首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. N. Roy 《Euphytica》1978,27(1):145-149
Summary F1 behaviour and F2 variation in disease reaction were studied in the interspecific cross Brassica juncea x B. napus. Gene(s) for adult resistance to blackleg (Leptosphaeria maculans) were found to be present in the A genome of B. juncea and could be transferred to B. napus. Gene(s) for complete (seedling plus adult) resistance in B. juncea appeared to be located in the B genome. The chance of their transfer to the oilseed rapes (B. napus or B. campestris) would therefore seem to be remote.  相似文献   

2.
Summary Resistance to Leptosphaeria maculans was assessed in Brassica napus, B. juncea, B. carinata, B. nigra and progeny issuing from an interspecific cross B. napus × B. juncea, using a cotyledon-inoculation test. In these individual plants, brassilexin accumulation was determined following an abiotic, non-specific, elicitation. All the tested B. napus cultivars were highly susceptible to the parasite and weakly accumulated brassilexin. In contrast, B. juncea, B. carinata, and B. nigra usually displayed a hypersensitive response to the inoculation and accumulated more brassilexin than B. napus. The same correlation between resistance to L. maculans and phytoalexin accumulation was observed in the interspecific hybrid progeny. The cotyledon-inoculation test allowed the discrimination of plants displaying a hypersensitive response to the inoculation from those highly sensitive to the parasite, but intermediate disease severity classes were not usually representative of resistance or susceptibility. In this respect, brassilexin determination allowed differentiation, within a set of plants presenting an intermediate response to the pathogen, of plants with a high (B. juncea-like), and with a weak (B. napus-like) ability to accumulate brassilexin.Abbreviations IHP interspecific hybrid progeny - JR B. juncea-type complete resistance to blackleg (Roy, 1984) - W&D test cotyledon-inoculation test as described by Williams & Delwiche (1979)  相似文献   

3.
Leptosphaeria maculans causes blackleg disease on Brassica napus, an economically important oilseed crop. Brassica juncea has high resistance to blackleg and is a source for the development of resistant B. napus varieties. To transfer the Rlm6 resistance gene from B. juncea into B. napus, an interspecific cross between B. napus “Topas DH16516” and B. juncea “Forge” was produced, followed by the development of F2 and F3 generations. Sequence characterized amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers linked to the L. maculans resistance gene Rlm6 were developed. Segregation of SCAR and CAPS markers linked to Rlm6 were confirmed by genotyping of F2 and F3 progeny. Segregation of CAPS markers and phenotypes for blackleg disease severity in F2 plants had a Mendelian ratio of 3:1 in resistant vs. susceptible plants, respectively, supporting the assumption that genetic control of resistance was by a single dominant gene. The molecular markers developed in this study, which show linkage with the L. maculans resistance gene Rlm6, would facilitate marker‐assisted backcross breeding in a variety development programme.  相似文献   

4.
C. Dixelius 《Plant Breeding》1999,118(2):151-156
The inheritance of resistance to Leptosphaeria maculans was studied in near-isogenic lines derived from asymmetric somatic hybrids between Brassica napus+Brassica nigra and Brassica napus+Brassica juncea, respectively. The hybrids had been backcrossed to B. napus for seven generations before the genetic segregation of the blackleg resistance was determined. The results of the inheritance studies suggested that one single dominant allele controls the resistance in the Brassica napojuncea line, whereas two independent dominant loci were found in the Brassica naponigra line. Total leaf DNA from the near-isogenic lines was isolated and 89 loci were detected by hybridization to 66 restriction fragment length polymorphism (RFLP) markers previously mapped in the B. nigra genome. Out of the 89 loci, eight loci were detected in the B. naponigra line and six were found in the B. napojuncea line. RFLP markers co-segregating with blackleg resistance in adult leaves were also found. Two markers associated with linkage group 5 and 8, respectively, of the B genome were found in the B. naponigra line and one marker was associated with linkage group 2 in the B. napojuncea line.  相似文献   

5.
This study was conducted to assess the cytoplasm effects of Brassica napus and B. juncea on the some characteristics of B. carinata, as well as the phylogenetic distances separating the three species. Alloplasmic lines of B. carinata were developed from B. napus × B. carinata and B. juncea × B. carinata hybrids by recurrent backcrossing to the BC7 generation. Sixteen populations from three generations were compared for a number of characteristics. Plants with the cytoplasm of B. napus flowered later, had shorter filaments and longer pistils, lower pollen amount, lower seed set, lower petal length and width and different petal color; plants with the cytoplasm of B. juncea had shorter pistils and filaments, and lower petal length and width than their corresponding euplasmic sibs, respectively. The results suggest that the cytoplasm is involved in the development of flower organs. The natural species, B. carinata showed a balance between the nucleus and cytoplasm. The cytoplasm from B. napus showed a stronger disturbing effect than that of B. juncea, suggesting that B. carinata might be genetically closer to B. juncea than to B. napus. The significant difference in the alloplasmic effect of the cytoplasms of B. napus and B. juncea also suggests that in B. carinata the B genome may play a greater role than the C genome. An erratum to this article can be found at  相似文献   

6.
With the aim to transfer Phoma lingam resistance into rape, successful interspecific crosses were made between three oilseed rape varieties (Brassica napus) and the resistant species B. carinata and B. carinata. Although both hybrid types B. napus×B. juncea and B. napus×B. carinata showed the same high level of resistance as the respective resistant parent, the resistance could be only transferred from juncea crosses. After three backcross generations, lines morphologically undistinguishable from rape, fertile, and with a high degree of resistance were obtained. The resistance of B. carinata was practically lost in the first backcross. A possible explanation of this different behavior could be a higher recombination between the genomes B and C (juncea crosses) than between B and A (carinata crosses). The: applied embryo culture increased the yield of hybrids and first backcross plants and reduced considerably the generation time.  相似文献   

7.
Genetic diversity among the 88 entries including eighty F4 derivatives i.e., 20 each selected from Brassica crosses viz., B. juncea × B. napus, B. juncea × B. rapa var. toria, B. juncea ×B. rapa var. yellowsarson and B. tournefortii × B. juncea, and eight parent genotypes was assessed through multivariate analysis (D2 statistic). Significant differences among the family groupsas well as within the family were recorded for all the 14 characters studied. The D2 analysis revealed enormous diversity among the interspecific cross derivatives. The genetic distances calculated among different Brassica species revealed that B. tournefortii had maximumdiversity with B. juncea followed by B. napus, B.rapa var. toria and B. rapa var. yellow sarson.Amongst interspecific crosses, maximum diversity was noticed indescendants of cross B. tournefortii × B. juncea followed byB. juncea × B. napus, B. juncea × B.rapa var. toria and the least in the cross B. juncea ×B. rapa var. yellow sarson. These results indicated that the derivatives selected from cross of diverse parents revealed greater diversity. The clustering pattern showed that many derivatives of the cross fell into the same cluster but in many cases in spite of common ancestry many descendants of the cross spread over different clusters. The characters, namely, plant height, secondary branches per plant, days to flowering and1000-seed weight were contributed maximum towards genetic divergence. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
R. Wang    V. L. Ripley    G. Rakow 《Plant Breeding》2007,126(6):588-595
Pod shatter susceptibility was investigated in Brassica napus germplasm and shatter resistant species of B. juncea and Sinapis alba. The comparisons were made by measuring seed yield in field plots, detached pod rupture energy (RE) and the half‐life of pod‐opening. Pod shatter resistance was significantly greater in B. napus lines derived from interspecific hybridizations of B. napus with B. rapa, B. carinata and B. juncea, than common B. napus cultivars. While these lines exhibited no significant difference in resistance to pod shatter than B. juncea, an entry of S. alba had no yield loss caused by pod shatter. Resistance to pod shatter was characterized in the field as little or no yield loss after full maturity, delayed shattering in time, and stable yield performance under variable climatic conditions during pod maturity. Yield loss caused by pod shatter ranged from a low of 4% for the B. juncea cv. ‘AC Vulcan’ to a high of 61% for the black seeded B. napus line DH12075 in 2‐year field trials after 1 month maturity. Pod shatter resistance was not significantly associated with specific plant and pod morphological traits, except pod length (P = 0.005) in tested materials. Field visual scores of pod shatter through inspections of average pod shatter per plant within plots were highly correlated with plot yield loss. Indoor quantitative evaluations of pod strength using a pendulum machine to measure pod RE and random impact test to measure half‐life of pod‐opening resistance were highly correlated with field yield loss. Multiple evaluations of pod shatter in method and in time after pod maturity are recommended for reliable evaluation of pod shatter resistance.  相似文献   

9.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

10.
A microspore mutagenesis protocol was developed for Brassica rapa, Brassica napus and Brassica juncea for the production of double haploid lines with novel fatty acid profiles in the seed oil. Freshly isolated Brassica microspores were first cultured with ethyl methane sulphonate (EMS) for 1.5 h. The EMS was removed and the microspores were then cultured according to the standard Brassica microspore culture protocol. This protocol was used to generate over 80 000 Brassica haploid/double haploid plants. Field evaluation of B. napus and B. juncea double haploids was conducted between 2000 and 2003. Fatty acid analysis of the B. napus double haploid lines showed that saturated fatty acid proportions ranged from 5.0% to 7.7%. For B. juncea, saturate proportions ranged from 5.4% to 9.5%. Of the 7000 B. rapa lines that were analysed, 197 lines had elevated oleic acid (>55%), 69 lines had reduced α‐linolenic acid (<8%) and 157 lines had low saturated fatty acid proportions (<5%), when compared with the parental lines.  相似文献   

11.
W. Qian  R. Liu  J. Meng 《Euphytica》2003,134(1):9-15
This study was conducted to estimate the genetic effects on biomass yield in the interspecific hybrids between Brassica napus and B. rapa, and to evaluate the relationship between parental genetic diversity and its effect on biomass yield of interspecific hybrids. Six cultivars and lines of oilseed B. napus and 20 cultivars of oilseed B. rapa from different regions of the world were chosen to produce interspecific hybrids using NC design II. Obvious genetic differences between B. rapa and B. napus were detected by RFLP. In addition, Chinese B. rapa and European B. rapa were shown genetically differences. Plant biomass yield from these interspecific hybrids were measured at the end of flowering period. Significant differences were detected among general combining ability (GCA) effects over two years and specific combining ability (SCA) effects differences were detected in 2000. The ratios of mean squares, (σ2 GCA(f) + σ2 GCA(m)) / (σ2 GCA(f) + σ2 GCA(m) + σ2 SCA), were 89% and 88% in 1999 and 2000, respectively. This indicates that both additive effects and non-additive effects contributed to the biomass yield of interspecific hybrids and the former played more important role. Some European B. rapa had significant negative GCA effects while many of Chinese B. rapa had significant positive GCA effects, indicating that Chinese B. rapa may be a valuable source for transferring favorable genes of biomass yield to B. napus. Significant positive correlation between parental genetic distance and biomass yield of interspecific hybrids implies that larger genetic distance results in higher biomass yield for the interspecific hybrids. A way to utilize interspecific heterosis for seed yield was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary The possibilities to transfer important traits and in particular resistance to the beet cyst nematode (Heterodera schachtii, abbrev. BCN) from Raphanus sativus to Brassica napus were investigated. For these studies B. napus, R. sativus, the bridging hybrid ×Brassicoraphanus (Raparadish) as well as offspring of the cross ×Brassicoraphanus (Raparadish) ×B. napus were used. Reciprocal crosses between B. napus and R. sativus were unsuccessful, also with the use of embryo rescue. Crosses between ×Brassicoraphanus as female parent and B. napus resulted in a large number of F1 hybrids, whereas the reciprocal cross yielded mainly matromorphic plants. BC1, BC2 and BC3 plants were obtained from backcrosses with B. napus, which was used as the male parent. F1 hybrids and BC plants showed a large variation for morphology and male and female fertility. Cuttings of some F1 and BC1 plants, obtained from crosses involving resistant plants of ×Brassicoraphanus, were found to possess a level of resistance similar to that of the resistant parent. These results and indications for meiotic pairing between chromosomes of genome R with those of the genomes A and/or C suggest that introgression of the BCN-resistance of Raphanus into B. napus may be achieved.  相似文献   

13.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

14.
Anther culture of two wide hybrids (Diplotaxis erucoides × Brassica campestris) × B. juncea and (D. berthautii × B. campestris) × B. juncea, their CMS lines and the parent species elicited a range of responses highlighting the importance of the genotype. Androgenesis was expressed in cultured anthers of CMS (D. erucoides) B. juncea (22.8%), in restored pollen fertile plants of this CMS line (1.66%), and in the parent, B. juncea cv Pusa Bold (13.02%). AgNO3 was essential for androgenic response in the CMS lines, and it markedly increased the frequency of androgenesis in the cultivated species. Multiple crops of microspore embryos were obtained from responsive anthers of CMS plants in anther recultures. As high as92% microspore embryos of the CMS line germinated on basal B5medium and formed normal plantlets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Genetic information conffering non- shattering of siliques has been introgressed in rapeseed (Brassica napus) following; interspecific hybridization between Brassica juncea and B. napus. A reconstituted B. napus plant with complete non-dehiscence of its fruits was isolated in the BC-, generation. This plant had normal meiosis and formed 19 bivalents. Its seed fertility, however, was low (23 percent). It is suggested that the gene(s) for shattering-resistance were incorporated into a B. oleracea chromosome following allosyndetic; chromosome pairing and. segmental exchange between B. nigra and B. oleracea chromosomes in the initial interspecific AABC hybrid.  相似文献   

16.
Summary Three interspecific crosses made between Brassica juncea and Brassica napus revealed digenic control with epistatic interaction for white rust resistance trait. The investigation also indicated a close association of parental species type and different grades of leaf waxiness with white rust resistance. It is possible to recover waxy or medium waxy juncea types with white rust resistance, though in low frequency. Treatment of hybrid seeds with EDTA and low doses of gamma-rays seem to have little effect on shuffeling of genomes and genes.Abbreviations WR White rust - J Juncea - N Napus - I Intermediate - W Waxy - MW Medium waxy - G Glossy  相似文献   

17.
Transgene introgression from transgenic rapeseed (Brassica napus) to different varieties of Bjuncea was assessed in this study. Crossability between a transgenic rapeseed line Z7B10 (pollen donor) and 80 cultivars of 16 Bjuncea varieties (including two wild accessions) was estimated by artificial pollination in a greenhouse. As a result, interspecific crossability between the transgenic Z7B10 line and the 80 B. juncea cultivars varied considerably, with seeds per flower from 0.00–10.67. Seed germination rates of the interspecific F1 hybrids ranged from 49.0%–89.3%. The estimated frequencies of natural gene flow from the transgenic Z7B10 line to 10 B. juncea cultivars with different uses in the experiment field varied from 0.08% to 0.93%. The natural F1 hybrids were highly sterile, with seeds per silique ranging from 0.27 to 1.03. In addition, seeds per flower of hybrid descendants varied from 0.02 to 0.22 when F1 hybrids were self‐pollinated, and those ranged from 0.03 to 0.30 when F1 hybrids were backcrossed with their corresponding B. juncea parents. Results of this study suggest a low level of transgene introgression from transgenic rapeseed to different B. juncea varieties, which provides a sound scientific basis for the safety management of coexisting transgenic B. napus and B. juncea varieties in China.  相似文献   

18.
B. Saal    H. Brun    I. Glais  D. Struss 《Plant Breeding》2004,123(6):505-511
Screening of 212 spring type Brassica napus lines carrying B genome chromosome additions and introgressions from B. nigra, B. juncea and B. carinata resulted in the identification of one line segregating for resistance to Leptosphaeria maculans (anamorph Phoma lingam) at the seedling (cotyledon) stage. This line was derived from an interspecific hybrid containing the B genome of B. juncea. Trypan blue staining of cotyledons from resistant individuals demonstrated a hypersensitive response which is delayed in plants with intermediate lesion size. Genetic analysis supported the hypothesis of a monogenic recessive inheritance of resistance. The resistance gene, termed rjlm2, is effective in spring and winter type oilseed rape backgrounds against all tested virulent pathotypes, including two isolates which have been shown to overcome two dominant (race‐specific) B genome‐derived resistance genes in B. napus.  相似文献   

19.
D. Struss    U. Bellin  G. Röbbelen 《Plant Breeding》1991,106(3):209-214
By interspecific hybridization within the genus Brassica, trigenomic haploids were produced and back-crossed four times with B. napus, variety ‘Andor’. From this material, monosomic B-genome chromosome addition lines were selected with the extra chromosome derived from three different B-genome sources, i.e., B. nigra (BB), B. carinata (BBCC), and B. juncea (AABB). After selfing and/or microspore culture, disomic addition lines were obtained. Meiotic behavior was studied of the trigenomic hybrids, the pentaploid BC1 plants, and the monosomic addition lines. The addition lines were shown to possess cytological stability and good fertility.  相似文献   

20.
The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号