首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present in vitro experiments were carried out in order to study whether variations in the bovine growth hormone (bGH)/insulin-like growth factor (IGF)-I axis induced by plane of nutrition and bGH treatment of heifer calves caused variations in serum-induced proliferation of C2C12 myoblasts. Serum was obtained from two groups each of six heifer calves (195 +/- 8 kg) before (d -1) and after treatment with 15 mg/day of bGH for 6 days (d 6) fed either a low (GHL) or a high plane (GHH) of nutrition. Preceding the experiment all 12 heifer calves were fed at the low plane of nutrition. At d 6, serum concentrations of insulin and IGF-I were increased while that of IGF-binding proteins (IGFBP)-2 was decreased in GHH, but unchanged in GHL calves. Serum-induced proliferation of C2C12 myoblasts, was elevated at d 6 by GHH treatment. Especially human IGFBP-3 but also bovine IGFBP-2 added to cell cultures inhibited the rate of proliferation of C2C12 myoblasts stimulated by human IGF-I. The present results showed that GH treatment causes changes in the GH/IGF axis, which leads to changes in serum-induced growth of C2C12 muscle cells dependent on the plane of nutrition that mimic in vivo effects of GH treatment, which indicate an endocrine contribution of the IGF system. However, drawbacks of this suggestion are discussed.  相似文献   

2.
3.
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study.  相似文献   

4.
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.  相似文献   

5.
1. We examined the changes in plasma IGF-I concentration and tissue IGFBP-2 gene expression of young fasted chickens refed a commercial diet or administered bovine insulin intravenously. 2. Plasma IGF-I concentration was decreased by fasting for 2 d. Although plasma IGF-I concentration was increased by refeeding, it didn't recover to the level of chickens fed a commercial diet ad libitum. 3. Insulin administration lowered plasma IGF-I concentration compared to other groups. 4. Hepatic IGFBP-2 mRNA was increased by fasting for 2 d and decreased by refeeding for 6 h. Insulin administration also decreased hepatic IGFBP-2 gene expression stimulated by fasting to the level of refed chickens. 5. IGFBP-2 mRNA in the gizzard was increased by fasting for 2 d and tended to decrease after refeeding for 6 h. Insulin administration decreased gizzard IGFBP-2 gene expression to less than that in refed chickens. 6. There was no between-treatment difference in IGFBP-2 mRNA in the brain and kidney. 7. These results suggest that the changes in IGFBP-2 gene expression in the liver and gizzard by fasting and refeeding might be partly regulated by the alteration in plasma insulin concentration.  相似文献   

6.
7.
Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less 125I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.  相似文献   

8.
Prepubertal Friesian heifer calves (n = 24, initial BW = 195 +/- 5 kg) were assigned to a 2 x 2 factorial block design and used to evaluate the effects of daily GH treatment (0 or 15 mg/d) at either a low or a high feeding level in a 5-wk treatment period on endocrine measurements, hormone receptors, muscle growth, and overall performance. In the pretreatment period, a low feeding level was employed for all calves. During the treatment period, animals at the low feeding level had free access to a roughage-based mixture, whereas animals at the high feeding level had free access to a concentrate mixture and were offered 2 kg/d of the roughage-based mixture. Blood samples were collected weekly starting 3 wk before treatment. Longissimus (LM) and supraspinatus (SS) muscles were obtained at slaughter. Metabolizable energy intake was 81% higher, digestible CP intake was 140% higher, and ADG was 115% higher (all P < 0.001) at the high vs. low feeding level. Feed (DMI, ME, and protein) intake was not affected by GH treatment, but ADG was 18% higher (P < 0.13) in GH-treated than in control heifers at both feeding levels. Although of different magnitudes, the muscle anabolic effects of GH treatment and high vs. low feeding level were additive, and both treatments increased carcass weights (P < 0.02 and P < 0.001, respectively), LM (P < 0.05 and P < 0.001), and SS (P < 0.06 and P < 0.003). The anabolic effect of GH treatment was similar in both muscles, whereas the effect of feeding level was most pronounced in LM. Overall, GH treatment increased plasma GH, IGF-I (both P < 0.001), and IGFBP-3 (P < 0.02); however, GH treatment increased total IGF-I, free IGF-I, and IGFBP-3, and decreased IGFBP-2 mainly at the high feeding level (GH x feeding level interaction; P < 0.02, 0.01, 0.03, and 0.10, respectively). The high feeding level increased insulin, free and total IGF-I, and IGFBP-3 (all P < 0.001), but decreased GH and IGFBP-2 (both P < 0.001). High feeding increased type-1 IGF receptor density (P < 0.02), mainly in LM, in accordance with the largest anabolic response in this muscle, whereas GH treatment had no effect on type-1 IGF receptors. The results suggest that in skeletal muscle, the anabolic effects of exogenous GH are related to endocrine changes in the GH-IGF axis, whereas the effects of feeding level also seem to rely on IGF receptor density in the muscles.  相似文献   

9.
The insulin-like growth factor (IGF) system plays an important role in postnatal somatic and skeletal muscle growth in pigs. There is little information on the occurrence and distribution of components of the IGF system in postnatal porcine skeletal muscle. IGF-I, IGF receptor 1 (IGF1R) and the IGF-binding proteins IGFBP-1 and -3 in longissimus dorsi and triceps brachii were localized in muscle biopsies from 12 commercially crossbred pigs aged from 28 to 199 days as well as from the sire generation, by immunohistochemistry. Plasma IGF-I concentrations were also determined using radio-immunoassays. Unlike other species, IGF-I was localized in porcine skeletal muscle fibres. Staining intensity correlated with the highest plasma IGF-I levels and phases of intensive muscle growth from the 11th to 22nd week. The pattern of IGF1R immunostaining, which was strong, correlated with that of IGF-I, IGF1R was also localized in endomysial tissues. IGFBP-1 was not detected within muscle fibres, but was found in the endomysium and vessel walls, while IGFBP-3 was localized with IGF-1 and its receptor. Higher magnification revealed that IGF1R, IGFBP-3 and probably IGF-I appeared in the tubular system. Inhibitory as well as stimulating controls of IGFBP-1 and -3 on IGF functions are discussed, which may maintain a balance between autocrine growth promoting activities of IGF-I and IGF1R.  相似文献   

10.
The ontogeny of hepatic growth hormone (GH) receptors (GHR), as measured by responses of both plasma insulin-like growth factor-I (IGF-I) and hepatic GHR to an exogenous bGH stimulus, was examined using sheep of different ages (Days 1-7, 14-21, 28-35, and 56-63 of life, and yearlings). The IGF-I response to bGH was first examined in yearling sheep using two doses of bGH (0.1 and 0.2 mg/kg LW/d). Based on these results, lambs in four groups up to Day 63 of life were treated for 5 d with bGH (n = 10) at a dose of 0.15 mg/kg LW/d or with saline (n = 10). Jugular blood samples were taken once daily on Days - 1, 4, and 5 of treatment. bGH treatment in lambs up to Day 63 of life had little effect on plasma concentrations of GH, insulin, glucose or urea, but significantly (P < 0.05) increased circulating concentrations of IGF-I at all ages and of NEFA at Day 62/63 of life. In contrast, bGH treatment at either dose in yearlings significantly increased these parameters, except for plasma urea concentrations which were decreased in bGH-treated yearlings. However, the responses of plasma IGF-I concentration to bGH stimulus in lambs up to Day 63 of life were small compared to those in yearling sheep. Consistent with this, bGH treatment failed to affect hepatic GH binding in young lambs, but up-regulated it in yearling sheep. Furthermore, basal (unstimulated) GH binding did not differ between sheep of 7 vs. 63 vs. 365 d of age, despite the greater IGF-I responses to bGH in the latter group. It is suggested that hepatic GHR in lambs up to Day 63 of life are not fully functional compared to the situation in yearlings.  相似文献   

11.
The ontogeny of hepatic growth hormone (GH) receptors (GHR), as measured by responses of both plasma insulin-like growth factor-I (IGF-I) and hepatic GHR to an exogenous bGH stimulus, was examined using sheep of different ages (Days 1-7, 14-21, 28-35, and 56-63 of life, and yearlings). The IGF-I response to bGH was first examined in yearling sheep using two doses of bGH (0.1 and 0.2 mg/kg LW/d). Based on these results, lambs in four groups up to Day 63 of life were treated for 5 d with bGH (n = 10) at a dose of 0.15 mg/kg LW/d or with saline (n = 10). Jugular blood samples were taken once daily on Days - 1, 4, and 5 of treatment. bGH treatment in lambs up to Day 63 of life had little effect on plasma concentrations of GH, insulin, glucose or urea, but significantly (P < 0.05) increased circulating concentrations of IGF-I at all ages and of NEFA at Day 62/63 of life. In contrast, bGH treatment at either dose in yearlings significantly increased these parameters, except for plasma urea concentrations which were decreased in bGH-treated yearlings. However, the responses of plasma IGF-I concentration to bGH stimulus in lambs up to Day 63 of life were small compared to those in yearling sheep. Consistent with this, bGH treatment failed to affect hepatic GH binding in young lambs, but up-regulated it in yearling sheep. Furthermore, basal (unstimulated) GH binding did not differ between sheep of 7 vs. 63 vs. 365 d of age, despite the greater IGF-I responses to bGH in the latter group. It is suggested that hepatic GHR in lambs up to Day 63 of life are not fully functional compared to the situation in yearlings.  相似文献   

12.
Effects of L-carnitine on fetal growth and the IGF system in pigs   总被引:2,自引:0,他引:2  
The effects of L-carnitine on porcine fetal growth traits and the IGF system were determined. Fourth-parity sows were fed a gestation diet with either a 50-g top dress containing 0 (control, n = 6) or 100 mg of L-carnitine (n = 6). At midgestation, fetuses were removed for growth measurements, and porcine embryonic myoblasts (PEM) were isolated from semitendinosus. Real-time quantitative PCR was used to measure growth factor messenger RNA (mRNA) levels in the uterus, placenta, muscle, hepatic tissue, and cultured PEM. A treatment x day interaction (P = 0.02) was observed for maternal circulating total carnitine. Sows fed L-carnitine had a greater (P = 0.01) concentration of total carnitine at d 57 than control sows. Circulating IGF-I was not affected (P = 0.55) by treatment. Supplementing sows with L-carnitine resulted in larger (P = 0.02) litters (15.5 vs. 10.8 fetuses) without affecting litter weight (P = 0.07; 1,449.6 vs. 989.4 g) or individual fetal weight (P = 0.88) compared with controls. No treatment effect was found for muscle IGF-I (P = 0.36), IGF-II (P = 0.51), IGFBP-3 (P = 0.70), or IGFBP-5 (P = 0.51) mRNA abundance. The abundance of IGF-I (P = 0.72), IGF-II (P = 0.34), and IGFBP-3 (P = 0.99) in hepatic tissue was not influenced by treatment. Uterine IGF-I (P = 0.46), IGF-II (P = 0.40), IGFBP-3 (P = 0.29), and IGFBP-5 (P = 0.35) mRNA abundance did not differ between treatments. Placental IGF-I (P = 0.30), IGF-II (P = 0.18), IGFBP-3 (P = 0.94), and IGFBP-5 (P = 0.42) mRNA abundance did not differ between treatments. There was an effect of side of the uterus for IGF-I (P = 0.04) and IGF-II (P = 0.007) mRNA abundance; IGF-I mRNA abundance was greater in the left uterine horn than in the right uterine horn (0.14 and 0.07 relative units, respectively). Placental IGF-II mRNA abundance was greater (P = 0.007) in the left than in the right uterine horn (483.5 and 219.59, respectively). The abundance of IGFBP-3 was not affected by uterine horns in either uterine (P = 0.66) or placental (P = 0.13) tissue. There was no treatment difference for IGF-I (P = 0.31) or IGFBP-5 (P = 0.13) in PEM. The PEM isolated from sows fed L-carnitine had decreased IGF-II (P = 0.02), IGFBP-3 (P = 0.03), and myogenin (P = 0.04; 61, 59, and 67%, respectively) mRNA abundance compared with controls. These data suggest that L-carnitine supplemented to gestating sows altered the IGF system and may affect fetal growth and development.  相似文献   

13.
Components of the insulin-like growth factor (IGF) system were investigated in chondrocytes isolated from the avian growth plate. The genes for IGF-I, IGF-II, type 1 IGF receptor (IGF-R), IGF binding protein-2 (IGFBP-2), IGFBP-3, IGFBP-5 and IGFBP-7 were found to be expressed in both proliferative and hypertrophic chondrocytes. The expression of IGF-II in proliferative chondrocytes was extremely high relative to IGF-I. Although IGF-I expression was significantly increased in hypertrophic chondrocytes, the level was still low relative to IGF-II. In cell culture, IGF-I stimulated proteoglycan synthesis and increased the expression of Indian hedgehog (Ihh) and type X collagen, markers of chondrocyte differentiation. IGF-II was found to be equally efficacious in stimulating proteoglycan biosynthesis. These observations suggest that IGF-II may play a significant role in avian growth plate physiology, which is consistent with several reports on mammalian endochondral bone growth.  相似文献   

14.
Regulation of protein and energy metabolism by the somatotropic axis.   总被引:8,自引:0,他引:8  
The somatotropic axis plays a key role in the co-ordination of protein and energy metabolism during postnatal growth. This review discusses the complexity of the regulation of protein and energy metabolism by the somatotropic axis using three main examples: reduced nutrition, growth hormone (GH) treatment and insulin-like growth factor-1 (IGF-1) treatment. Decreased nutrition leads to elevated GH secretion, but it reduces hepatic GH receptor (GHR) number and plasma levels of IGF-1; it also changes the relative concentrations of IGF binding proteins (IGFBPs) in plasma. GH treatment improves the partitioning of nutrients by increasing protein synthesis and decreasing protein degradation and by modifying carbohydrate and lipid metabolism. However, these well-established metabolic responses to GH can change markedly in conditions of reduced nutritional supply or metabolic stress. Short-term infusion of IGF-1 in lambs reduces protein breakdown and increases protein synthesis. However, long-term IGF-1 administration in yearling sheep does not alter body weight gain or carcass composition. The lack of effect of IGF-1 treatment can be explained by activation of feedback mechanisms within the somatotropic axis, which lead to a reduction in GH secretion and hepatic GHR levels. The somatotropic axis has multiple levels of hormone action, with complex feedback and control mechanisms, from gene expression to regulation of mature peptide action. Given that GH has a much wider range of biologic functions than previously recognized, advances in research of the somatotropic axis will improve our understanding of the normal growth process and metabolic disorders.  相似文献   

15.
16.
Plasma IGF-I, IGF binding protein-2 (IGFBP-2), and IGFBP-3 were quantified in growing Angus bulls (n = 56) to determine their relationship with postweaning growth and carcass ultrasound measurements. In addition, GH response to GHRH challenge (area-under-the-curve GH [AUC-GH) was determined for each bull as part of a previous study. Blood was collected by jugular venipuncture at the start of a 140-d postweaning growth performance test and at 28 d intervals for plasma IGF-I determination by RIA. Plasma IGFBP-2 and -3 content was measured at the start of the study, on d 70, and d 140 by Western ligand blotting. Individual weights and hip heights were measured every 28 d during the study and carcass longissimus muscle area, intramuscular fat percentage, and carcass backfat were estimated by ultrasound on d 140. Greater plasma IGF-I at the start of the performance test was associated with reduced postweaning ADG and increased longissimus area. Throughout the performance test period, the correlations between plasma IGF-I and hip height were consistently positive, ranging from 0.10 to 0.38, but the correlations between ADG and IGF-I varied from -0.32 to 0.31. Age-adjusted d-1 plasma IGFBP-2 was related to ADG during the performance test, explaining nearly 30% of the variation in ADG. A model combining weaning age, IGFBP-2, and AUC-GH showed a strong relationship with ADG (R2 = 0.40). Plasma IGFBP-2 and -3 were not related to carcass characteristics, and IGFBP-3 was not related to growth rates. This study provides additional evidence for the variable relationship between plasma IGF-I and growth rates in cattle. A significant positive relationship between plasma IGFBP-2, AUC-GH, and postweaning ADG warrants further investigation.  相似文献   

17.
The ontogeny of the somatotropin/insulin-like growth factor system was examined in well-fed pigs under basal conditions and during a short-term challenge of porcine ST (pST). The study was conducted with two replicates of eight castrate male pigs from 3.8 kg BW (10 d of age) to 92 kg BW (129 d of age). Pigs were reared individually with ad libitum access to milk replacer through 23 d of age. Thereafter, pigs were fed a corn, soybean meal, and dry skim milk diet formulated to exceed nutrient requirements by approximately 30%. Pigs were randomly assigned to receive daily i.m. injections of either 0 (buffer) or 120 microg/kg BW of pST for a duration of 4 d starting at 10, 19, 33, 43, 63, 83, and 125 d of age. Blood was collected via jugular venipuncture on d 0 and 4 of the challenge. Circulating levels of IGF-I were not dramatically affected by age, but levels of IGF-II were low from 10 to 19 d of age and then increased through later stages of growth. Circulating concentrations of IGF binding protein (BP)-3 increased with age (P < .05), but levels of IGFBP-2, a 30-kDa IGFBP, and IGFBP-4 were unchanged (P > .10). The pST challenge reduced plasma urea nitrogen at all ages, but the magnitude of the response was less in younger pigs compared with the maximum response in pigs greater than 30 kg BW (63 d of age). The IGF-I response to the pST challenge also increased from approximately 30% in young pigs to a threefold increase in older pigs. Regardless of age, concentrations of IGF-II were minimally affected by the pST challenge. Circulating levels of IGFBP-3 increased and IGFBP-2 levels decreased in response to the pST challenge, and the magnitude increased with age. The high nutritional status of pigs in the early phases of growth diminished the postnatal changes in IGF-I and IGFBP-2, but not IGF-II or IGFBP-3. Overall, data demonstrate a developmental regulation of the ST/IGF system, with pST challenges altering circulating concentrations of IGF-I, IGFBP-3, and IGFBP-2 coincident with changes in amino acid metabolism.  相似文献   

18.
19.
Photoperiod manipulation, specifically a long-day photoperiod (LDPP), increases milk production in lactating cattle. We have previously reported that the galactopoietic effect of LDPP is associated with an increase in circulating IGF-I, which seems to occur independently of changes in concentrations of GH, IGFBP-2, and IGFBP-3. This study tested the hypothesis that LDPP increases the expression of GH receptor (GHR) 1A messenger RNA (mRNA) in the liver. Two groups of Holstein steer calves (98 +/- 4 d old) were maintained indoors and exposed to LDPP (16-h light: 8-h dark; n = 6) or short-day photoperiod (SDPP; 8-h light: 16-h dark; n = 6) for 60 d. Calves were individually fed a grain- and alfalfa-based diet. Jugular blood samples were collected weekly and via cannula at 15-min intervals for a 4-h period on d 1, 26, and 55 of the study to monitor pulsatile hormone secretion. Serum was harvested and assayed for IGF-I, prolactin (PRL), and GH using RIA. Liver biopsies were obtained at 3-wk intervals to quantify changes in hepatic IGF-I and GHR 1A mRNA using real-time PCR. Steer BW increased during the study but did not differ between treatments. No differences in ADG or total DMI were observed. Relative to SDPP, calves on LDPP had higher (P < 0.05) serum IGF-I concentrations. Concentrations of PRL increased (P < 0.01) in calves exposed to LDPP compared with calves exposed to SDPP. Differences (P < 0.05) in pulsatile GH secretion were also detected. Hepatic IGF-I and GHR 1A mRNA were positively correlated with circulating IGF-I concentrations, and although both increased with time, they were not affected by photoperiod treatment. These results confirm that LDPP increases circulating concentrations of IGF-I, but this occurs independently of changes in IGF-I synthesis and GHR 1A mRNA expression in the liver. Therefore, our hypothesis that LDPP increases the expression of GHR 1A mRNA in the bovine liver is rejected.  相似文献   

20.
The growth rate of the young pig is generally much less than its potential and may be constrained by endocrine status as well as by nutrient intake. The aim of this study was to determine whether porcine somatotropin (pST) could increase growth in the nursing pig. Fourteen sows nursing litters of 6 (n = 7) or 12 (n = 7) piglets were utilized to establish a high and low plane of nutrition for sucking pigs. On Day 4 of lactation, the median two male pigs from each litter were randomly allocated to one of two doses of pST (0 or 60 micrograms/kg/d) until weaning on Day 31. Pigs were bled on Days 4, 13, 22, and 31 of lactation and the plasma was analyzed for insulin-like growth factor (IGF)-I, IGF-II, and IGF binding protein-3 (IGFBP-3). Pigs were weaned into conventional accommodation and further weighed on Days 63, 91, and 119. Pigs from litters of 6 grew more quickly and weighed 2.2 kg (P = 0.01) and 3.5 kg (P = 0.04) more than pigs from litters of 12 at 31 and 63 d of age, respectively. There was no effect of pST on preweaning growth of sucking pigs (261 vs. 258 g/d, P = 0.68), although growth rate increased in the final 3 d before weaning at 31 d (241 vs. 294 g/d, P = 0.01). IGFBP-3 was greater (1.09 vs. 0.78 micrograms/ml, P < 0.001), whereas IGF-I tended to be greater (206 vs. 176 ng/ml, P = 0.14), in pigs from the small litters. There was no effect of pST on plasma IGF-I (182 vs. 195 ng/ml, P = 0.454) or IGFBP-3 (0.93 vs. 0.94 microgram/ml, P = 0.85) concentrations. Plasma IGF-I and IGFBP-3 were highly correlated with the growth rate of nursing pigs (R = 0.638 and 0.756, respectively). There were no effects of pST (340 vs. 328 ng/ml, P = 0.48) or litter size (336 vs. 333 ng/ml, P = 0.88) on IGF-II. In conclusion, pST had no little or no effect on growth performance or plasma IGF-I, IGF-II, or IGFBP-3 in sucking pigs on either a high or low plane of nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号