首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The adoption of polyacrylamide (PAM) in reducing irrigation‐induced erosion in California's San Joaquin Valley has been stymied by the lack of information about its toxicity and environmental fate. A review of the literature was conducted to bring to the forefront knowledge of polyacrylamide, its effectiveness in controlling erosion and its environmental fate. Polyacrylamide is a water‐soluble, high molecular weight synthetic organic polymer that primarily interacts with the clay fraction of soils. The degree of interaction depends on both the properties of the polymer and properties of the soil. It is effective in stabilizing soil aggregates, reducing soil erosion, and increasing water infiltration, and also has an indirect significant impact upon crop growth and yield. For the most part, polyacrylamide is resistant to microbial attack, and its degradation is mainly through physical breakdown. Polyacrylamide has been shown to be non‐toxic to humans, animals, fish, and plants; the only concern has been the toxicity of its residual monomer (acrylamide) content, which is a known neurotoxin to humans. The residual monomer is bio‐degradable and does not accumulate in soils. The major source of acrylamide that is released into the environment if from the use of polyacrylamide products, so the FDA regulates the residual monomer content of PAM used in food contact products. If the acrylamide content is kept to a minimum, PAM itself does not pose any environmental threat, and thus, can be used effectively as a soil conditioner.  相似文献   

2.
Four different polymer/buffer systems (a commercial polymer from Bio-Rad, dextran, poly(ethylene oxide) (PEO), and non-crosslinked poly(acrylamide)) were evaluated for use in sodium dodecyl sulfate capillary electrophoresis (SDS-CE) separations of wheat proteins. These polymers were chosen on the basis of published reports of their use in uncoated or dynamically coated capillaries. Each polymer was optimized (where possible) by manipulating the polymer concentration and buffer concentration, and through the use of organic modifiers such as methanol and ethylene glycol. The addition of ethylene glycol to the separation buffer was found to improve the resolution of the separations, despite dilution of the sieving polymers. When PEO was used as the sieving polymer, however, no improvement was seen when ethylene glycol was added. Despite producing similar separations of molecular mass markers, the polymers did not all produce similar wheat protein separations. The commercial reagent and dextran produced similar separations, while the poly(acrylamide) produced faster separations than either. The poly(acrylamide) displayed much lower resolution in the 40-60 kDa range than the other polymers, though this polymer was able to separate the high molecular mass glutenin subunits (HMM-GS) without the use of added organic solvent. PEO produced much different wheat protein separations than the other polymers, despite similar separations of the molecular weight markers. This may have been due to interaction between the wheat proteins and PEO. Each polymer system also predicted different molecular masses of the various wheat protein fractions separated, with the PEO and poly(acrylamide) grossly overestimating the masses for all protein classes. This could have been due to protein-polymer interactions. Further work was done with the Bio-Rad buffer modified by the addition of ethylene glycol. Several different wheat protein fractions as well as proteins extracted from several different cultivars were separated with this buffer and compared. SDS-CE separations were also compared to SDS-poly(acrylamide) gel electrophoresis (PAGE) and several differences in the migration pattern of HMM-GS were noted.  相似文献   

3.

Purpose  

Environmentally hazardous and health risk substances in animals and humans in the environment have increased as a result of continuing anthropogenic activities. Examples of these activities are food processing, laboratory, food production, industrial, and other relative activities that use various forms of acrylamide. All acrylamide in the environment are manmade. It is the building block for the polymer, polyacrylamide, which is considered to be a nontoxic additive. However, if the polymerization process is not perfect and complete, the polyacrylamide may still contain acrylamide which is toxic and may pose risks and hazards to the environment. Another form of acrylamide that may pose danger as well in the environment is the acrylamide monomer, which is also a very toxic organic substance that could affect the central nervous system of humans and is likely to be carcinogenic. Phytoremediation could be a tool to somehow absorb this neurotoxic agent and lessen the contamination in the soil. This technology could lessen the soil and water contamination by acrylamide thereby limiting the exposure of animals and humans. This study may also help solve the problem of disposing contaminated acrylamide waste materials. This study was conducted to achieve the following objectives: (1) to evaluate phytoremediation potentials of some selected tropical plants in acrylamide-contaminated soil, (2) to compare the performance of tropical plants in absorbing acrylamide through accumulation in their roots and shoots, and (3) to determine the outcome of acrylamide in the soil after treatment using the test plants with phytoremediation potentials.  相似文献   

4.
A recently developed headspace/solid-phase microextraction/gas chromatograph (GC) equipped with a nitrogen-phosphorus detector (NPD) (HS/SPME/GC/NPD) method was used to analyze acrylamide formed in an aqueous polyacrylamide solution (25%) treated by heat or photo-irradiation. Original polyacrylamide contained 0.43 +/- 0.11 microg/mL of acrylamide. When polyacrylamide solution was heated at 70 degrees C for 16 h with 0.5% potassium persulfate, the amount of acrylamide increased to 1.02 +/- 0.11 microg/mL. When polyacrylamide solution was irradiated by UV (lambda = 300 nm) for 16 h with 0.05% 2-anthraquinone sulfate sodium salt, the amount of acrylamide increased to 1.14 +/- 0.54 microg/mL. Polyacrylamide has been used in cosmetic formulations. The present study, therefore, suggests that there is another route of acrylamide exposure to humans in addition to foods and beverages.  相似文献   

5.
Furan and acrylamide are two possible carcinogens commonly found in many thermally processed foods. The possibility of using ionizing radiation to reduce the levels of thermally induced furan and acrylamide in water and selected foods was investigated. Aqueous furan solutions, and foods (frankfurters, sausages, infant sweet potatoes) that contained furan were irradiated to various doses of gamma-rays. Water and oil spiked with acrylamide and potato chips (a known acrylamide-containing food) were also irradiated. In addition, possible irradiation-induced formation of acrylamide in glucose and asparagine solutions was analyzed. Results showed that irradiation at 1.0 kGy destroyed almost all furan in water. In frankfurters, sausages, and infant sweet potatoes, the rate of irradiation-induced destruction of furan was much lower than the rate in water, although significant reductions in furan levels were observed in all foods. Irradiation at 2.5-3.5 kGy, doses that can inactivate 5-log of most common pathogens, reduced furan levels in the food samples by 25-40%. Similarly to furan, acrylamide in water was also sensitive to irradiation. After 1.5 kGy of irradiation, most of the acrylamide was degraded. Irradiation, however, had a very limited effect on acrylamide levels in oil and in potato chips, even at a dose of 10 kGy. No detectable acrylamide was formed in the mixture of asparagine and glucose upon irradiation. These results suggest that a low dose of irradiation easily destroys furan and acrylamide in water. In real foods, however, the reduction of furan was less effective than in water, whereas the reduction in acrylamide was minimal.  相似文献   

6.
Analysis of acrylamide,a carcinogen formed in heated foodstuffs   总被引:55,自引:0,他引:55  
Reaction products (adducts) of acrylamide with N termini of hemoglobin (Hb) are regularly observed in persons without known exposure. The average Hb adduct level measured in Swedish adults is preliminarily estimated to correspond to a daily intake approaching 100 microg of acrylamide. Because this uptake rate could be associated with a considerable cancer risk, it was considered important to identify its origin. It was hypothesized that acrylamide was formed at elevated temperatures in cooking, which was indicated in earlier studies of rats fed fried animal feed. This paper reports the analysis of acrylamide formed during heating of different human foodstuffs. Acrylamide levels in foodstuffs were analyzed by an improved gas chromatographic-mass spectrometric (GC-MS) method after bromination of acrylamide and by a new method for measurement of the underivatized acrylamide by liquid chromatography-mass spectrometry (LC-MS), using the MS/MS mode. For both methods the reproducibility, given as coefficient of variation, was approximately 5%, and the recovery close to 100%. For the GC-MS method the achieved detection level of acrylamide was 5 microg/kg and for the LC-MS/MS method, 10 microg/kg. The analytic values obtained with the LC-MS/MS method were 0.99 (0.95-1.04; 95% confidence interval) of the GC-MS values. The LC-MS/MS method is simpler and preferable for most routine analyses. Taken together, the various analytic data should be considered as proof of the identity of acrylamide. Studies with laboratory-heated foods revealed a temperature dependence of acrylamide formation. Moderate levels of acrylamide (5-50 microg/kg) were measured in heated protein-rich foods and higher contents (150-4000 microg/kg) in carbohydrate-rich foods, such as potato, beetroot, and also certain heated commercial potato products and crispbread. Acrylamide could not be detected in unheated control or boiled foods (<5 microg/kg). Consumption habits indicate that the acrylamide levels in the studied heated foods could lead to a daily intake of a few tens of micrograms.  相似文献   

7.
Acrylamide, a chemical formed during heating of human foods, reacts with N-terminal valine in hemoglobin (Hb) and forms stable reaction products (adducts). These adducts to N-terminal valine in Hb have been used to estimate daily intake of acrylamide. Daily intake of acrylamide estimated from Hb adduct levels was higher than daily intake estimated from dietary questionnaires, possibly indicating other sources of exposures. Therefore, in this study the possible endogenous formation of acrylamide was investigated by treating mice with FeSO 4, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloric acid (MPTP), or methamphetamine (METH). Acrylamide Hb adducts were determined, and a significant increase ( p < 0.05) in acrylamide Hb adduct levels was observed 24 h following treatment with FeSO 4 and 72 h following treatment with MPTP or METH. The results of this study show that acrylamide Hb adduct levels are increased in mice treated with compounds known to induce free radicals, thus suggesting the endogenous production of acrylamide.  相似文献   

8.
Background   Several types of organic polymers with various molecular weights and surface charges are produced for various industrial and agricultural purposes, and recent studies have shown that high molecular weight anionic polymers are the most effective in reducing runoff and soil loss. However, anionic polyacrylamide (PAM) is marketed under various commercial names with variable molecular weight and length according to its chemistry (Barvenik 1994). Consequently, its interactions with soil and efficiency in reducing soil erosion are expected to vary. Moreover, types of PAM other than those recommended for erosion control may also be effective in reducing soil erosion. Objectives   The objective of this research is to test the influence of 9 types of polyacrylamide (PAM) on water infiltration and soil loss of an arid silt loam soil under simulated rainfall conditions. Method  logy. Nine types of organic polymers varied in surface charge, ranging from +20 to –75, and molecular weight ranging from very low to very high were used in this study. Soil plots with dimensions of 60 cm by 120 cm having moderate slope of3 to 5% were constructed in the field and equipped with runoff collection installations. A specific type of PAM was spread on soil plots at a rate of 10 kg/ha. Rainfall was supplied from a drip type rainfall simulator at constant intensity and duration of 80 mm/h and 50 min, respectively. Runoff, infiltration and soil loss were measured for each plot subjected to a specific type of PAM and compared to control plots. Results and Conclusions   Land application of PAMs significantly increased infiltration prior to runoff but had insignificant effect on total infiltration volume and final infiltration rate under the present experimental conditions. Experimental results confirmed that anionic polymers were more effective in reducing soil loss than that of non-ionic or cationic polymers. In fact the cationic, low molecular weight and low surface charge non-ionic PAMs had insignificant effect on soil loss. High molecular weight anionic PAM with 30% surface charge (A-130) was more effective(46% reduction) than those having a high molecular weight and a lower surface charge of 20% (A-110 and A-120) with an aver-age soil loss reduction of 24%. The PAM A-836, described assoil erosion polymer with 20% surface charge and high molecular weight, reduced soil erosion by 41%. Unexpectedly, the anionic PAM with low molecular weight but very high surface charge was also effective in reducing soil loss (47% reduction). Recommendations and Outlook   Land application of PAM improves water infiltration and highly reduces soil erosion thus improving agricultural production. Application of PAM could be the only viable way to improve arid land farming. It seemed that various types of PAMs, other than those specifically produced for erosion protection can be used to combat soil erosion. This means that farmers in poor countries can use any type of PAM that is available to them to improve agricultural production.  相似文献   

9.
聚丙烯酰胺对蚯蚓的毒性效应   总被引:4,自引:1,他引:3  
聚丙烯酰胺作为全球应用最广泛,用量最大的水处理剂,而其排放到环境中可能会对生态环境形成潜在的威胁。该研究在人工土壤条件下,通过急性和亚急性暴露试验研究了聚丙烯酰胺和丙烯酰胺对赤子爱胜蚓存活、生长和繁殖的影响,旨在评价聚丙烯酰胺和丙烯酰胺对蚯蚓的毒性效应。结果表明,聚丙烯酰胺和丙烯酰胺对蚯蚓的半致死剂量分别为大于2000和164.01?mg/kg,聚丙烯酰胺比丙烯酰胺毒性低;在急性和亚急性毒性暴露期内,聚丙烯酰胺对蚯蚓的存活和生长无显著影响;而当丙烯酰胺浓度大于100?mg/kg时即对蚯蚓的存活和生长产生显著的影响(P<0.05)。聚丙烯酰胺和丙烯酰胺均对蚯蚓的繁殖能力有非常显著的影响(P<0.05)。因此残留于污泥中的聚丙烯酰胺对环境有一定的潜在风险。  相似文献   

10.
Consistent evidence suggests that the probable human carcinogen acrylamide is formed in starch-rich foodstuffs through heat-induced interaction of asparagine and reducing sugars during Maillard browning. However, information regarding the influence of processing parameters on acrylamide formation is scarce. We investigated the impact of temperature, heating time, browning level, and surface-to-volume ratio (SVR) on acrylamide generation in fried potatoes. Acrylamide content was determined by liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In potato shapes with low SVR, acrylamide content consistently increased with increasing temperature and processing times. By contrast, in shapes with intermediate to high SVR, maximal acrylamide formation occurred at 160-180 degrees C, while higher temperatures or prolonged processing times caused a decrease of acrylamide levels. Moreover, browning levels were not a reliable measure of acrylamide content in large-surface products.  相似文献   

11.
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.  相似文献   

12.
The use of glycine to limit acrylamide formation during the heating of a potato model system was also found to alter the relative proportions of alkylpyrazines. The addition of glycine increased the quantities of several alkylpyrazines, and labeling studies using [2-13C]glycine showed that those alkylpyrazines which increased in the presence of glycine had at least one 13C-labeled methyl substituent derived from glycine. The distribution of 13C within the pyrazines suggested two pathways by which glycine, and other amino acids, participate in alkylpyrazine formation, and showed the relative contribution of each pathway. Alkylpyrazines that involve glycine in both formation pathways displayed the largest relative increases with glycine addition. The study provided an insight into the sensitivity of alkylpyrazine formation to the amino acid composition in a heated food and demonstrated the importance of those amino acids that are able to contribute an alkyl substituent. This may aid in estimating the impact of amino acid addition on pyrazine formation, when amino acids are added to foods for acrylamide mitigation.  相似文献   

13.
The present study was to demonstrate the efficiency of antioxidant of bamboo leaves (AOB) on the reduction of acrylamide during thermal processing and to summarize the optimal level of AOB applied in potato-based products. Potato crisps and French fries were immersed into different contents of AOB solution, and the frying processing parameters were optimized. The acrylamide content was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sensory evaluation was performed in double blind manner. Our results showed that nearly 74.1% and 76.1% of acrylamide in potato crisps and French fries was reduced when the AOB addition ratio was 0.1% and 0.01% (w/w), respectively. The maximum inhibitory rate was achieved when the immersion time was designed as 60 s. Sensory evaluation results showed that the crispness and flavor of potato crisps and French fries processed by AOB solution had no significant difference compared to normal potato matrixes (P > 0.05) when the AOB addition ratio was <0.5% (w/w). These results suggested that AOB could significantly reduce acrylamide formation in potato-based foods and keep original crispness and flavor of potato matrixes. This study could be regarded as a pioneer contribution on the reduction of acrylamide in various foods by natural antioxidants.  相似文献   

14.
A range of commercially available cereals (mainly rye and wheat) used to manufacture U.K. bakery products were obtained, and the levels of free amino acids and sugars were measured. Selected samples were cooked as flours and doughs to generate acrylamide and the data compared with those obtained from a model system using dough samples that had been additionally fortified with asparagine (Asn) and sugars (glucose, fructose, maltose, and sucrose). In cooked flours and doughs, Asn was the key determinant of acrylamide generation. A significant finding for biscuit and rye flours was that levels of Asn were correlated with fructose and glucose. The results suggest that for these commercial cereals, selection based on low fructose and glucose contents, and hence low asparagine, could be beneficial in reducing acrylamide in products (e.g., crackers and crispbreads) that have no added sugars.  相似文献   

15.
Chemistry, biochemistry, and safety of acrylamide. A review   总被引:34,自引:0,他引:34  
Acrylamide (CH2=CH-CONH2), an industrially produced alpha,beta-unsaturated (conjugated) reactive molecule, is used worldwide to synthesize polyacrylamide. Polyacrylamide has found numerous applications as a soil conditioner, in wastewater treatment, in the cosmetic, paper, and textile industries, and in the laboratory as a solid support for the separation of proteins by electrophoresis. Because of the potential of exposure to acrylamide, effects of acrylamide in cells, tissues, animals, and humans have been extensively studied. Reports that acrylamide is present in foods formed during their processing under conditions that also induce the formation of Maillard browning products heightened interest in the chemistry, biochemistry, and safety of this vinyl compound. Because exposure of humans to acrylamide can come from both external sources and the diet, a need exists to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, this integrated review presents data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: nonfood and food sources; exposure from the environment and the diet; mechanism of formation in food from asparagine and glucose; asparagine-asparaginase relationships; Maillard browning-acrylamide relationships; quenching of protein fluorescence; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; risk assessment; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Further research needs in each of these areas are suggested. Neurotoxicity appears to be the only documented effect of acrylamide in human epidemiological studies; reproductive toxicity, genotoxicity/clastogenicity, and carcinogenicity are potential human health risks on the basis of only animal studies. A better understanding of the chemistry and biology of pure acrylamide in general and its impact in a food matrix in particular can lead to the development of improved food processes to decrease the acrylamide content of the diet.  相似文献   

16.
An in vitro method for preparative‐scale production of artificial glutenin polymers utilizes a controlled environment for the oxidation of glutenin subunits (GS) isolated from wheat flour to achieve high polymerization efficiency. The functionality of in vitro polymers was tested in a 2‐g model dough system and was related to the treatment of the proteins before, during, and after in vitro polymerization. When added as the only polymeric component in a reconstituted model dough (built up from gliadin, water solubles, and starch fractions), in vitro polymers could mimic the behavior of native glutenin, demonstrating properties of dough development and breakdown. Manipulating the high molecular weight (HMW)‐GS to a low molecular weight (LMW)‐GS ratio altered the molecular weight distribution of in vitro polymers. In functional studies using the 2‐g mixograph, simple doughs built up from homopolymers of HMW‐GS were stronger than those using homopolymers of LMW‐GS. These differences may be accounted for, at least in part, by different polymer size distributions. The ability to control the size and composition of glutenin polymers shows the potential of this approach for investigating the effects of glutenin polymer size on dough function and flour end‐use quality.  相似文献   

17.
A repeatable procedure for studying the effects of internal and external factors on acrylamide content in yeast-leavened wheat bread has been developed. The dough contained wheat endosperm flour with a low content of precursors for acrylamide formation (asparagine and reducing sugars), dry yeast, salt, and water. The effects of asparagine and fructose, added to the dough, were studied in an experiment with a full factorial design. More than 99% of the acrylamide was found in the crust. Added asparagine dramatically increased the content of acrylamide in crusts dry matter (from about 80 microg/kg to between 600 and 6000 microg/kg) while added fructose did not influence the content. The effects of temperature and time of baking were studied in another experiment using a circumscribed central composite design. Mainly temperature (above 200 degrees C) but also time increased the acrylamide content in crust dry matter (from below 10 to 1900 microg/kg), and a significant interaction was found between these two factors. When baked at different conditions with the same ingredients, a highly significant relationship (P < 0.001) between color and acrylamide content in crust was found. Added asparagine, however, did not increase color, showing that mainly other amino compounds are involved in the browning reactions.  相似文献   

18.
Linear anionic polyacrylamide (LA-PAM) is being considered as a soil amendment to reduce seepage and infiltration in unlined earthen canals. While polyacrylamides have been extensively used for potable water treatment, dewatering sewage sludge, coal and mine processing, paper manufacturing, and agriculture, little is known about its ecological impact to aquatic ecosystems. Acute toxicity (LC50, 24 and 48 h) and chronic exposure tests (limited and continuous exposures) were conducted on Daphnia magna. In the chronic limited exposure experiments, Daphnia were exposed to LA-PAM for only 24 h whereas for the chronic continuous exposure the concentrations of 0, 0.5, 1, 5, 10, and 100 mg/L were tested and the endpoints of growth, onset to reproduction, fecundity, and mortality were measured for the duration of 32 days. There was no significant difference among the chronic, limitedly exposed organisms. The acute toxicity for LA-PAM was measured at 100, 150, 200, 250, and 300 mg/L. The acute test showed that the LC50 for LA-PAM was at 152 mg/L. Overall in the chronic, continuous exposure test, D. magna was negatively impacted by LA-PAM at levels as low as 1 mg/L. Growth was reduced by 37% and 89% at 1 and 100 mg/L, respectively. Fecundity and onset to reproduction was impaired at 10 and 100 mg/L. Kinematic viscosity ranged from 0.98 cSt at 1 mg/L to 2.9 at 100 mg/L. At these levels, mechanical and physiological impairments due to the viscous properties of LA-PAM are the proposed mechanisms of reduction in the life history traits of D. magna.  相似文献   

19.
Raspberry fruits were harvested at five developmental stages, from green to red ripe, and the changes in cell wall composition, pectin and hemicellulose solubilization, and depolymerization were analyzed. Fruit softening at intermediate stages of ripening was associated with increased pectin solubilization, which occurred without depolymerization. Arabinose was found to be the most abundant noncellulosic neutral sugar in the cell wall and showed dramatic solubilization late in ripening. No changes in pectin molecular size were observed even at the 100% red stage. Subsequently, as fruit became fully ripe a dramatic depolymerization occurred. In contrast, the hemicellulosic fractions showed no significant changes in content or polymer size during ripening. The paper discusses the sequence of events leading to cell wall disassembly in raspberry fruit.  相似文献   

20.
An on-line MS/MS technique was used to study the generation of acrylamide in rye-, wheat-, and potato-based systems during cooking. Acrylamide release to the gas phase was monitored continuously and was correlated with the acrylamide content of samples using a calibration based upon the partition of [1,2,3-(13C3)]acrylamide. On-line results at 180 degrees C were compared with data relating to the same systems obtained through GC-MS analysis. Agreement between the two techniques was notable, both in terms of the temporal profiles of acrylamide generation and when comparing the relative magnitudes of results for potato, wheat, and rye determined by each method. The effects of pH (citric acid) and added amino acids (soy protein hydrolysate) on the generation of acrylamide in hydrated potato flake were modeled at 180 degrees C. It was concluded that a combined treatment of low levels of each additive could result in significant reductions in acrylamide, although the effects of such treatments on sensory properties such as color and flavor remain to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号