首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaculture process waters are often scrutinized for loading phosphorus discharges into surface water. With the growing regulatory control of discharge from aquaculture process industries, it has become very important to address low cost and effective technological solution for aquaculture facilities. This study aims to investigate the effectiveness of alum residuals, which were generated during drinking water treatment for adsorption of phosphorus from aquaculture process water. Alum residuals were dried using an oven at 105 °C for 24 h. Particle size (d60) was similar to conventional adsorbent, granular activated carbon. Bench scale experiments (batch and fixed bed column tests) were conducted using oven dried alum residuals. Fixed bed column tests also looked at the effect of influent pH on the effectiveness of oven dried alum residuals. Experimental results observed phosphorus removal of 94–99% using an alum residuals concentration of 4–16 g/L. Freundlich adsorption isotherm was effective in explaining partitioning among solid and liquid phases. Oven dried alum residuals were a better adsorbent for orthophosphate phosphorus than total phosphorus. Effluent pH levels for both batch and fixed bed column tests were within range of 6–9 for most of the samples tested and therefore, suitable for surface water disposal. There were no effects of pH observed on the breakthrough pore volume processed during fixed bed column test. There was aluminum leaching from oven dried alum residuals, however, not high enough to cause toxicity for aquatic species if disposed in surface water. Oven dried alum residuals were also able to adsorb organic matter from aquaculture process water. The effluent BOD5 was below 30 mg/L for most of the samples with an exception of a few samples where BOD5 was beyond the limit for surface water disposal guidelines. The results indicated that oven dried alum residuals have potential to provide a technological solution for small aquaculture facilities.  相似文献   

2.
Water recirculating systems have been used in the shellfish industry for depuration and wet-storage. Knowledge of shellfish excretion characteristics is critical to recirculating system design. In this study, the excretion rate of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN), and 5-day biochemical oxygen demand (BOD5) from Manila clams (Tapes philippinarum) were investigated under both laboratory and commercial conditions. The laboratory tests were conducted under temperatures ranging from 3 to 30°C. The experimental results showed that temperature was a key factor in determining the excretion rate of all the above parameters. The relationship between TAN excretion rate (RTAN) and temperature (T) can be represented by an exponential function (RTAN=0.57×1.25T). For the temperature range between 3 and 20°C, the daily mean excretion rates of TAN, TKN and BOD5 ranged between 1.5–46.1, 4.8–131.0 and 57.4–219.4 mg per kilogram of the clams (wet weight with shell on), respectively. There were linear correlations between TAN, TKN and BOD5 production rates. The data presented in this paper can be used to estimate waste generation from a given shellfish processing operation and to size the waste treatment components for a recirculating depuration (or wet-storage) system.  相似文献   

3.
This study evaluated wood chips and wheat straw as inexpensive and readily available alternatives to more expensive plastic media for denitrification processes in treating aquaculture wastewaters or other high nitrate waters. Nine 3.8-L laboratory scale reactors (40 cm packed height × 10 cm diameter) were used to compare the performance of wood chips, wheat straw, and Kaldnes plastic media in the removal of nitrate from synthetic aquaculture wastewater. These upflow bioreactors were loaded at a constant flow rate and three influent NO3–N concentrations of 50, 120, and 200 mg/L each for at least 4 weeks, in sequence. These experiments showed that both wood chips and wheat straw produced comparable denitrification rates to the Kaldnes plastic media. As much as 99% of nitrate was removed from the wastewater of 200 mg NO3–N/L influent concentration. Pseudo-steady state denitrification rates for 200 mg NO3–N/L influent concentrations averaged (1360 ± 40) g N/(m3 d) for wood chips, (1360 ± 80) g N/(m3 d) for wheat straw, and (1330 ± 70) g N/(m3 d) for Kaldnes media. These values were not the maximum potential of the reactors as nitrate profiles up through the reactors indicated that nitrate reductions in the lower half of the reactors were more than double the averages for the whole reactor. COD consumption per unit of NO3–N removed was highest with the Kaldnes media (3.41–3.95) compared to wood chips (3.34–3.64) and wheat straw (3.26–3.46). Effluent ammonia concentrations were near zero while nitrites were around 2.0 mg NO2–N/L for all reactor types and loading rates. During the denitrification process, alkalinity and pH increased while the oxidation–reduction potential decreased with nitrate removal.

Wood chips and wheat straw lost 16.2% and 37.7% of their masses, respectively, during the 140-day experiment. There were signs of physical degradation that included discoloration and structural transformation. The carbon to nitrogen ratio of the media also decreased. Both wood chips and wheat straw can be used as filter media for biological denitrification, but time limitations for the life of both materials must be considered.  相似文献   


4.
The technical features of a laboratory scale water recycling unit for experimental small scale tilapia breeding are described. Two units (1 and 2) were operated during a 6 month period, carrying a similar fish load (7·5 kg) and feeding rate (2% fish body weight/day). Unit 1 received natural illumination, while unit 2 was artificially illuminated (14/10 - light/dark cycle). Both units were equipped with a biological filter bed (substrate surface area, 3500 cm2). In unit 1, total ammonium and nitrite concentrations ranged from 0·05 to 0·5 mg liter−1, while nitrate varied between 10–40 mg liter−1. In unit 2 corresponding values were 0·15-3 mg liter−1, 0·05–0·8 mg liter−1 and 10–40 mg liter−1. Temperatures ranged between 20–29°C and pH values between 7·5–6·9 in both units. Dissolved oxygen concentrations decreased gradually from 5·6 to 3·4 mg liter−1 in unit 1 and from 5·6 to 2·6 mg liter−1 in unit 2. Twenty-six spawnings occurred in unit 1 in March and April, while only eight spawnings occurred in unit 2, possibly because of the absence of sunlight. The significance of these results are discussed.  相似文献   

5.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   

6.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


7.
We examined flumequine depletion from muscle plus skin of gilthead seabream held in seawater at 18 and 24 °C. Seven groups of 10 fish each were sampled at intervals ranging from 24 to 168 h after in-feed administration of flumequine at 35 mg/kg/day for 5 days. Muscle plus skin tissue samples were analyzed for flumequine by high-performance liquid chromatography and fluorescence detection (HPLC-SFD). Parent flumequine concentrations declined rapidly from muscle plus skin after dosing with elimination half-lives of t1/2=22.14 and 21.43 h at 18 and 24 °C, respectively. Withdrawal periods for the maximum residue limit (MRL) of 600 μg/kg flumequine in muscle plus skin at 95% tolerance limit were 106.08 and 75.84 h at 18 and 24 °C, respectively, after treatment.  相似文献   

8.
A pharmacokinetic study of oxytetracycline (OTC) following an intravascular administration (40 mg/kg) was carried out in sea bass, Dicentrarchus labrax (110 g), at 13.5 and 22 °C water temperature. Blood, muscle and liver samples were taken at 1, 2, 4, 8, 16, 32, 64 and 128 h post-injection. The plasma data were conformed to a two-compartment model. The kinetic profile of the drug was found to be temperature dependent. The absorption half-life (t1/2) of OTC was 0.98 and 0.192 h at 13.5 and 22 °C, respectively, whereas the elimination half-time (t1/2β) of the drug was 69 h at 13.5 °C and 9.65 h at 22 °C. The apparent volume of distribution of the drug at steady state [Vd(ss)] was 5.62 l/kg at 13.5 °C and 2.59 l/kg at 22 °C. The mean residence time (MRT) of OTC was found to be 37.7 h at 22 °C and 71 h at 13.5 °C. The total clearance of the drug (CLT) was calculated to be 73.5 and 68.7 ml/kg/h at 13.5 and 22 °C, respectively.

Liver levels indicated higher OTC values than respective muscle levels at all time points and for both temperatures. The elimination of OTC from tissues tested was faster at the high temperature, whereas the drug was eliminated faster from liver compared to muscle when comparisons are made at the same temperature.  相似文献   


9.
This study evaluated the effect of low water temperature (10 ± 1 °C) on viral infection and replication of white spot syndrome virus (WSSV) in crayfish, Procambarus clarkii, under standardized conditions. Crayfish were (i) maintained at 24 ± 1 °C before challenge and 10 ± 1 °C afterwards, or (ii) maintained at 10 ± 1 °C before challenge and 24 ± 1 °C afterwards. No mortality was observed when crayfish were held at 10 ± 1 °C after challenge, but mortality reached 100% when they were transferred to 24 ± 1 °C. Competitive PCR showed that viral levels at 10 ± 1 °C rose from 106 to 108 copies/mg of gill tissues, while at 24 ± 1 °C levels increased from 106 to 1010 copies/mg of gill tissues during the same time interval. These results showed that a low water temperature of 10 ± 1 °C could reduce viral replication when compared to 24 ± 1 °C but could not prevent it.  相似文献   

10.
The copper plus zinc superoxide dismutase (Cu, Zn-SOD) was purified from haemolymph of the Oriental river prawn, Macrobrachium nipponense and partially characterized. Partial protein precipitation in crude extract was affected by using heat treatment and (NH4)2SO4 fractionated precipitation methods. Fractionation of superoxide dismutase was performed by DEAE-cellulose 32 ion-exchange chromatography and followed by CM-cellulose cation-exchange chromatography. The molecular weight of it was about 66.1 kDa, as judged by SDS polyacrylamide gel electrophoresis. The enzyme was sensitive to cyanide and H2O2, and contained 1.08 ± 0.14 atom of copper and 0.98 ± 0.11 zinc per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Cu, Zn superoxide dismutase. The purified enzyme had an absorption peak of 269 nm in ultraviolet region and the enzyme remained stable at 25–45 °C within 60 min. But it was rapidly inactivated at higher temperature (50 °C). The activity of purified shrimp Cu, Zn-SOD was remained stable over the range pH 5.8–8.3. Treated with 10 mM mercaptoethanol, the enzyme activity significantly increased. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, ZnCl2, SDS, EDTA–Na2 and 1 mM and 10 mM K2Cr2O7. The results showed that it might be a kind of EC-SOD. And it was the first report of some characterizations of this EC-SOD in M. nipponense.  相似文献   

11.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

12.
The growth potential of wild juvenile Penaeus stylirostris was analyzed in experimental trials using chemical and organic fertilizers and pelleted feed in 0·25 ha earthen ponds. Shrimp were stocked at a low density (1·6 ind/m2). After 103 days, final weight ranged from 9·5 to 26·0 g. The significance of differences in growth response was determined using a reparameterization of the von Bertalanffy growth curve. Maximum growth rates observed in the trials ranged from 0·06 to 0·33 g/day, averaging 0·22 g/day. Maximum rates were related to weight by the equation:
(dw/dt)max=0·034w0·69 r2=0·9,P<0·05

Pelleted feed produced best growth, chemical fertilizers were acceptable, and organic fertilizers gave poor results. The high growth potential of the species stimulates future research in order to adapt a culture technology to the semi-arid conditions of northwest México, where the species is indigenous.  相似文献   


13.
The packed column aerator (PCA) is a highly efficient aerator that can be used for oxygen and nitrogen + argon removal. Standard transfer efficiencies (N0) for oxygen range from 1·5 to 2·0 kg O2/kWh. If 1–2 m of hydraulic head is available, N0 can be as high as 80 kg O2/kWh. A mass transfer model was developed for design purposes. Recommended design parameters and procedures are presented for full-scale PCA.  相似文献   

14.
A procedure for the calculation of pH in fresh and salt waters has been developed. The method is based on a fourth-order polynomial relationship between hydrogen ion concentration and other (conservative) water quality parameters. The method avoids trial and error estimations and results in a direct calculation procedure that can be implemented in models developed in various modeling environments, such as spreadsheets, conventional programming languages (BASIC, C, FORTRAN, PASCAL, etc.) or specialized modeling languages (Extend, Stella).

The method developed is based on the solution of the full alkalinity-pH equation. Because of the need for simplification of the equations to yield explicitly solvable polynomial equations, the accuracy of the solutions depends on the simplification made and varies with water properties. Three simplifications are tested based on a second-, a third-and a fourth-order polynomial equation for hydrogen ion concentrations. the equations have been tested for salinities ranging from 0 to 35‰ (fresh to sea water), for temperatures ranging from 0 to 35°C, for total carbonate carbon concentrations of 0·1 and 5·0 mmol/liter, and for total ammonia nitrogen concentrations of 0 and 10 mg/liter. Approximations are most accurate in waters of high total carbonate carbon and low ammonia concentrations, where the fourth-order approximation yields results that are within 0.05 pH units for the full range of pH values tested (5–10).  相似文献   


15.
This study evaluates the risk posed by selected organic pollutants on the culture of the marine mussel in the Galician coast (NW Iberian Peninsula), which depends on collection of natural seed in densely populated coastal areas. With this aim toxicity tests were carried out with embryos of the Mytilus galloprovincialis mussel, and the toxicity of the surfactant sodium dodecyl sulphate (SDS) and the biocides TBT, chlorpyrifos and lindane was quantified in terms of median effective concentration (EC50) and toxicity threshold (EC10 and LOEC), using embryogenesis success as end point. The EC10 and EC50 values were 161 and 377 ng/L for TBT, 79 and 154 µg/L for chlorpyrifos, 495 and 2353 µg/L for SDS, 1.41 and 1.99 mg/L for lindane. Toxicity thresholds for mussel embryos from this study and crustacean larvae from the literature were compared to environmental concentrations in coastal waters, either directly measured or estimated from mussel bioaccumulation data, in an attempt to evaluate the risk posed by those pollutants to these commercial species. It was concluded that SDS and, especially, chlorpyrifos and lindane, do not pose a threat to these commercial resources. In contrast, TBT risk quotients derived either from actual seawater measurements or mussel bioaccumulation data were both unacceptably high. TBT pollution represents thus a potential threat to natural availability of spat, the basis of extensive mussel culture. At the light of the data presented, current TBT seawater quality criterion seems underprotective and it should be revised.  相似文献   

16.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

17.
Experiments on short-term preservation of sperm were performed with Atlantic salmon (Salmo salar). Fertility was maintained for up to 10 days when 2 mm thick samples were stored at 0° C under an oxygen atmosphere in the presence of antibiotics (125 IU penicillin and 125 μg streptomycin per ml sperm). Fertility was completely lost after 24 days. Sperm stored without antibiotics fertilized 100% of eggs after 6 days.

Cryopreservation was carried out with milt from Atlantic salmon and sea trout (Salmo trutta). Semen mixed with extender was frozen on dry ice (pellets) with subsequent storage in liquid nitrogen. Sperm pellets were thawed in a 0.12-M NaHCO3-solution (10° C) before insemination. The suitability of an extender as previously described by Stoss and Holtz and of a 0.3-M glucose solution with the addition of 10% DMSO, was tested on two different batches of sperm and eggs in Atlantic salmon and sea trout. In addition, the extender earlier reported by Mounib and an aqueous solution of 10% DMSO were only used in Atlantic salmon with one batch of gametes.

Insemination with cryopreserved Atlantic salmon sperm resulted in 36 to 91.3% eyed eggs (control = 100). The differences were caused by the type of extender and the batch of gametes employed. The very simple extender consisting of 0.3 M glucose and 10% DMSO only was the most successful. Results with cryopreserved sea trout sperm ranged between 38.6–54.8% eyed eggs, showing no difference between treatments.  相似文献   


18.
White shrimp Litopenaeus vannamei held in 25‰ seawater at 27 °C or 28 °C were injected with TSB-grown Vibrio alginolyticus at 1 × 104 colony-forming units (cfu) shrimp− 1 or 1 × 105 cfu shrimp− 1, and then cultivated onward at water temperatures varying from 20 to 34 °C. Over 24–144 h, mortality of V. alginolyticus-injected shrimp held at 34 °C or 32 °C was significantly higher than that of shrimp held at lower temperatures. In a separate experiment, shrimp held in 25‰ seawater at 28 °C and then cultured onward at 20 to 32 °C were examined for immune parameters at 24–96 h. THC, phenoloxidase activity, respiratory burst, and SOD activity decreased significantly at 24 h after transfer to 32 °C. Shrimp held in 25‰ seawater at 27 °C and then cultured onward at 20 to 34 °C showed a significant reduction in phagocytic activity and clearance efficiency for V. alginolyticus at 24 h after transfer to 34 °C. It was concluded that transfer of shrimp from 27 or 28 °C to higher temperatures (32 and 34 °C) reduced their immune capability and decreased resistance to V. alginolyticus infection.  相似文献   

19.
Atlantic salmon (Salmo salar L.) postsmolts (0.17–0.26 kg) were exposed to four different levels of carbon dioxide partial pressure for 43 days in an open flow system: 0.6 mm Hg (control), 4.9 mm Hg (low), 12 mm Hg (medium), and 20 mm Hg (high). The water temperature was 15–16°C and the salinity 34‰. In the low carbon dioxide group (PCO2=4.9 mm Hg; 10.6 mg/l), no significant differences were found in blood parameters (haematocrit, plasma chloride and plasma sodium) or in growth parameters (weight, length and condition factor) when compared to the control group. After 43 days, the mean plasma chloride concentration for the medium group (PCO2=12 mm Hg; 26 mg/l) was significantly reduced, while weight and condition factor were slightly, although not significantly, lowered. For the high carbon dioxide group (PCO2=20 mm Hg; 44 mg/l) plasma sodium and plasma pH were significantly increased and plasma chloride, oxygen consumption, weight, length and condition factor were significantly reduced at the end of exposure. There was no mortality in the control group or in the low carbon dioxide group. The mortalities in the medium and high carbon dioxide groups were 1.1 and 4.3%, respectively. Nephrocalsinosis was not observed in any of the groups. The results of the present investigation indicate that the CO2 concentration of the low group may represent a safe level for Atlantic salmon postsmolts when the temperature is 15–16°C and the oxygen level is 6–7 mg/l. Further studies are required.  相似文献   

20.
The oxygen consumption of Atlantic salmon was measured in large culture tanks for a period of 20 months from the parr to the adult stage. In addition, diurnal sampling was conducted for estimation of both oxygen consumption and ammonia excretion. The oxygen consumption was affected especially by temperature, season and smoltification. For parr the oxygen consumption rate was 1–6 mg O2/kg min and the ammonia excretion rate was 0·037–0·13 mg N/kg min from autumn to spring. The corresponding rates for adult salmon during the period October to July were 1·5–4·5 mg O2/kg min and 0·075–0·13 mg N/kg min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号