首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Olive stoning during the virgin olive oil (VOO) mechanical extraction process was studied to show the effect on the phenolic and volatile composition of the oil. To study the impact of the constitutive parts of the fruit in the composition of olive pastes during processing, the phenolic compounds and several enzymatic activities such as polyphenoloxidase (PPO), peroxidase (POD), and lipoxygenase (LPO) of the olive pulp, stone, and seed were also studied. The olive pulp showed large amounts of oleuropein, demethyloleuropein, and lignans, while the contribution of the stone and the seed in the overall phenolic composition of the fruit was very low. The occurrence of crushed stone in the pastes, during malaxation, increased the peroxidase activity in the pastes, reducing the phenolic concentration in VOO and, at the same time, modifying the composition of volatile compounds produced by the lipoxygenase pathway. The oil obtained from stoned olive pastes contained higher amounts of secoiridoid derivatives such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl)ethanol and (p-hydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of the oleuropein aglycon (3,4-DHPEA-EA) and, at the same time, did not show significant variations of lignans. The stoning process modified the volatile profile of VOO by increasing the C6 unsaturated aldehydes that are strictly related to the cut-grass sensory notes of the oil.  相似文献   

2.
The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.  相似文献   

3.
The effect of O 2 concentration on oil volatile compounds synthesized during the process to obtain virgin olive oil (VOO) was established. The study was carried out either on the whole process or within the main steps (milling and malaxation) of this process with two olive cultivars, Picual and Arbequina, at two ripening stages. Data show that O 2 control during milling has a negative impact on VOO volatile synthesis. This effect seems to depend on cultivar and on the ripening stage in cultivar Picual. Because most VOO volatiles are synthesized during olive fruit crushing at the milling step, O 2 control during malaxation seems to affect just slightly the volatile synthesis. The highest effect was observed when control of O 2 concentration was performed over the whole process. In this case, the content of volatile compounds of oils obtained from both cultivars and ripening stages showed quite similar trends.  相似文献   

4.
The aim of the present work was to establish the limiting factors affecting the biosynthesis of volatile esters present in virgin olive oil (VOO). Oil volatile fractions of the main Spanish olive cultivars, Arbequina and Picual, were analyzed. It was observed that acetate esters were the most abundant class of volatile esters in the oils, in concordance with the high content of acetyl-CoA found in olive fruit, and that the content of C6 alcohols is limited for the synthesis of volatile esters during the production of VOO. Thus, the increase of C6 alcohol availability during VOO production produced a significant increase of the corresponding ester in the oils in both cultivars at two different maturity stages. However, the increase of acetyl-CoA availability had no effect on the VOO volatile fraction. The low synthesis of these C6 alcohols seems not to be due to a shortage of precursors or cofactors for alcohol dehydrogenase (ADH) activity because their increase during VOO production had no effect on the C6 alcohol levels. The experimental findings are compatible with a deactivation of ADH activity during olive oil production in the cultivars under study. In this sense, a strong inhibition of olive ADH activity by compounds present in the different tissues of olive fruit has been observed.  相似文献   

5.
Virgin olive oils produced at wide ranges of malaxation temperatures (15, 30, 45, and 60 degrees C) and times (30, 60, 90, and 120 min) in a complete factorial experimental design were discriminated with stepwise linear discriminant analysis (SLDA) revealing differences with processing conditions. Virgin olive oils produced at 15 and 60 degrees C for 30 min showed the most significant (p < 0.01) differences. Discrimination was based upon volatile and phenolic compounds detected in olive oils, peroxide value (PV), free fatty acids (FFA), ultraviolet (UV) absorbances, and oil yield. There were different discriminating variables for processing conditions illustrating the dependence of virgin olive oil quality on malaxation time and temperature. Volatile compounds were the dominant discriminating variables. Common oxidation indicators of olive oil (PV, K232, and K270) were not among the variables that significantly (p < 0.01) changed with malaxation time and temperature. Variables that discriminated both malaxation time and temperature were hexanal, 3,4-dihydroxyphenyl ethyl alcohol-decarboxymethyl elenolic acid dialdehyde (3,4-DHPEA-DEDA) and FFA, whereas 1-penten-3-ol, E-2-hexenal, octane, tyrosol, and vanillic acid significantly (p < 0.01) changed with temperature only and Z-2-penten-1-ol, (+)-acetoxypinoresinol, and oil yield changed with time only. Virgin olive oil quality was significantly influenced by malaxation temperature, whereas oil yield discriminated malaxation time. This study demonstrates the two modes of hexanal formation: enzymatic and nonenzymatic during virgin olive oil extraction.  相似文献   

6.
Mutagenic heterocyclic amines (HAs) are formed at low levels during cooking of meat and fish, and some of them are considered to be possible human carcinogens. The formation of HAs may be affected by the presence of synthetic or naturally occurring antioxidants. In the present study the effect of virgin olive oil (VOO) phenolic compounds, identified and quantified by LC-MS, on the formation of HAs in a model system was evaluated. An aqueous solution of creatinine, glucose, and glycine was heated in the presence of two samples of VOO differing only in the composition of phenolic compounds. The addition of VOO to the model system inhibited the formation of 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) by between 30 and 50% compared with the control. Fresh-made olive oil, which contained a high amount of dihydroxyphenylethanol derivatives, inhibited HA formation more than a 1-year-old oil did. The inhibition of HA formation was also verified using phenolic compounds extracted from VOO.  相似文献   

7.
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying.  相似文献   

8.
The aim of this work was to characterize the thermal inactivation parameters of recombinant proteins related to the biosynthesis of virgin olive oil (VOO) volatile compounds through the lipoxygenase (LOX) pathway. Three purified LOX isoforms (Oep2LOX1, Oep1LOX2, and Oep2LOX2) and a hydroperoxide lyase (HPL) protein (OepHPL) were studied. According to their thermal inactivation parameters, recombinant Oep1LOX2 and Oep2LOX2 could be identified as the two LOX isoforms active in olive fruit crude preparations responsible for the synthesis of 13-hydroperoxides, the main substrates for the synthesis of VOO volatile compounds. Recombinant Oep2LOX1 displayed a low thermal stability, which suggests a weak actuation during the oil extraction process considering the current thermal conditions of this industrial process. In addition, recombinant OepHPL could be identified as the HPL activity in crude preparations. The thermal stability was the highest among the recombinant proteins studied, which suggests that HPL activity is not a limiting factor for the synthesis of VOO volatile compounds.  相似文献   

9.
Field-grown olive trees (Olea europaea L. cv. Leccino) were used over two growing seasons to determine the effect of deficit irrigation regimes on virgin olive oil (VOO) quality. Drip irrigation was managed to maintain a predawn leaf water potential (PLWP): (a) higher than -1.1 MPa (full irrigation: FI); (b) between -1.0 and -3.3 MPa (deficit irrigation: DI); (c) higher than -4.2 MPa (severe deficit irrigation: SI). The fruit yield and oil yield of DI trees were over 90% of those of FI treatments in both years, respectively, whereas yields of SI trees ranged from 61 to 76%. The irrigation regime had minor effects on the free acidity, peroxide value, and fatty acid composition of VOO. The concentrations of phenols and o-diphenols in VOO were negatively correlated with PLWP. The concentrations of the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA-EDA), the isomer of the oleuropein aglycon (3,4-DHPEA-EA), and the dialdehydic form of decarboxymethyl elenolic acid linked to (p-hydroxyphenyl)ethanol (p-HPEA-EDA) were lower in FI than in SI treatments. The concentrations of lignans (+)-1-acetoxipinoresinol and (+)-1-pinoresinol were unaffected by the irrigation regime. The tree water status had a marked effect on the concentration of volatile compounds, such as the C(6)-saturated and unsaturated aldehydes, alcohols, and esters.  相似文献   

10.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

11.
One of the main olive oil phenolic compounds, hydroxytyrosol (3,4-DHPEA), exerts in vitro chemopreventive activities (antiproliferative and pro-apoptotic) on tumor cells through the accumulation of H(2)O(2) in the culture medium. However, the phenol composition of virgin olive oil is complex, and 3,4-DHPEA is present at low concentrations when compared to other secoiridoids. In this study, the in vitro chemopreventive activities of complex virgin olive oil phenolic extracts (VOO-PE, derived from the four Italian cultivars Nocellara del Belice, Coratina, Ogliarola, and Taggiasca) were compared to each other and related to the amount of the single phenolic constituents. A great chemopreventive potential among the different VOO-PE was found following this order: Ogliarola > Coratina > Nocellara > Taggiasca. The antiproliferative and pro-apoptotic activities of VOO-PE were positively correlated to the secoiridoid content and negatively correlated to the concentration of both phenyl alcohols and lignans. All extracts induced H(2)O(2) accumulation in the culture medium, but this phenomenon was not responsible for their pro-apoptotic activity. When tested in a complex mixture, the olive oil phenols exerted a more potent chemopreventive effect compared to the isolated compounds, and this effect could be due either to a synergistic action of components or to any other unidentified extract constituent.  相似文献   

12.
Flavor and taste are sensorial attributes of virgin olive oil (VOO) highly appreciated by consumers. Among the organoleptic properties of VOO, bitterness is related to the natural phenolic compounds present in the oil. Sensorial analysis is the official method to evaluate VOO flavor and bitterness, which requires highly specialized experts. Alternatively, methods based on physicochemical determinations could be useful for the industry. The present work presents a flow-injection analysis system for the direct automatic determination of bitterness and total phenolic compounds in VOO without prior isolation, based on the spectral shift undergone by phenolic compounds upon pH variation. This system enables a complete automation of the process, including dilution of the sample and its sequential injection into buffer solutions of acidic and alkaline pH. The variation of the absorbance at 274 nm showed a high correlation with bitterness and the total phenolic content of VOO, due to the close relationship between these two parameters. Thus, the proposed method determines the bitterness and phenolic compounds, with results similar to those from reference methods (relative errors ranging from 1% to 8% for bitterness and from 2% and 7% for phenolic compounds). The precision evaluated at two levels of both parameters ranged between 0.6% and 1.5% for bitterness and between 0.7% and 2.6% for phenolic compounds.  相似文献   

13.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

14.
The aim of this work was to determine whether the lipoxygenase (LOX) activity is a limiting factor for the biosynthesis of virgin olive oil (VOO) volatile compounds during the oil extraction process. For this purpose, LOX activity load was modified during this process using exogenous LOX activity and specific LOX inhibitors on olive cultivars producing oils with different volatile profiles (Arbequina and Picual). Experimental data suggest that LOX activity is a limiting factor for the synthesis of the oil volatile fraction, this limitation being significantly higher in Picual cultivar than in Arbequina, in line with the lowest content of volatile compounds in the oils obtained from the former. Moreover, there is evidence that this limitation of LOX activity takes place mostly during the milling step in the process of olive oil extraction.  相似文献   

15.
The emergence of primary and secondary oxidation products in New Zealand extra virgin olive oil during accelerated thermal oxidation was measured and correlated with the concentrations of 13 headspace volatile compounds measured by selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS is a mass spectrometric technique that permits qualitative and absolute quantitative measurements to be made from whole air, headspace, or breath samples in real-time down to several parts per billion (ppb). It is well-suited to high-throughput analysis of headspace samples. Propanal, hexanal, and acetone were found at high concentrations in a rancid standard oil, while propanal, acetone, and acetic acid showed marked increases with oxidation time for the oils used in this study. A partial least-squares (PLS) regression model was constructed, which allowed the prediction of peroxide values (PV) for three separate oxidized oils. Sensory rancidity was also measured, although the correlations of headspace volatile compounds with sensory rancidity score were less satisfactory, and too few results were available for the construction of a PLS regression model. A fast (approximately 1 min), reliable method for prediction of olive oil PVs by SIFT-MS was developed.  相似文献   

16.
SPME was employed to characterize the volatile profile of virgin olive oils produced in two geographical areas of northern Italy: the region of the Gulf of Trieste and the area near Lake Garda. There are as yet no data on the headspace composition of virgin olive oils from these regions, characterized by particular conditions of growth for Olea europaea. Using the SPME technique coupled to GC-MS and GC-FID, the volatile components of 42 industrially produced virgin olive oil samples were identified and the principal compounds quantitatively analyzed. Significant differences in the proportion of volatile constituents from oils of different varieties and geographical origins were detected. The results suggest that besides the genetic factor, environmental conditions influence the volatile formation.  相似文献   

17.
The impact of two- and three-phase processing systems and malaxation conditions on phenol content (both total and individual phenols) and antioxidant capacity of laboratory-generated olive mill waste (OMW) was assessed. Two-phase olive processing generated a waste with higher phenol content and antioxidant capacity. Using the two-phase system, both malaxation time and temperature affected the phenol content and antioxidant capacity. The effects of different prestorage drying treatments on phenol content and antioxidant capacity were also compared. Air drying and drying at 60 degrees C resulted in a substantial decrease in the phenol content and antioxidant capacity. Drying at 105 degrees C and freeze-drying produced less degradation. The phenol content and antioxidant capacity of OMW stored at 4 degrees C and of OMW preserved by 40% w/w ethanol and 1% w/w acetic acid and stored at 4 degrees C were monitored for 30 days and compared with those of OMW stored at room temperature. None of these storage conditions could prevent the rapid decrease in phenolic concentrations and antioxidant capacity, which happened within the first 24 h.  相似文献   

18.
A mathematical model has been developed that describes the changes of pyropheophytin a (pyphya) in virgin olive oil (VOO). The model has been created using multivariate statistical procedures and is used in the prediction of the stability and loss of freshness of VOO. An earlier thermokinetic study (Aparicio-Ruiz, R.; M??nguez-Mosquera, M. I.; Gandul-Rojas, B. Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. J. Agric. Food Chem.2010, 58, 6200-6208) that looked at the characterization of the degradation of pheophytin a (phya), the main chlorophyll compound in VOO and a precursor of pyphya, allowed the authors to obtain the kinetic parameters necessary for mathematically expressing the percentage of pyphya, according to the time and temperature of storage using the Arrhenius model. Data regarding the percentage of pyphya obtained during the actual degradation of VOO in darkness, at room temperature and with a limited supply of oxygen, has allowed the mathematical prediction model to be validated. Using average monthly temperatures in the calculation of kinetic constants, theoretical data are obtained that are generally found to be within 95% confidence levels of experimental data.  相似文献   

19.
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.  相似文献   

20.
For the first time the identification and quantification of phenolic compounds of the Olea europaea L. cv. Chemlali olive were carried out to examine their profile during maturation. The phenolic composition was studied by using reverse-phase high-performance liquid chromatography during all steps of fruit development. Oleuropein is the abundant phenolic compound in Chemlali olive, and its concentration increases during maturation. An indirect relationship between oleuropein content in olive fruit and hydroxytyrosol was observed. Weak changes in the amounts of the other phenolic monomers and flavonoids were also observed. The total phenolic content varied from 6 to 16 g/kg expressed as pyrogallol equivalents. Its highest level was found at the last maturation period. The antioxidant capacity of olive extracts was evaluated by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl. The IC(50) values of the olive extract ranged from 3.2 to 1.5 microg/mL. There was a correlation between antioxidant activity and total phenolic content of samples. The antioxidant activity increased with maturation. This could be attributed to the increase of the tolal phenol level with fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号