首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用超高效液相色谱-串联质谱仪(UHPLC-MS/MS),结合固相萃取净化建立了在水和土壤中同时快速测定草甘膦、草铵膦及其6种代谢物的多残留分析方法。前处理采用Oasis MCX和Oasis MAX固相萃取柱提取,2%甲酸甲醇-水(体积比为1∶1)洗脱,旋干后0.1%氨水定容,UHPLC-MS/MS检测。方法的线性范围为0.02~0.5 mg/L;在水中添加水平为0.000 1 mg/L和0.001 mg/L时,草甘膦、草铵膦及其代谢物的回收率为72.8%~94.2%,RSD为2.3%~16.1%;土壤中添加水平为0.001 mg/kg和0.01 mg/kg时,草甘膦、草铵膦及其代谢物的回收率为70.6%~88.5%,RSD为3.6%~12.8%。本方法准确、灵敏、全面,适用于草甘膦、草铵膦及其代谢物在水土环境中的残留检测及监测。  相似文献   

2.
建立了小麦植株、麦粒、面粉、麦麸和土壤样品中氨氯吡啶酸的高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。样品用丙酮提取,经N-丙基乙二胺(primary secondary amine,PSA)串联石墨化炭黑柱净化,以Agilent ZORBAX SB-C18 色谱柱分离,以电喷雾电离串联质谱正离子多反应监测(multiple reaction monitoring,MRM)模式进行测定。结果表明: 在0.01、0.1、0.5、1 mg/kg 4个添加水平下,氨氯吡啶酸在小麦植株、麦粒、面粉、麦麸和土壤中的平均回收率在78.9%~97.9%之间,相对标准偏差在3.6%~9.6%之间。该方法样品前处理简单、快速、分析时间短,灵敏度、准确度和精密度均符合农药残留检测要求,适用于小麦和土壤中氨氯吡啶酸残留的检测。  相似文献   

3.
草甘膦铵盐在苎麻田的残留及消解动态   总被引:2,自引:1,他引:1  
建立了简单、灵敏的土壤及苎麻中草甘膦残留量的气相色谱检测方法。土壤样品用0.01 mol/L 的氢氧化钠水溶液提取,其他样品用水和丙酮提取,经阴离子交换柱(AG1-X8)净化,与原乙酸三甲酯(TMOA)和冰醋酸反应,用气相色谱带火焰光度检测器(FPD)检测,外标法定量。结果表明:当草甘膦在麻蔸和土壤中的添加水平在0.05~1 mg/kg时,添加回收率分别为 73.6%~102.6% 和85.9% ~105.1%,相对标准偏差分别为2.3% ~8.1% 和5.4% ~13.0%。草甘膦的最小检出量(LOD)为0.5×10-10 g,在麻蔸中的最低检测浓度(LOQ)为0.05 mg/kg。2年3地的残留试验结果表明:草甘膦铵盐在湖南省、广西壮族自治区及福建省土壤中的半衰期分别为1.6~2.6 d,1.0~1.8 d和1.1~1.5 d。无论是在高浓度处理区 还是在低浓度处理区 ,苎麻收获时(距施药60 d),土壤和麻蔸样品中均未检出草甘膦铵盐。  相似文献   

4.
建立了番茄、黄瓜及土壤中杀虫单残留的超高效液相色谱-电喷雾串联质谱(UPLC-MS/MS)检测方法。先将杀虫单在碱性条件下水解成沙蚕毒素,经乙醚液-液分配后用甲醇定容,采用UPLC-MS/MS法测定沙蚕毒素浓度,最后再折算成杀虫单的残留量。结果表明:在1~500μg/L范围内,杀虫单质量浓度与峰面积呈良好的线性关系,相关系数均大于0.99;仪器检出限(LOD)分别为0.213μg/kg(番茄)、0.212μg/kg(黄瓜)和0.172μg/kg(土壤),定量限(LOQ)分别为0.710μg/kg(番茄)、0.707μg/kg(黄瓜)和0.573μg/kg(土壤);对于番茄、黄瓜及土壤样品,10、100和500μg/kg 3个水平的添加回收率试验结果显示,方法的平均回收率在79%~101%之间,相对标准偏差(RSD)为6.6%~16%。该方法可用于番茄、黄瓜及土壤中杀虫单残留量检测。  相似文献   

5.
吴文静  林燕 《农药学学报》2020,22(6):1027-1032
建立了以4-氯-7-硝基苯并呋喃 (NBD-Cl) 柱前衍生为基础测定土壤中草甘膦残留的高效液相色谱法。土壤样品经0.6 mol/L KOH溶液提取,加入NBD-Cl衍生剂,在0.125 mol/L (pH = 9.0~10.5) 硼酸盐缓冲液介质中、60 ℃水浴条件下反应80 min。以0.02 mol/L V (磷酸氢二钠水溶液) : V (甲醇) = 70 : 30的混合溶液为流动相,经C18反相色谱柱分离后,采用二极管阵列检测器在500 nm波长处进行检测,外标法定量。结果表明:草甘膦在0.01~2.0 mg/L 范围内线性关系良好,相关系数为0.9999,定量限 (LOQ) 为0.02 mg/kg;向空白土壤样品中添加0.02、0.1和10 mg/kg 3个水平的草甘膦标准溶液,平均回收率在82%~93%之间,相对标准偏差 (RSD) 为2.5%~3.9%。该方法简便高效,适用于土壤样品中草甘膦的残留分析。  相似文献   

6.
建立了简单、灵敏的土壤及苹果中草甘膦残留量的气相色谱检测方法。土壤样品用2 mol/L 的氨水提取,经三氟乙酸酐(TFAA)和三氟乙醇(TFE)衍生化后,由配有氮磷检测器的气 相色谱(GC-NPD)进行检测。土壤中草甘膦的最小检出量为9×10-12 g,最低检出浓度为0.02 mg/kg, 平均回收率及变异系数分别为84.4% ~94.0% 和7.46% ~10.40%。苹果样品则采用去离子水提取,经二氯甲烷液液分配和BIO-RAD AG 50W-X8阳离子交换柱净化后,再用TEAA和TFE衍生化,最后用GC-NPD检测,其中草甘膦的最小检出量(LOD)和最低检出浓度(LOQ)与土壤样品中的相同,平均回收率及变异系数分别为80.7% ~98.6%和9.3% ~11.8%。草甘膦的衍生化产物通过气相色谱-质谱联用仪(GC-MS)进行了确证。在北京昌平地区进行的消解动态和最终残留试验结果表明,以推荐高剂量(有效浓度)的1.5倍(2 025 g/hm2)施药,草甘膦在土壤中的半衰期为 9.2 d。两年的最终残留试验结果表明,无论是高浓度区(2 025 g/hm2)还是低浓度区(1 350 g/hm2),苹果收获时(距施药75 d),土壤和苹果样品中均未检出草甘膦。  相似文献   

7.
运用高效液相色谱-串联质谱仪(HPLC-MS/MS)建立豆芽中赤霉素(GA3)的测定方法。本方法用乙腈提取样品中赤霉素,蒸干后用硫酸水溶液(p H=2.5)溶解,再经乙酸乙酯提取,用液相色谱-串联质谱仪检测,外标法定量。该方法的检出限为5.0μg/L,方法定量下限5μg/kg,线性范围5~100μg/L。加标回收率70.8%~113.5%,相对标准偏差为8.03%~16.77%。  相似文献   

8.
本研究建立了液相色谱-串联质谱法(HPLC-MS/MS)同时检测土壤和水中啶菌噁唑及其8种降解产物的多残留分析方法?土壤样品经乙腈提取后, 弗罗里硅土净化; 水样品分别采用直接用0.22 μm水系滤膜过滤及乙腈提取的方式?净化后的样品采用Poroshell 120 EC-C18色谱柱, 以乙腈和0.2%甲酸水作为流动相进行梯度洗脱, 再使用高效液相色谱串联质谱检测分析?结果表明:啶菌噁唑及其降解产物在土壤和水中的定量限分别为1.0 μg/kg和0.1 μg/L, 其在土壤和水中的标准工作曲线分别在0.05~10 μg/L和0.1~50 μg/L范围内表现出良好的线性关系, 决定系数(R2)均大于0.99?啶菌噁唑及其降解产物在土壤中的平均回收率为71%~111%, 相对标准偏差为0.9%~10.9%; 在水中的平均回收率为80%~111%, 相对标准偏差为0.1%~7.5%?应用该方法对北京4地的地表水进行检测, 均未检出啶菌噁唑及其降解产物?该方法简便?准确?灵敏度高, 适用于啶菌噁唑及其降解产物在土壤和水中的残留检测?  相似文献   

9.
苯噻草胺在稻田水及土壤中的消解动态   总被引:1,自引:1,他引:0  
研究建立了稻田水和土壤中苯噻草胺残留的检测方法。稻田水经过滤后直接进高效液相色谱-串联质谱(HPLC-MS/MS)仪分析,方法的线性范围为0.1~10 μ g/L,相关系数(R2)为0.999 3,检出限(LOD)为0.03 μ g/L,定量限(LOQ)为0.1 μ g/L;当样品中苯噻草胺的添加水平为0.1~10 μ g/L时,平均回收率在98.4%~103.2%之间,相对标准偏差(RSD)在1.9%~3.4%之间。土壤经乙腈提取,硅胶固相萃取柱净化后用高效液相色谱(带二极管阵列检测器,HPLC-DAD)仪检测,方法的线性范围为0.1 ~2 mg/L,R2为0.998 5,LOD为0.006 mg/kg,LOQ为0.02 mg/kg;当样品中苯噻草胺的添加水平为0.02~1 mg/kg时,平均回收率在75.2%~86.1%之间,RSD在3.3%~7.5%之间。采用所建立方法对北京、南京两地2009年苯噻草胺在稻田水及土壤中的消解动态进行了检测。结果表明:其在稻田水及土壤中的消解动态曲线符合一级动力学方程;苯噻草胺在稻田水中消解迅速,半衰期分别为2.1 d(北京)和1.6 d(南京);其在土壤中的消解速率两地间差异较大,且比水中的慢,半衰期分别为12.3 d(北京)和3.7 d(南京)。  相似文献   

10.
建立了一种简便、直接进样、非衍生化超高效液相色谱-串联质谱(UPLC-MS/MS)快速测定环境水样中乙烯利、草甘膦、草铵膦及其代谢物等6种强极性化合物残留的分析检测方法。环境水样经离心、过滤后,无需衍生,直接进样进行定量分析。样品经Waters Acquity UPLC HSS T3色谱柱(100 mm×2.1 mm,1.8μm)分离,以0.1%甲酸-5μmol/L亚甲基二膦酸水溶液、甲醇为流动相,在电喷雾离子源、正离子扫描和多反应监测模式(MRM)下进行分析,外标法定量。结果表明:6种化合物在各自线性范围内具有良好的线性关系,决定系数(R2)均大于0.99,在10~200μg/L添加水平下,6种化合物在环境水样中的平均回收率在75%~100%之间,日内相对标准偏差与日间相对标准偏差(n=6)分别为3.6%~7.0%和4.3%~7.5%。方法定量限在0.5~10.0μg/L之间。利用所建立的方法对3个地区10份地表水样进行检测。结果显示:乙烯利、草甘膦、草铵膦及其代谢物等6种化合物均未检出。该方法与衍生化方法相比,具有简便快速、重现性好、灵敏度高等优点,可以为环境...  相似文献   

11.
研究了有机硅喷雾助剂(OSA)对草甘膦在空心莲子草Alternanthera philoxeroides上的沉 积与生物活性的影响。当采用较大喷雾雾滴,施药液量高于632.5 L/hm2时,添加OSA(0.35 g/L) 后,草甘膦药液在空心莲子草上的沉积量显著下降。最大稳定持留量(MRG)由未添加OSA的0.61~0.63 μ L/cm2下降到0.50~0.54 μ L/cm2。分别以33.7和67.4 μ g/株剂量的草甘膦点叶处理空心莲子草,发现添加OSA的处理对再生植株茎叶生长的抑制率分别比对照提高了8.89%和14.83%。草甘膦(有效成分199.3 g/hm2)施药后1 h进行人工模拟降雨处理,添加OSA后药剂对空心莲子草的生物活性比无OSA对照处理提高了20.5%。研究结果表明,添加有机硅喷雾助剂促进了草甘膦在空心莲子草中的向下传导性能,提高了草甘膦水剂在空心莲子草叶片的耐雨水冲刷性能,但会降低草甘膦药液在空心莲子草上的最大稳定持留量。  相似文献   

12.
本研究首次建立了一种超高效液相色谱-串联质谱法(UHPLC-MS/MS)同时测定柑橘中草甘膦及其代谢物N-乙酰草甘膦?氨甲基磷酸(AMPA)和N-乙酰AMPA?样品经过0.5%甲酸水提取, 以十八烷基硅烷键合硅胶柱(C18)净化, 利用水和200 mmol/L碳酸氢铵溶液(含0.1%氨水)作为流动相梯度洗脱, 在多反应监测模式下定量分析?结果表明, 草甘膦及其代谢物在0.05~1 mg/kg范围内线性关系良好, 相关系数均大于0.99; 草甘膦及其3个代谢物在柑橘全果和果肉基质中3个加标水平下回收率为 70.5%~109.5%, 相对标准偏差(RSD)为0.6%~10.1%, 定量限为0.05 mg/kg?本方法的前处理样品无需衍生, 简便?快捷?高效?准确可靠, 可用于柑橘中草甘膦及其代谢物N-乙酰草甘膦?AMPA和N-乙酰AMPA的定量检测?  相似文献   

13.
基于分散固相萃取与气相色谱-串联质谱建立了快速检测西瓜和黄瓜中吡唑萘菌胺及其代谢物残留的分析方法。样品经乙腈提取,N-丙基乙二胺 (PSA) 和C18净化,气相色谱-串联质谱 (GC-MS/MS) 测定,多反应检测模式 (MRM) 分析,内标法定量。考察了提取溶剂及吸附剂种类对分析结果的影响,优化了气相色谱-质谱条件。结果表明:在1~500 μg/L范围内,吡唑萘菌胺及其代谢物的质量浓度与对应的峰面积间均呈良好的线性关系,相关系数 (r) 为0.994 3~0.999 9。在0.01、0.1和1 mg/kg 3个添加水平下,吡唑萘菌胺及其代谢物在西瓜中的平均回收率为70%~105%,相对标准偏差 (RSD,n = 5) 为3.4%~13%;在黄瓜中的添加回收率为82%~104%,相对标准偏差 (RSD,n = 5) 为1.3%~9.3%。吡唑萘菌胺及其代谢物的定量限 (LOQ,S/N = 10) 为0.3~0.6 μg/kg,检出限 (LOD,S/N = 3) 为0.1~0.2 ng。该方法简单、高效、快速,满足残留分析的要求,适用于西瓜、黄瓜中吡唑萘菌胺及其代谢物残留的快速检测。  相似文献   

14.
采用包被抗体直接竞争酶联免疫吸附分析(ELISA)法测定了甘蔗中的克百威残留量。在优化条件下,对克百威标样检测的线性范围为0.000 1~1 mg/L,抑制中浓度(IC50)=3.09 μ g/L,5次重复测定的相对标准偏差(RSD)为9.3%, IC20值为0.085 μ g/L。甘蔗中分别添加克百威标样1,0.1,0.01 mg/kg,直接竞争ELISA法测定的回收率分别为86.3% ~99.1%,89.0% ~101% 和70.7% ~90.6%,RSD(n=5)分别为5.4% ,5.2% 和10.7%。ELISA法对甘蔗中克百威残留的最小检出量为6.3×10-11g,定量限可达1.26 μ g/kg。而同样前处理条件下高效液相色谱-紫外检测器(HPLC-UV)法对克百威的最小检出量为5×10-8 g,检测甘蔗中克百威残留的定量限仅为2.5 mg/kg。  相似文献   

15.
采用溶剂顶空毛细管气相色谱-氮磷检测器(NPD)建立了熏蒸剂氰(C2N2)及其代谢物氰化氢(HCN)在小麦中残留的分析方法。在气相与液相体积比(β)为4时,采用GS-Q大孔毛细管色谱柱和进样60 μL顶空气体,可提高C2N2和HCN的分离效果和灵敏度。以质量分数为50%的磷酸作溶剂,在25 ℃下平衡4 h,C2N2和HCN在液相与气相间的分配系数(k)分别为0.44和48.82。平衡温度和基质对C2N2和HCN挥发的影响存在差异,而盐化效应的影响较小。用50% 的磷酸提取熏蒸过的小麦72 h,释放至顶空的C2N2和HCN的量最大,用添加标准品的小麦作标准可评价熏蒸小麦中C2N2和HCN的残留量。C2N2和HCN标准曲线的线性范围分别在质量浓度为1.0~500 μg/L和1.2~500 μg/L之间,相关系数(R2)分别为0.999 7和0.999 8,相对标准偏差分别为4.6%和7.4%,检出限(LOD)分别为0.032和0.145 mg/kg,定量限(LOQ)分别为0.107和0.483 mg/kg。方法操作简单、灵敏度高、干扰少,适用于小麦中C2N2和HCN残留量的检测。  相似文献   

16.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

17.
本文基于铈离子与焦磷酸根离子(Ce-PPi)配位聚合物网络(coordination polymer networks,CPNs)开发出一种草甘膦快速检测方法。通过铈离子(Ce3+)与焦磷酸根离子(PPi)之间的配位作用,自组装合成出Ce-PPi CPNs,并对其结构和性质进行了表征。草甘膦可以减弱PPi与Ce3+之间的配体场效应,导致Ce-PPi CPNs的荧光减弱。基于这一原理,通过优化条件,实现了草甘膦的定量检测,R2为0.997 2,检出限为0.014μmol/L。该方法检测灵敏度较高,且对草甘膦具有优异的选择性,可应用于自来水与苹果样品中草甘膦的检测,方法定量限为0.05 mg/kg,回收率在77%~87%之间,为草甘膦的快速、现场和实时实际样品检测提供了新的选择。  相似文献   

18.
The availability of Roundup Ready (RR) varieties of soybean has increased the use of glyphosate for weed control in Argentina. Glyphosate [(N-phosphonomethyl)glycine] is employed for the eradication of previous crop vegetation and for weed control during the soybean growing cycle. Its action is effective, and low environmental impact has been reported so far. No residues have been observed in soil or water, either of glyphosate or its metabolite, AMPA (aminomethylphosphonic acid). The objective of this work was to monitor glyphosate and AMPA residues in soybean plants and grains in field crops in Santa Fe Province, Argentina. Five sites were monitored in 1997, 1998 and 1999. Individual soybean plants were sampled from emergence to harvest, dried and ground. Analysis consisted in residue extraction with organic solvents and buffers, agitation, centrifugation, clean-up and HPLC with UV detection. In soybean leaves and stems, glyphosate residues ranged from 1.9 to 4.4 mg kg(-1) and from 0.1 to 1.8 mg kg(-1) in grains. Higher concentrations were detected when glyphosate was sprayed several times during the crop cycle, and when treatments approached the flowering stage. AMPA residues were also detected in leaves and in grains, indicating metabolism of the herbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号