 of 14) within the gray matter of the cerebellar hemispheres or vermis. Thirteen lesions were hyperintense on T2-weighted images (in 11 dogs) and one was hypointense. Eleven of 14 lesions were within the region supplied by the rostral cerebellar artery or one of its main branches and there was no, or minimal, mass effect. Contrast enhancement was only seen in six lesions and was mild in all. Gradient-echo images provided additional information in two dogs. The appearance of infarction in dogs with diffusion-weighted images (DWI) is similar to that in humans, and provided supportive evidence for the diagnosis of infarction in five dogs. The use of gradient-echo and DWI is recommended for the evaluation of suspected cerebrovascular accidents in dogs. Six of the 12 affected animals were spaniels or spaniel crosses, suggesting a possible breed predisposition.  相似文献   

12.
F. Audigié  DVM  PhD    J. Tapprest  DVM  PhD    C. George  DVM    D. Didierlaurent  N. Foucher  F. Faurie  DVM    M. Houssin  DVM    J.-M. Denoix  DVM  PhD 《Veterinary radiology & ultrasound》2004,45(3):210-215
The purpose of this paper was to correlate the magnetic resonance imaging (MRI) characteristics of a mature brain abscess in a horse with histopathologic alterations of brain tissue. Eight months after the onset of clinical signs, MRI of the brain of a 10-month-old filly was performed. A large space-occupying lesion in the right cerebral hemisphere was identified. This space-occupying lesion was delineated by a thick and well-defined capsule that was isointense to brain parenchyma on the T1-weighted images and with a markedly hypointense on the T2-weighted images. The identification of such a capsule is highly diagnostic of a mature brain abscess. The lesion seen on MR images was confirmed at necropsy where a large abscess of the right hemisphere was observed. Streptococcus zooepidemicus and Pseudomonas aeruginosa were isolated from the abscess. Based on histopathologic examination, the signal characteristics of the capsule on T1-weighted and T2-weighted images were found to be due to the presence of numerous hemosiderin-laden macrophages. These results are in agreement with previous studies on human patients. This report confirms the value of MRI in the diagnosis of equine brain diseases.  相似文献   

13.
In order to compare the accuracy of MR sequences for diagnosis of meningeal disease, MR images of the brain, and histopathologic specimens including the meninges of 60 dogs were reviewed retrospectively by independent observers in a cross‐sectional study. MR images included T1‐weighted pre‐ and postgadolinium images, subtraction images, T2‐weighted images, and T2‐weighted fluid‐attenuated inversion‐recovery (FLAIR) images. Pathologic changes affected the pachymeninges in 16 dogs, leptomeninges in 35 dogs, and brain in 38 dogs. The meninges were normal in 12 dogs. Meninges were classified histopathologically as normal (grade 0), slightly or inconsistently affected (grade 1), or markedly affected (grade 2). When applying relaxed pathologic criteria (grades 0 and 1 considered normal), the results of ROC analysis (area under curve, AUC) were: T1‐weighted postcontrast images 0.74; subtraction images 0.7; T2‐weighted images 0.68; FLAIR images 0.56. The difference in AUC between T1‐weighted postgadolinium images and FLAIR images was significant (P = 0.04). AUC for FLAIR images was not significantly different from 0.5. When applying strict pathologic criteria (only grade 0 considered normal), none of the MR sequences had AUC significantly different from 0.5. On the basis of T1‐weighted postgadolinium images and subtraction images, correct anatomic classification of lesions occurred more often for pachymeningeal than leptomeningeal lesions (P < 0.001). Overall, MR imaging had low sensitivity for diagnosis of meningeal pathology in dogs, particularly for changes affecting the leptomeninges. Subtraction images had similar accuracy to T1‐weighted postgadolinium images for meningeal lesions in dogs. T2‐weighted FLAIR images appear to have limited diagnostic utility for meningeal lesions.  相似文献   

14.
A retrospective, case series study was undertaken to identify magnetic resonance imaging (MRI) characteristics of gliomatosis cerebri in dogs. Fourteen dogs were included by review of histopathological records and contemporaneous MRI. On MRI, all lesions presented as ill‐defined, intraaxial lesions within the left and right forebrain hemispheres with involvement of white and gray matter. Lesions presented as hyperintense areas on T2‐weighted and FLAIR sequences and as hypointense or isointense areas on T1‐weighted images, with mild parenchymal contrast enhancement in three dogs. Signal changes were noted in three to 10 cerebral lobes. Other most commonly affected structures were the thalamus (13), caudate nucleus (13), interthalamic adhesion (11), hypothalamus (11), callosal commissure (10), hippocampus (9), and quadrigeminal plate (8). Abnormalities within the caudal fossa were noted in 10 dogs. Solid tumor portions were identified in five dogs. The histopathological examination demonstrated in all dogs a widespread diffuse infiltration with neoplastic glial cells in white and gray matter with meningeal infiltration. Comparison between MRI and histopathology showed that all areas with signal changes on MRI corresponded to diffuse and dense infiltration with neoplastic cells. The signal intensity on T2‐weighted and FLAIR images reflected the density of neoplastic cells. In all dogs, MRI underestimated lesion extent and meningeal infiltration. Involvement of the caudal fossa was not seen on MRI in three dogs. Despite this, MRI allowed identification of lesions extending into at least three cerebral lobes and therefore satisfying the criteria used for diagnosis of diffuse glioma with gliomatosis cerebri growth pattern in humans.  相似文献   

15.
Cerebrospinal fluid collection is fundamental to the investigation of central nervous system disorders although it carries potential risks. Herein we report the clinical signs and magnetic resonance (MR) imaging findings associated with needle injury to the brainstem during cerebellomedullary cistern puncture in four dogs. Three dogs were nonambulatory tetraparetic with cranial nerve deficits and one dog had unexplained left thoracic limb paresis. In MR images, there were conspicuous T2 hyperintensities in the myelencephalon in all dogs. In T2* gradient echo images, the lesions were hypointense in two dogs with multiple cranial nerve deficits, and hyperintense in another dog. One dog was euthanized due to sudden neurologic deterioration 12 days later, one died shortly after MR imaging, and a third was euthanized due to concurrent cervical spondylomyelopathy. The fourth dog recovered gradually. Diagnosis was confirmed histopathologically in one dog and was presumptive based on clinical signs and MR findings in three dogs. None of the dogs with cranial nerve deficits recovered, only the one dog with left thoracic limb paresis and concurrent syringomyelia.  相似文献   

16.
A 3-year-old neutered female mixed breed dog was examined because of severe, generalized seizure activity, tetraparesis, and encephalopathic signs. Cerebrospinal fluid (CSF) evaluation was unremarkable except for a mild increase in protein. Serum and CSF titers for infectious diseases were negative. Magnetic resonance (MR) imaging examination of the brain was performed and lesions were found within the cerebral gray matter of the temporal and parietal lobes. The lesions had increased signal intensity on T1, T2, and proton density-weighted images. There was mild inhomogeneous enhancement following intravenous contrast medium administration. Neurologic status improved and the seizures were well controlled, but the dog never regained normal mentation and euthanasia was performed 10 weeks after initial evaluation. At necropsy, severe cerebral cortical necrosis was found in the regions corresponding to the lesions seen on MR imaging examination. Large numbers of fat-containing macrophages (gitter cells) were found within these areas, and are thought to be responsible for the characteristic hyperintensity seen on the MR images.  相似文献   

17.
An acute to chronic idiopathic necrotizing meningoencephalitis was diagnosed in 5 Chihuahua dogs aged between 1.5 and 10 years. Presenting neurologic signs included seizures, blindness, mentation changes, and postural deficits occurring from 5 days to 5.5 months prior to presentation. Cerebrospinal fluid analyses from 2 of 3 dogs sampled were consistent with an inflammatory disease. Magnetic resonance imaging of the brain of 2 dogs demonstrated multifocal loss or collapse of cortical gray/white matter demarcation hypointense on T1-weighted images, with T2-weighted hyperintensity and slight postcontrast enhancement. Multifocal asymmetrical areas of necrosis or collapse in both gray and white matter of the cerebral hemispheres was seen grossly in 4 brains. Microscopically in all dogs, there was a severe, asymmetrical, intensely cellular, nonsuppurative meningoencephalitis usually with cystic necrosis in subcortical white matter. There were no lesions in the mesencephalon or metencephalon except in 1 dog. Immunophenotyping defined populations of CD3, CD11d, CD18, CD20, CD45, CD45 RA, and CD79a immunoreactive inflammatory cells varying in density and location but common to acute and chronic lesions. In fresh frozen lesions, both CD1b,c and CD11c immunoreactive dendritic antigen-presenting cells were also identified. Immunoreactivity for canine distemper viral (CDV) antigen was negative in all dogs. The clinical signs, distribution pattern, and histologic type of lesions bear close similarities to necrotizing meningoencephalitis as described in series of both Pug and Maltese breed dogs and less commonly in other breeds.  相似文献   

18.
Spinal epidural empyema is defined an accumulation of purulent material in the epidural space of the vertebral canal. Spinal epidural empyema should be considered as a differential diagnosis in dogs with pyrexia, spinal pain, and rapidly progressing myelopathy. Magnetic resonance (MR) imaging is the imaging test of choice in humans. Here, we describe the MR imaging features of five dogs with confirmed spinal epidural empyema. The epidural lesions appeared as high or mixed signal masses in T2-weighted (T2W) images. Increased signal within the spinal cord gray matter at the site of the lesion was detected in T2W images in all dogs. Two patterns of enhancement were detected on postcontrast T1-weighted (T1W) images. Mild to moderate peripheral enhancement was seen in three dogs and a diffuse pattern of enhancement was seen in one. Discospondylitis was identified in three dogs on T1W postcontrast images. Decompressive spinal surgery was performed in all dogs. Bacteria isolated from the abnormal epidural tissue were Enterobacter cloacae, coagulase-positive Staphylococci, Pasteurella multocida, and Escherichia coli. In one dog bacteria were not isolated. These MR imaging features, along with appropriate clinical signs, can allow prompt diagnosis and appropriate treatment planning.  相似文献   

19.
Multifocal haemorrhages associated with Angiostrongylus vasorum infection were observed in the central nervous system of four dogs with neurological signs including depression, seizures, spinal pain and paresis. In magnetic resonance images the majority of the lesions were isointense or slightly hyperintense in T1-weighted images, hyperintense in T2-weighted images and hypointense in T2*-weighted (gradient echo) images, compatible with haemorrhages more than seven days old. Lesions were found in the brain of three of the dogs and in the spinal cord of two. The cerebrospinal fluid contained high concentrations of protein and evidence of erythrophagia. All the dogs had coagulopathy and pulmonary haemorrhage of varying severity. A vasorum larvae were detected in the faeces of each of the dogs. Neural A vasorum was confirmed at postmortem examination in two dogs.  相似文献   

20.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号