首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A total of 120 pigs (60 barrows and 60 gilts; TR4 × PIC 1050; 54.4 kg initial BW) were used in an 83-d study to evaluate the effects of added fat in corn- and sorghum-based diets on growth performance, carcass characteristics, and carcass fat quality. Treatments were arranged in a 2 × 3 factorial with grain source (corn or sorghum) and added fat (0, 2.5, or 5% choice white grease; CWG) as factors. There were 2 pigs (1 barrow and 1 gilt) per pen and 10 replicate pens per treatment. Pigs and feeders were weighed on d 14, 22, 39, 53, 67, and 83 to calculate ADG, ADFI, and G:F. At the end of the trial, pigs were slaughtered and jowl fat and backfat samples were collected and analyzed for fatty acid profile. No interactions were observed for growth performance. Pigs fed sorghum-based diets had greater (P < 0.01) ADG than pigs fed corn-based diets. Adding CWG improved (linear, P < 0.01) ADG. Pigs fed corn-based diets tended to have greater (P < 0.09) carcass yield, 10th-rib backfat, and percentage lean than pigs fed sorghum-based diets. Adding CWG increased (linear, P = 0.02) 10th-rib backfat, tended to increase (linear, P = 0.08) HCW, and tended to decrease (linear, P = 0.07) percentage lean. There was no grain source × fat level interaction for iodine value (IV) in backfat, but an interaction (P = 0.03) was observed for IV in jowl fat. Adding CWG increased (P < 0.01) IV in jowl fat for pigs fed sorghum- and corn-based diets; however, the greatest increase was between 0 and 2.5% CWG in sorghum-based diets and between 2.5 and 5% CWG in corn-based diets. Pigs fed corn-based diets had less (P = 0.01) C18:1 cis-9 and MUFA but greater (P = 0.01) C18:2n-6, PUFA, and backfat IV than pigs fed sorghum-based diets. Increasing CWG in the diet increased (linear, P = 0.01) backfat IV. Of the 2 fat depots, backfat generally had a reduced IV than jowl fat. In summary, feeding sorghum-based diets reduced carcass fat IV and unsaturated fats compared with corn-based diets. As expected, adding CWG increased carcass fat IV regardless of the cereal grain in the diet.  相似文献   

2.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

3.
We conducted two experiments to evaluate the effects of dietary energy density and lysine:calorie ratio on the growth performance and carcass characteristics of growing and finishing pigs. In Exp. 1, 80 crossbred barrows (initially 44.5 kg) were fed a control diet or diets containing 1.5, 3.0, 4.5, or 6.0% choice white grease (CWG). All diets contained 3.2 and 2.47 g of lysine/Mcal ME during growing (44.5 to 73 kg) and finishing (73 to 104 kg), respectively. Increasing energy density did not affect overall ADG; however, ADFI decreased and feed efficiency (Gain:feed ratio; G:F) increased (linear, P < .01). Increasing energy density decreased and then increased (quadratic, P < .06) skinned fat depth and lean percentage. In Exp. 2, 120 crossbred gilts (initially 29.2 kg) were used to determine the effects of increasing levels of CWG and lysine:calorie ratio fed during the growing phase on growth performance and subsequent finishing growth. Pigs were fed increasing energy density (3.31, 3.44, or 3.57 Mcal ME/kg) and lysine:calorie ratio (2.75, 3.10, 3.45, or 3.80 g lysine/Mcal ME). No energy density x lysine:calorie ratio interactions were observed (P > .10). Increasing energy density increased ADG and G:F and decreased ADFI of pigs from 29.5 to 72.6 kg (linear, P < .05). Increasing lysine:calorie ratio increased ADG and ADFI (linear, P < .01 and .07, respectively) but had no effect on G:F. From 72.6 to 90.7 kg, all pigs were fed the same diet containing .90% lysine and 2.72 g lysine/Mcal ME. Pigs previously fed with increasing lysine:calorie ratio had decreased (linear, P < .02) ADG and G:F. Also, pigs previously fed increasing CWG had decreased (linear, P < .03) ADG and ADFI. From 90.7 to 107 kg when all pigs were fed a diet containing .70% lysine and 2.1 g lysine/Mcal ME, growth performance was not affected by previous dietary treatment. Carcass characteristics were not affected by CWG or lysine:calorie ratio fed from 29.5 to 72.6 kg. Increasing the dietary energy density and lysine:calorie ratio improved ADG and G:F of growing pigs; however, pigs fed a low-energy diet or a low lysine:calorie ratio from 29 to 72 kg had compensatory growth from 72 to 90 kg.  相似文献   

4.
Two experiments were conducted to evaluate the effect of lysolecithin on performance and nutrient digestibility of nursery pigs and to determine the effects of fat encapsulation by spray drying in diets fed in either meal or pelleted form. In Exp. 1, 108 pigs (21 d of age; 5.96 +/- 0.16 kg BW) were allotted to one of four dietary treatments (as-fed basis): 1) control with no added lard, 2) control with 5% added lard, 3) treatment 2 with 0.02% lysolecithin, and 4) treatment 2 with 0.1% lysolecithin in a 35-d experiment. Added lard decreased ADG (P = 0.02) and ADFI (P < 0.06) during d 15 to 35 and overall. Lysolecithin improved ADG linearly (P = 0.04) during d 15 to 35 and overall, but did not affect ADFI or G:F. Addition of lard decreased the digestibility of DM (P = 0.10) and CP (P = 0.05) and increased (P = 0.001) fat digestibility when measured on d 10. Lysolecithin at 0.02%, but not 0.10%, tended to improve the digestibility of fat (P = 0.10). On d 28, digestibilities of DM, fat, CP, P, (P = 0.001), and GE (P = 0.03) were increased with the addition of lard, and lysolecithin supplementation linearly decreased digestibilities of DM (P = 0.003), GE (P = 0.007), CP, and P (P = 0.001). In Exp. 2, 144 pigs (21 d of age, 6.04 +/- 0.16 kg BW) were allotted to one of six treatments in a 3 x 2 factorial randomized complete block design. Factors included 1) level (as-fed basis) and source of fat (control diet with 1% lard; control diet with 5% additional lard; and control diet with 5% additional lard from encapsulated, spray-dried fat) and 2) diet form (pelleted or meal). Addition of lard decreased feed intake during d 0 to 14 (P = 0.04), d 15 to 35 (P = 0.01), and overall (P = 0.008), and improved G:F for d 15 to 35 (P = 0.04) and overall (P = 0.07). Encapsulated, spray-dried lard increased ADG (P = 0.004) and G:F (P = 0.003) during d 15 to 28 compared with the equivalent amount of fat as unprocessed lard. Pelleting increased ADG (P = 0.006) during d 0 to 14, decreased feed intake during d 15 to 35 (P = 0.01), and overall (P = 0.07), and increased G:F during all periods (P < 0.02). Fat digestibility was increased (P = 0.001) with supplementation of lard, and this effect was greater when diets were fed in meal form (interaction, P = 0.004). Pelleting increased the digestibility of DM, OM, and fat (P < 0.002). Results indicate that growth performance may be improved by lysolecithin supplementation to diets with added lard and by encapsulation of lard through spray drying.  相似文献   

5.
Two experiments were conducted to verify the feeding value of NutriDense (ND) and Nutri-Dense Low-Phytate (NDLP) corn (Exseed Genetics LLC, BASF Plant Science, Research Triangle Park, NC) relative to that of yellow dent (YD) corn in swine diets. NutriDense corn is a high-protein, high-oil variety, and NDLP is a high-protein, high-oil, low-phytate variety. In Exp. 1, 315 nursery pigs that initially weighed 15.2 kg were used in a 21-d growth assay. Dietary treatments were arranged in a 3 x 3 factorial; main effects were corn source (YD, ND, and NDLP) and added fat (0, 3, or 6%, as-fed basis). Diets were formulated to contain 3.83 g of lysine/Mcal using calculated nutrient values. There were no corn source x fat interactions observed. Pigs fed YD, ND, and NDLP had ADG of 750, 734, and 738 g/d and G:F of 0.64, 0.66, and 0.65, respectively. No differences (P > 0.10) in ADG were observed among the three corn sources; however, pigs fed diets containing either ND or NDLP corn had decreased ADFI (P < 0.02) and improved G:F (P < 0.05) compared with pigs fed diets containing YD corn. Increasing dietary fat increased ADG (727, 746, and 748 g/d; linear, P < 0.04) and G:F (0.62, 0.66, and 0.68; linear, P < 0.01) and decreased ADFI (linear, P < 0.01). Using the NRC (1998) value for ME in YD corn, we calculated the energy value for ND and NDLP based on G:F differences compared with pigs fed YD corn. These data indicated the ME values for ND and NDLP corn are 4.5 and 2.5% greater (3,575 and 3,505 Kcal/kg), respectively, than for YD corn (3,420 Kcal/kg). In Exp. 2, 1,144 gilts (initial BW = 50.1 kg) were used in a commercial research facility to evaluate the effects of corn source (ND and YD) and added fat (0, 3, or 6%, as-fed basis) in a 2 x 3 factorial on pig performance and carcass traits. There was a corn source x fat interaction for ADFI and G:F. Increasing added fat resulted in greater changes in ADFI and G:F in pigs fed YD corn diets compared with those fed ND corn. Feeding ND corn increased ADG (main effect, P < 0.04), and greater percentages of added fat increased ADG (main effect; linear, P < 0.01). Results of Exp. 2 suggest that ND corn has 5.3% more ME than YD corn. The additional energy provided by ND corn improves G:F in both nursery and grow-finish pigs, and ND corn offers a means of formulating diets more concentrated in energy than YD corn.  相似文献   

6.
Two experiments were conducted to evaluate the effects of adding combinations of wheat middlings (midds), distillers dried grains with solubles (DDGS), and choice white grease (CWG) to growing-finishing pig diets on growth, carcass traits, and carcass fat quality. In Exp. 1, 288 pigs (average initial BW = 46.6 kg) were used in an 84-d experiment with pens of pigs randomly allotted to 1 of 4 treatments with 8 pigs per pen and 9 pens per treatment. Treatments included a corn-soybean meal-based control, the control with 30% DDGS, the DDGS diet with 10% midds, or the DDGS diet with 20% midds. Diets were fed in 4 phases and formulated to constant standardized ileal digestible (SID) Lys:ME ratios within each phase. Overall (d 0 to 84), pigs fed diets containing increasing midds had decreased (linear, P ≤ 0.02) ADG and G:F, but ADFI was not affected. Feeding 30% DDGS did not influence growth. For carcass traits, increasing midds decreased (linear, P < 0.01) carcass yield and HCW but also decreased (quadratic, P = 0.02) backfat depth and increased (quadratic, P < 0.01) fat-free lean index (FFLI). Feeding 30% DDGS decreased (P = 0.03) carcass yield and backfat depth (P < 0.01) but increased FFLI (P = 0.02) and jowl fat iodine value (P < 0.01). In Exp. 2, 288 pigs (initial BW = 42.3 kg) were used in an 87-d experiment with pens of pigs randomly allotted to 1 of 6 dietary treatments with 8 pigs per pen and 6 pens per treatment. Treatments were arranged in a 2 × 3 factorial with 2 amounts of midds (0 or 20%) and 3 amounts of CWG (0, 2.5, or 5.0%). All diets contained 15% DDGS. Diets were fed in 4 phases and formulated to constant SID Lys:ME ratios in each phase. No CWG × midds interactions were observed. Overall (d 0 to 87), feeding 20% midds decreased (P < 0.01) ADG and G:F. Pigs increasing CWG had improved ADG (quadratic, P = 0.03) and G:F (linear, P < 0.01). Dietary midds or CWG did not affect ADFI. For carcass traits, feeding 20% midds decreased (P < 0.05) carcass yield, HCW, backfat depth, and loin depth but increased (P < 0.01) jowl fat iodine value. Pigs fed CWG had decreased (linear, P < 0.05) FFLI and increased (linear, P < 0.01) jowl fat iodine value. In conclusion, feeding midds reduced pig growth performance, carcass yield, and increased jowl fat iodine value. Although increasing diet energy with CWG can help mitigate negative effects on live performance, CWG did not eliminate negative impacts of midds on carcass yield, HCW, and jowl fat iodine value.  相似文献   

7.
A total of 120 barrows (initial BW = 47.9 ± 3.6 kg; PIC 1050) were used in an 83-d study to determine the effects of dietary iodine value (IV) product (IVP) on growth performance and fat quality. Pigs were blocked by BW and randomly allotted to 1 of 6 treatments with 2 pigs per pen and 10 pens per treatment. Dietary treatments were fed in 3 phases and formulated to 3 IVP concentrations (low, medium, and high) in each phase. Treatments were 1) corn-soybean meal control diet with no added fat (low IVP), 2) corn-extruded expelled soybean meal (EESM) diet with no added fat (medium IVP), 3) corn-soybean meal diet with 15% distillers dried grains with solubles and choice white grease (DDGS + CWG; medium IVP), 4) corn-soybean meal diet with low CWG (medium IVP), 5) corn-EESM diet with 15% DDGS (high IVP), and 6) corn-soybean meal diet with high CWG (high IVP). On d 83, pigs were slaughtered and backfat and jowl fat samples were collected and analyzed. The calculated and analyzed dietary IVP values were highly correlated (r(2) = 0.86, P < 0.01). Pigs fed the control diet, EESM, or high CWG had greater (P < 0.05) ADG than pigs fed EESM + DDGS. Pigs fed the control diet had greater (P < 0.05) ADFI than pigs fed all other diets. Pigs fed EESM + DDGS and high CWG had improved (P < 0.05) G:F compared with pigs fed the control diet or DDGS + CWG. Pigs fed diets with DDGS had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA and less SFA than pigs fed all other treatments. Pigs fed EESM had greater (P < 0.05) backfat and jowl fat IV, C18:2n-6, and PUFA than pigs fed the control diet, low CWG, or high CWG. Pigs fed low CWG or high CWG had greater (P < 0.05) jowl fat IV than control pigs. Feeding ingredients high in unsaturated fatty acids, such as DDGS and EESM, had a greater impact on fat IV than CWG, even when diet IVP was similar. Therefore, IVP was a poor predictor of carcass fat IV in pigs fed diets with different fat sources and amounts of unsaturated fats formulated with similar IVP. Dietary C18:2n-6 content was a better predictor of carcass fat IV than diet IVP.  相似文献   

8.
We conducted two trials to determine the effects of added dietary pyridoxine (vitamin B6) or thiamin (vitamin B1) on growth performance of weanling pigs. In Exp. 1, weanling pigs (n = 180, initially 5.55 +/- .84 kg, and 21 +/- 2 d of age) were fed either a control diet (no added pyridoxine or thiamin) or the control diet with added thiamin (2.8 or 5.5 mg/kg) from thiamin mononitrate or pyridoxine (3.9 or 7.7 mg/kg) from pyridoxine HC1. These five diets were fed in meal form in two phases (d0 to 14 and 14 to 35 after weaning), with identical vitamin concentrations in both phases. From d 0 to 14 after weaning, pigs fed added pyridoxine had increased (quadratic, P < .05) ADG and ADFI; pigs fed 3.9 mg/kg of added pyridoxine had the greatest improvement. From d 14 to 35 and 0 to 35, ADG and ADFI increased (linear P = .06) for pigs fed increasing pyridoxine. Growth performance was not improved by added thiamin. In Exp. 2, weanling pigs (n = 216, initially 6.08 +/- 1.13 kg, and 21 +/- 2 d of age) were fed a control diet or the control diet with 1.1, 2.2, 3.3, 4.4, or 5.5 mg/kg of added pyridoxine from pyridoxine HCl. From d 0 to 14 after weaning, increasing pyridoxine increased (quadratic, P < .05) ADG and ADFI; pigs fed 3.3 mg/kg of added pyridoxine had the greatest ADG and ADFI. Break-point analysis suggested a requirement estimate of 3.3 and 3.0 mg/kg of added pyridoxine to maximize ADG and ADFI, respectively. From d 14 to 35 or 0 to 35, increasing pyridoxine had no effect (P > .10) on pig growth performance. These results suggest that adding 3.3 mg/kg of pyridoxine (7.1 to 7.9 mg/kg of total pyridoxine) to diets fed from d 0 to 14 after weaning can improve pig growth performance.  相似文献   

9.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

10.
Eighty-four crossbred gilts were used to evaluate the effects of dietary choice white grease (CWG) or poultry fat (PF) on growth performance, carcass characteristics, and quality characteristics of longissimus muscle (LM), belly, and bacon of growing-finishing pigs. Pigs (initially 60 kg) were fed a control diet with no added fat or diets containing 2, 4, or 6% CWG or PF. Diets were fed from 60 to 110 kg and contained 2.26 g lysine/Mcal ME. Data were analyzed as a 2 x 3 factorial plus a control with main effects of fat source (CWG and PF) and fat level (2, 4, and 6%). Pigs fed the control diet, 2% fat, and 4% fat had greater (P < 0.05) ADFI than pigs fed 6% fat. Pigs fed 6% fat had greater (P < 0.05) gain/feed (G/F) than pigs fed the control diet or other fat levels. Subcutaneous fat over the longissimus muscle from pigs fed CWG had more (P < 0.05) moisture than that from pigs fed PF. Feeding dietary fat (regardless of source or level) reduced (P < 0.05) the amount of saturated fats present in the LM. Similarly, 4 or 6% fat decreased (P < 0.05) the amount of saturated fats and increased unsaturated fats present in the bacon. No differences (P > 0.05) were observed for ADG, dressing percentage, leaf fat weight, LM pH, backfat depth, LM area, percentage lean, LM visual evaluation, LM waterholding capacity, Warner-Bratzler shear and sensory evaluation of the LM and bacon, fat color and firmness measurements, or bacon processing characteristics. Adding dietary fat improved G/F and altered the fatty acid profiles of the LM and bacon, but differences in growth rate, carcass characteristics, and quality and sensory characteristics of the LM and bacon were minimal. Dietary additions of up to 6% CWG or PF can be made with little effect on quality of pork LM, belly, or bacon.  相似文献   

11.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

12.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

13.
Four experiments were conducted to determine the effect of dietary ornithine alpha-ketoglutarate (OKG) and creatine monohydrate on growth performance and plasma metabolites of nursery pigs. In each experiment, treatments were replicated with four to five pens of four to six pigs each. Each experiment lasted from 3 to 4 wk and Phase I (1.6% Lys) and Phase II (1.3 to 1.5% Lys) diets were fed for 9 to 16 d each. In Exp. 1, pigs (4.7 kg and 15 d of age) were fed diets containing 0, .10, or .75% OKG. Daily gain during a 13-d Phase I period and ADFI during Phase I and overall (29 d) were increased (P < .10) in pigs fed .75% OKG. Gain:feed ratio was not affected (P > .10) by diet. In Exp. 2, pigs (7.1 kg and 23 d of age) were fed 0 or .50% OKG during Phase I only. During Phase I, II, and overall, ADG and ADFI were not affected (P > .10) by OKG supplementation, but gain:feed was decreased during Phase I (P < .04), Phase II (P < .08), and overall (P < .04). Plasma urea N (PUN), glucose, and NEFA concentrations were not affected (P > .10) by OKG supplementation in this experiment. In Exp. 3, pigs (5.8 kg and 20 d of age) were fed diets containing 0, .10, or .50% creatine. Creatine tended to linearly decrease ADG (P = .11) and plasma albumin (P = .12) and PUN (P < .10) concentrations in Phase II (d 12 to 26). In Exp. 4, 850 mg of OKG or 750 mg of creatine was provided daily by oral capsule to pigs 4 d before weaning to 2 d after weaning. Pigs within a litter received either no capsule or capsules containing OKG or creatine. After weaning, pigs that received no capsule before weaning received no treatment, .50% creatine, or .50% OKG in the nursery diet. Pigs that received OKG before weaning received no treatment or .50% OKG, and pigs that received creatine before weaning received no treatment or .50% creatine in the nursery diet. Pigs weighed 3.9 kg 4 d before weaning and 4.9 kg at weaning at an average age of 20 d. The OKG provided by capsule decreased ADG (P < .02) and ADFI (P < .09) during Phase II. The OKG did not affect (P > .10) plasma NEFA, glucose, or urea N concentrations. Creatine added to the nursery diet increased (P < .02) ADFI and decreased (P < .10) gain:feed during Phase II and overall. Creatine in the nursery diet also increased (P < .01) PUN, but it did not affect plasma glucose or NEFA concentrations. Creatine and OKG have variable effects on growth performance and plasma metabolites of nursery pigs.  相似文献   

14.
We conducted two experiments comparing the use of extruded-expelled soybean meal (EESoy) to solvent-extracted soybean meal (SBM) in swine diets. In Exp. 1, the objective was to determine the optimal processing temperature of EESoy for nursery pig growth performance. Pigs (n = 330, 13.2 +/- 2.3 kg of BW) were fed a control diet containing SBM with added fat or one of five diets containing EESoy extruded at 143.3, 148.9, 154.4, 160.0, or 165.6 degrees C. All diets were formulated on an equal apparent digestible lysine:ME ratio. From d 0 to 20, no differences were observed (P > 0.32) in ADG or ADFI (average of 544 and 924 g/d, respectively). However, gain:feed ratio (G/F) improved (quadratic, P < 0.01, range of 0.56 to 0.60) with increasing processing temperature, with the greatest improvement at 148.9 degrees C. In Exp. 2, the objective was to determine the feeding value of EESoy relative to SBM with or without added fat for growing-finishing pigs in a commercial production facility. A total of 1,200 gilts (initially 24.5 +/- 5.1 kg of BW) was used, with 25 pigs per pen and eight replications per treatment. Dietary treatments were arranged in a 2 x 3 factorial, with two sources of soybean meal (SBM or EESoy) and three levels of added fat. Pigs were phase-fed four diets over the experimental period and added fat (choice white grease) levels were 0, 3.4, and 7% initially, with the added fat levels decreasing in the next three dietary phases. Energy levels were based such that the higher energy in EESoy (with or without added fat) was calculated to be equal to that provided by SBM with added fat. From 24.5 to 61.2 kg, pigs fed EESoy had greater (P < 0.07) G/F than those fed SBM. Increasing added fat in either EESoy- or SBM-based diets increased G/F (linear, P < 0.0003). From 61.2 to 122.5 kg, ADG and G/F were unaffected in pigs fed EESoy and/or increasing added fat (P > 0.10). For the overall growing-finishing period, ADG was unaffected (P > 0.61) by increasing energy density of the diet; however, ADFI decreased (P < 0.05) and G/F increased (P < 0.02, range of 0.37 to 0.40) as energy density increased with either EESoy or added fat. Carcass leanness was not affected by dietary treatment. These results indicate that EESoy should be extruded at 148.9 to 154.4 degrees C, and that increasing dietary energy density by using EESoy and/or added fat improves feed efficiency in finishing pigs reared in a commercial environment.  相似文献   

15.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

16.
Three experiments were conducted to determine the effects of phytase, excess Zn, or their combination in diets for nursery pigs. In all experiments, treatments were replicated with five to seven pens of six to seven pigs per pen, dietary Ca and available P (aP) levels were decreased by 0.1% when phytase was added to the diets, excess Zn was added as ZnO, a basal level of 127 mg/kg of Zn (Zn sulfate) was present in all diets, and the experimental periods were 19 to 21 d. In Exp. 1, pigs (5.7 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and three levels of excess Zn (0, 1,000, or 2,000 ppm) in a 2 x 3 factorial arrangement. Added Zn linearly increased ADG and ADFI during Phase 1 (P = 0.01 to 0.06), Phase 2 (P = 0.02 to 0.09), and overall (P = 0.01 to 0.02). Gain:feed was linearly increased by Zn during Phase 1 (P = 0.01) but not at other times. Dietary phytase decreased ADG in pigs fed 1,000 or 2,000 ppm Zn during Phase 2 (Zn linear x phytase interaction; P = 0.10), did not affect (P = 0.27 to 0.62) ADFI during any period, and decreased G:F during Phase 2 (P = 0.01) and for the overall (P = 0.07) period. Plasma Zn was increased by supplemental Zn (Zn quadratic, P = 0.01) but not affected (P = 0.70) by phytase addition. In Exp. 2, pigs (5.2 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and two levels of Zn (0 or 2,000 ppm) in a 2 x 2 factorial arrangement. Supplemental Zn increased ADG and G:F during Phase 2 (P = 0.02 to 0.09) and overall (P = 0.07 to 0.08), but it had no effect (P = 0.11 to 0.89) on ADG during Phase 1 or ADFI during any period. Phytase supplementation increased ADG (P = 0.06) and G:F (P = 0.01) during Phase 2. Gain:feed was greatest for pigs fed 2,000 ppm Zn and phytase (Zn x phytase interaction; P = 0.01). Bone (d 20) and plasma Zn (d 7 and 20) were increased (P = 0.01) by added Zn but not affected (P = 0.51 to 0.90) by phytase. In Exp. 3, pigs (5.7 kg and 19 d of age) were fed a basal diet or the basal diet with Ca and aP levels decreased by 0.10% and these two diets with or without 500 phytase units/kg. Supplemental phytase had no effect (P = 0.21 to 0.81) on growth performance. Reduction of dietary Ca and aP decreased (P = 0.02 to 0.08) ADG, ADFI, and G:F for the overall data. These results indicate that excess dietary supplemental Zn increases ADG and plasma and bone Zn concentrations. Dietary phytase did not affect plasma or bone Zn concentrations.  相似文献   

17.
A total of 150 weanling pigs [(Yorkshire × Landrace) × Duroc] with an average BW of 7.22 ± 0.80 kg (21 d of age) were used in a 28-d trial to determine the effects of dietary fructan and mannan oligosaccharides on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Pigs were allotted randomly to 1 of 5 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), NC + 0.01% apramycin (165 mg/kg); 3) NC + 0.1% fructan (FC); 4) NC + 0.1% mannan oligosaccharide source (MO); and 5) NC + 0.05% fructan + 0.05% mannan oligosaccharide source (FM). There were 3 replications per treatment with 10 pigs per pen (5 barrows and 5 gilts). From d 0 to 14, ADG and ADFI of pigs fed the PC, MO, and FM diets were greater (P < 0.05) than pigs fed the NC diet. From d 15 to 28, there were no differences (P > 0.05) in ADG, ADFI, and G:F. During the overall period (d 0 to 28), pigs fed the MO diet had a greater ADG than pigs fed the NC diet (P < 0.05). Pigs fed the PC and MO diets increased ADFI (P < 0.05) compared with pigs fed the NC diet. However, no differences were detected among dietary treatments in G:F during the overall experimental period. On d 14, the apparent total tract digestibility (ATTD) of DM and N in pigs fed the PC, MO, and FM diets was greater (P < 0.05) than pigs fed the NC diet. The ATTD of DM increased (P < 0.05) in pigs fed the MO and FM diets compared with pigs fed the FC diet. However, at the end of the experiment, pigs fed the FM diet had a greater (P < 0.05) ATTD of DM compared with pigs fed the NC diet. Additionally, there were no differences in IgG, red blood cells, white blood cells, and lymphocyte counts among dietary treatments on d 0, 14, or 28. The diarrhea score in pigs fed the MO diet was reduced (P < 0.05) compared with pigs fed the NC diet. In conclusion, mannan oligosaccharides have a beneficial effect on growth performance and nutrient digestibility in weanling pigs. Furthermore, mannan oligosaccharides can decrease diarrhea score in weanling pigs.  相似文献   

18.
Two experiments evaluated effects of added pantothenic acid on performance of growing-finishing pigs. In Exp. 1, 156 pigs (PIC, initial BW = 25.7 kg) were used in a 3 x 2 x 2 factorial to evaluate the effects of added pantothenic acid (PA; 0, 22.5, or 45 ppm), ractopamine.HCl (RAC; 0 or 10 mg/kg), and sex on growth performance and carcass traits. Pigs were fed increasing PA from 25.7 to 123.6 kg (d 0 to 98) and RAC for the last 28 d before slaughter. Increasing the amount of added PA had no effect (P > 0.40) on ADG, ADFI, or G:F from d 0 to 70. A PA x sex interaction (P < 0.03) was observed for ADG and G:F from d 71 to 98. Increasing the amount of added PA increased ADG and G:F in gilts, but not in barrows. Increasing the amount of added PA had no effect (P > 0.38) on carcass traits. Added RAC increased (P < 0.01) ADG and G:F for d 71 to 98 and d 0 to 98 and increased (P < 0.01) LM area and percentage lean. In Exp. 2, 1,080 pigs (PIC, initial BW = 40.4 kg, final BW = 123.6 kg) were used to determine the effects of increasing PA on growth performance and carcass characteristics of growing-finishing pigs reared in a commercial finishing facility. Pigs were fed 0, 22.5, 45.0, or 90 mg/kg of added PA. Increasing the amount of added PA had no effect (P > 0.45) on ADG, ADFI, or G:F, and no differences were observed (P > 0.07) for carcass traits. In summary, adding dietary PA to diets during the growing-finishing phase did not provide any advantages in growth performance or carcass composition of growing-finishing pigs. Furthermore, it appears that the pantothenic acid in corn and soybean meal may be sufficient to meet the requirements of 25- to 120-kg pigs.  相似文献   

19.
This study was conducted to evaluate the effects of dietary energy density and weaning environment on pig performance. Treatment diets were formulated to vary in DE concentration by changing the relative proportions of low (barley) and high (wheat, oat groats, and canola oil) energy ingredients. In Exp. 1, 84 pigs in each of 3 replications, providing a total of 252 pigs, were weaned at 17 x 2 d of age and randomly assigned to either an on-site or an off-site nursery and to 1 of 3 dietary DE concentrations (3.35, 3.50, or 3.65 Mcal/kg). Each site consisted of a nursery containing 6 pens; 3 pens housed 7 barrows and 3 housed 7 gilts. All pigs received nontreatment diets in phase I (17 to 19 d of age) and phase II (20 to 25 d of age), respectively. Dietary treatments were fed from 25 to 56 d of age. Off-site pigs were heavier at 56 d of age (23.4 vs. 21.3 kg; P < 0.05) and had greater ADFI (0.77 vs. 0.69 kg/d; P < 0.01) than on-site pigs. There was a linear decrease in ADG (P < 0.01) and ADFI (P < 0.001) with increasing DE concentration. Efficiency of gain improved (P < 0.01) with increasing DE concentration. There was no interaction between weaning site and diet DE concentration, indicating that on-site and off-site pigs responded similarly to changes in diet DE concentration. In Exp. 2, nutrient digestibility of the treatment diets used in Exp. 1 was determined using 36 pigs with either ad libitum or feed intake restricted to 5.5% of BW. Energy and N digestibility increased (P < 0.001) with increasing DE concentration. Nitrogen retention and daily DE intake increased with DE concentration in pigs fed the restricted amount of feed (P < 0.05). These results indicate that weaning off-site improves pig weight gain. The weanling pig was able to compensate for reduced dietary DE concentration through increased feed intake. Growth limitation in the weanling pig may not be overcome simply by increasing dietary DE concentration.  相似文献   

20.
Five experiments were conducted to determine the effects of different wheat gluten (WG) sources (Source 1 = enzymatically hydrolyzed, Source 2 = nonmodified ring-dried, Source 3 = spray-dried, and Source 4 = flash-dried) on growth performance of nursery pigs compared with soybean meal (SBM), spray-dried animal plasma (SDAP), or other specialty protein sources. In Exp. 1, pigs (n = 220, initially 6.1 +/- 2.5 kg) were fed a control diet containing (as-fed basis) 6% SDAP or WG Source 1 or 2. The WG and l-lysine*HCl replaced 50 or 100% of the SDAP. From d 0 to 21, increasing WG (either source) decreased ADG and ADFI (linear, P < 0.01), but improved (linear, P < 0.02) G:F. In Exp. 2, pigs (n = 252, initially 6.2 +/- 3.0 kg) were fed a negative control diet containing no SDAP or WG, diets containing (as-fed basis) 9% WG Source 1 or 5% SDAP, or combinations of WG and SDAP where WG and l-lysine*HCl replaced 25, 50, or 75% of SDAP. From d 0 to 14, pigs fed increasing WG had decreased ADG (linear, P < 0.05). In Exp. 3, pigs (n = 240, initially 7.0 +/- 2.5 kg) were fed a negative control diet, a diet containing (as-fed basis) either 3, 6, 9, or 12% WG Source 3, or a positive control diet containing 5% SDAP. The diets containing 9% WG and 5% SDAP had the same amount of SBM. From d 0 to 7, pigs fed 5% SDAP had greater (P < 0.04) ADG than pigs fed the diet containing 9% WG. From d 0 to 14, increasing WG had no effect on ADG, ADFI, or G:F. In Exp. 4, pigs (n = 200, initially 6.0 +/- 2.4 kg) were fed a negative control diet, the control diet with (as-fed basis) 4.5 or 9.0% WG Source 1, or the control diet with 2.5 or 5.0% SDAP. Diets containing WG and SDAP had similar SBM levels. From d 0 to 7 and 0 to 14, increasing SDAP tended to improve (linear, P < 0.06) ADG, but increasing WG had no effect. In Exp. 5, 170 barrows and gilts (initially 7.5 +/- 2.8 kg) were used to determine the effects of WG Source 1 and 4 compared with select Menhaden fish meal or spray-dried blood cells and a negative control diet (SBM) on the growth performance of nursery pigs from d 5 to 26 postweaning (d 0 to 21 of experiment). No differences were found in ADG or G:F, but pigs fed the diet containing (as-fed basis) 2.5% spray-dried blood cells had greater ADFI than pigs fed the negative control from d 0 to 21. Wheat gluten source had no effect on ADG, ADFI, or G:F. The results of these studies suggest that increasing WG in diets fed immediately after weaning did not improve growth performance relative to SBM or SDAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号