首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A feeding experiment was conducted to evaluate the effect of rotifers (Brachionus plicatilis) and Artemia sp. enriched differently on early growth, survival and lipid class composition of Atlantic cod larvae (Gadus morhua). Rotifers enrichments tested were: (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) a combination of Pavlova sp. paste and AlgaMac 2000®. The same treatments were tested with Artemia as well as a combination of DC DHA Selco® and AlgaMac 2000® as a fourth treatment. After rotifer feeding, the larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw)] were significantly heavier than larvae from treatment 2 (1.03 ± 0.04 mg dw). After feeding Artemia, the larvae from treatment 1 were significantly heavier (12.06 ± 2.54 mg dw) than those from treatments 3 (6.5 ± 0.73 mg dw) and 4 (5.31 ± 1.01 mg dw). Treatment 3 resulted in the best survival through the 59 days of larviculture. After rotifer feeding, high larval concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA) and ω6 docosapentaenoic acid (ω6DPA) could be linked to better larval growth and survival while after feeding Artemia, high larval DHA/EPA ratios (~3) and high DPA/AA ratios (>1) could be linked to better survival.  相似文献   

2.
We evaluated the effect of differently enriched rotifers on the early growth, survival and lipid composition of Atlantic cod larvae (Gadus morhua). The enrichments tested were: (i) AlgaMac 2000®; (ii) AquaGrow® Advantage; and (iii) a combination of Pavlova sp. paste and AlgaMac 2000®. Larvae from treatment 3 [1.50 ± 0.11 mg dry weight (dw) and 7.10 ± 0.14 dw specific growth rate (SGR)] were heavier (P = 0.006) and grew faster (P = 0.004) than larvae from treatment 2 (1.03 ± 0.04 mg dw and 6.29 ± 0.04 dw SGR). No significant differences were found in the final weight and SGR among larvae from treatment 1 (1.21 ± 0.07 mg dw and 6.58 ± 0.20 dw SGR) and larvae from treatments 2 and 3. The treatment 3 also resulted in the best survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 1–2. Larvae from the treatment 3 reached 37 days posthatch with levels of ω6DPA 32‐fold higher than newly hatched larvae. Differences in the larval enrichment of ω6DPA may explain the differences in growth and survival of the Atlantic cod larvae.  相似文献   

3.
The weaning phase can be decisive in fish-culture viability. In this work, the relationship between the initial size and weaning success has been studied in wedge sole (Dicologoglossa cuneata). For each age (30, 50, and 70 days after hatching, DAH), two to three sizes were selected, and all were put on the same feeding schedule for 20 days. Each batch (three replicates) was sampled at 1, 10, and 20 days. Specific growth rate (SGR) and survival were compared at the end of the co-feeding period, after 10 days on dry feed only. The best results for survival and growth were found with the smallest larvae, and vice versa. The SGRs and survival rates recorded during the co-feeding period were higher (0.8–15.6 day−1 and 68.3–97.8%) than those from the dry-food phase (0.9–4.7 day−1 and 56.3–66.7%). Successful weaning (survival = 65% and SGR = 9.3 day−1) is possible with 30 DAH larvae (7.6–8.1 mm and 3.9–4.6 mg). In conclusion, the most effective weaning would be possible at 30 DAH, implying significant Artemia savings (25–50%).  相似文献   

4.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

5.
We evaluated the effects of enriched rotifers on growth, survival and on the lipid composition of haddock larvae. The treatments tested were (1) AlgaMac 2000®, (2) AquaGrow® Advantage and (3) Pavlova sp. paste and AlgaMac 2000®. The treatments did not influence larval growth rate throughout the experimental period (P = 0.70). Larvae from all treatments grew approximately 8% of their dry weight per day between 1 and 29 days post hatch (dph). Treatment 3 resulted in the best survival, estimated to be 3 on a scale from 0 to 5, whereas for the two other groups the survival estimates were 0 and 2. Rotifers from treatment 1 had low sterol concentrations, high eicosapentaenoic acid/arachidonic acid ratio and their feeding resulted in high larval mortality. Rotifers enriched with Pavlova sp. had the lowest proportions of the sum of saturated fatty acids, docosahexaenoic acid and sum of ω3 and the highest proportions of the sum of monounsaturated fatty acids (ΣMUFA). This was partially reflected in larvae from treatment 3 in that they had the highest proportions of ΣMUFA and the lowest proportions of Σω3 (P < 0.0001 for both analyses). In addition, these larvae had the highest and lowest ΣC20 and ΣC22 polyunsaturated fatty acids (PUFA) respectively (P < 0.0001 for both analyses). We suggest that more research with ω3 and ω6 PUFA can lead to improvements in the rearing of haddock larvae produced in hatcheries.  相似文献   

6.
Enrichment of Artemia nauplii with a known probiotic yeast Saccharomyces boulardii (SB) and its role in enhancing resistance against the pathogen Vibrio harveyi was investigated. SB was cultured, then fed to instar II Artemia nauplii in three different treatments; 102 (T1), 103 (T2) and 104 (T3) colony forming units (CFU) per ml in triplicate. The algae Nanochloropsis sp. was used as control diet. Survival and total count of CFU nauplii−1 was observed on different media (Sabouraud, for enumerating yeasts, thiosulphate citrate bile salts sucrose, for enumerating Vibrio and seawater agar, for enumerating total aerobic flora) for each replication. Enhanced survival of nauplii was observed in treatments as compared to control. Results indicated that enrichment of SB in Artemia nauplii proceeded in a linear fashion, and up to 3500 CFU of SB could be detected in one nauplii at 104 CFU ml−1 treatment. No conclusive trend could be observed in the count of Vibrio and total aerobic flora due to treatment. Enriched nauplii were then challenged with the pathogen V. harveyi for 24 and 48 h at a concentration of 6.1 × 106 CFU ml−1. The survival counts at 48 h showed that the resistance of the nauplii was significantly (P < 0.01) improved in those fed with 104 CFU  ml−1 SB (90% survival rate after 48 h of challenge versus less than 40% for the infected control group without SB and treatments T1 and T2). This study shows that SB, which has been used for the first time in an aquatic live feed organism, has a profound beneficial effect on the nauplii by increasing its resistance to a pathogenic Vibrio infection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The free-living nematode, Panagrellus redivivus, was tested as live food for grouper Epinephelus coioides larvae during the first feeding stage. A series of experiments were conducted to determine the acceptability of the free-living nematodes in grouper larvae at first feeding, the optimum nematode density and the response of the larvae to nutritionally enriched nematode. All experiments were conducted in 200-L conical tanks filled with 150-L filtered seawater and stocked at 15 larvae L−1. Duration of feeding experiments was up to day 21 (experiment 1) and 14 days (experiment 2 and 3). Brachionus plicatilis and Artemia (experiment 1) and Brachionus plicatilis alone (experiment 2 & 3) was used as the control treatment. Observations indicated that the grouper larvae readily fed on free-living nematodes as early as 3 days posthatching, the start of exogenous feeding. Optimum feeding density for the larvae was 75 nematodes ml−1. The enrichment of cod liver oil or sunflower oil influenced the total lipids and n-3 highly unsaturated fatty acids of P. redivivus, which in turn influenced those of the grouper larvae, however, growth and survival of the larvae were not affected (P > 0.05). The results from this investigation showed that the nematode, P. redivivus, can be used as first live food for grouper larvae from the onset of exogenous feeding until they could feed on Artemia nauplii.  相似文献   

8.
An 8 weeks growth study was conducted to estimate the optimal feeding rate for juvenile grass carp (3.08±0.03 g, mean ± SD). Fish were fed with a casein purified diet (360 g protein, 56 g lipid and 3000 kcal total energy/kg dry diet) at six feeding rates: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5% body weight per day (BW d−1). Each feeding rate was randomly assigned to three tanks of fish with 30 fish per tank (50W × 50H × 100L, cm). Fish were maintained in recirculating systems at a water temperature of 24.97±2.23 °C and were fed four times per day. After 2 weeks, fish fed on 3.5% BW d−1 could not finish the diet and this treatment was cut-off. Analysis of variance showed that growth performance was significantly (p<0.05) affected by different feeding rates. The nutrient compositions of whole body, muscle and liver were also significantly different among treatments. The body weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), apparent digestibility coefficiency (ADC), retention of protein (PR), mesenteric fat index, body moisture and protein content were significantly (p<0.05) affected by feeding rate. The WG, SGR and digestion rate were highest at 2% BW d−1, although the FE and PER decreased with increasing feeding rate. Broken line analysis on specific growth rate indicated that the optimum feeding rate of juvenile grass carp is 1.97% body weight day−1.  相似文献   

9.
After artificial reproduction of tench, larvae must be maintained indoors, and studies on rearing conditions are needed, focussing on the reduction of labour and costs. Three experiments on larvae (5th day post-hatch) were conducted for 25 days using Artemia nauplii as the sole food in order to determine basic feeding and density conditions during the first rearing period. Tench were maintained in 25 l fibreglass tanks, supplied with an artesian water flow throughout of 0.2 l min−1. Water temperature was 22.5 ± 1°C, and the photoperiod was natural. Larvae fed on a restricted amount of nauplii reached high survival rates, even with the minimum of 50 nauplii larva−1 day−1. This amount of food may be sufficient at least for the first 25 days of exogenous feeding if fast growth is not the priority, and high densities can be maintained with good survival rates (over 90% up to 160 larvae l−1 and 77% with 320 larvae l−1). When food was supplied in excess once a day, high survival rates were achieved (91–97%), without differences among the densities tested. Animals at a density of 100 l−1 reached the highest length (15.57 mm) and individual weight (46.8 mg). This growth is greater than those reported in studies feeding several times a day. It could be deduced that, while live food remains available for tench, it is not necessary to feed so frequently. Considering the relationship among the initial number of animals, final survival and growth and ration supplied, the new data reported here are useful to establish suitable stocking densities under both culture and experimental conditions.  相似文献   

10.
This study was carried out to investigate the suitability of Artemia enriched with docosahexaenoic acid (DHA) and choline as live food on the growth and survival rate of the Pacific bluefin tuna (PBT; Thunnus orientalis) larvae. The PBT larvae were fed either Artemia enriched with oleic acid (Diet 1), DHA (Diet 2), DHA+choline 1.0 mg L?1 (Diet 3) and DHA+choline 2.0 mg L?1 (Diet 4) or striped knifejaw larvae (Diet 5, reference diet), in duplicate for 12 days. Enrichment of Artemia with DHA significantly increased the DHA levels to 13.9, 13.8 and 12.5 mg g?1 on a dry matter basis in Diets 2, 3 and 4 respectively; however, the levels were significantly lower than the reference diet (26.9 mg g?1 dry matter basis; Diet 5). Although growth and survival rate were significantly improved by the enrichment of Artemia with DHA and choline, the improvement was negligible compared with the enhanced growth and survival rate of the fish larvae‐fed group (P<0.05). The results demonstrated that enriched Artemia does not seem to be the right choice to feed the PBT larvae perhaps because of the difficulties in achieving the correct balance of fatty acid with higher DHA/EPA from Artemia nauplii.  相似文献   

11.
One of the major problems in the shrimp culture industry is the difficulty in producing high-quality shrimp larvae. In larviculture, quality feeds containing a high content of highly unsaturated fatty acids (HUFA) and ingredients that stimulate stress and disease resistance are essential to produce healthy shrimp larvae. In the present study, Penaeus monodon postlarvae (PL15) were fed for 25 days on an unenriched Artemia diet (control; A) or on a diet of Artemia enriched with either HUFA-rich liver oil of the trash fish Odonus niger (B), probionts [Lactobacillus acidophilus (C1) or yeast-Saccharomyces cerevisiae (C2)] or biomedicinal herbal products (D) that have anti-stress, growth-promoting and anti-microbial characteristics. P. monodon postlarvae fed unenriched Artemia exhibited the lowest weight gain (227.9 ± 8.30 mg) and specific growth rate (9.95 ± 0.05%), while those fed the HUFA-enriched Artemia (B) exhibited the highest weight gain and specific growth rate (362.34 ± 12.56 mg and 11.77 ± 0.08%, respectively). At the end of the 25-day rearing experiment, the shrimp postlarvae (PL40) were subjected to a salinity stress study. At both low and high (0 and 50‰) salinities, the group fed the control diet (A) experienced the highest cumulative mortality indices (CMI) 935.7 ± 2.1 and 1270.7 ± 3.1, respectively. Those fed diet D showed the lowest stress-induced mortality, and CMI were reduced by 31.1 and 32.3% under conditions of low and high salinity stress, respectively. A 10-day disease challenge test was conducted with the P. monodon postlarvae (PL40–PL50) by inoculating the shrimp with the pathogen Vibrio harveyi at the rate of 105–107 CFU/ml in all rearing tanks. P. monodon postlarvae fed probiont-encapsulated Artemia diets (C1 and C2) exhibited the highest survival (94.3 and 82.3%, respectively) and lowest pathogen load (V. harveyi) in hepatopancreas (5.2 × 102 ± 9.0 × 10 and 4.6 × 102 ± 9.0 × 10 CFU g−1, respectively) and muscle (2.0 × 102 ± 6 × 10 and 1.7 × 102 ± 8.6 × 10 CFU g−1, respectively) tissues. The shrimp that were fed the unenriched Artemia (Control; A) showed the lowest survival (26.33%) and highest bacterial load in the hepatopancreas (1.0 × 105 ± 5 × 103 CFU g−1) and muscle (3.6 × 104 ± 6 × 102 CFU g−1). The shrimp fed the herbal product (D)-enriched Artemia also exhibited enhanced survival and reduced V. harveyi load in the tissues tested compared to the control diet (A) group. The results are discussed in terms of developing a quality larval feed to produce healthy shrimp larvae.  相似文献   

12.
The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L−1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0–6% showed improved growth and survival from first feeding through metamorphic stages.  相似文献   

13.
Broodstock maturation diets are an important component of shrimp hatchery management, since the nutritional status of spawners can impact on gonadal maturation, egg fecundity, embryo hatchability and overall larval quality. The ability to manipulate the biochemical composition of Artemia to deliver key nutrients to cultured animals has rendered their inclusion in broodstock feeds increasingly common. Lipid enrichment of Artemia to boost their highly unsaturated fatty acid (HUFA) content is a standard procedure. During this study, frozen, lipid-enriched adult Artemia were fed to Lysmata amboinensis broodstock to investigate the suitability of Artemia as maturation diet for the species and elucidate the role of essential fatty acids (EFAs) in the reproductive performance of the shrimp. Four lipid enrichment levels, un-enriched (“unenr”), 1/3 enriched (“1/3 enr”), 2/3 enriched (“2/3 enr”) and enriched (“enr”) Artemia, were fed to L. amboinensis over three reproductive cycles. Spawning and egg mass retention during the incubation period were high for all diets. Larval production varied, however, and was significantly greater (P < 0.001) for L. amboinensis broodstock fed the “enr” Artemia compared with the other treatments, with a mean 529 (±76.76) larvae, as opposed to 49 (±11.16) recorded for the “unenr”. The increased larval production was attributed to better embryo hatchability and related to an increased docosahexaenoic (DHA) dietary content of 11% (in total FAs) and a DHA/eicosapentaenoic (EPA) ratio of 3.6. The roles of other EFAs are also discussed.  相似文献   

14.
Growth of juvenile giant tiger prawn, Penaeus monodon Fabricius, was evaluated at an aquarium-scale in co-culture with a discarded filamentous seaweed, Chaetomorpha ligustica (Kützing) Kützing. Juveniles at different ages in days were examined, designated as J 16, J 44, J 58, J 93 and J 128, where a 1-day-old juvenile (J 1) is equivalent to a 20-day-old post-larva (PL 20)). Juveniles at every age group grazed directly on live C. ligustica, even those fed an artificial shrimp diet to satiation. Mean specific growth rate (SGR: % day−1) was higher in early age juveniles. Compared to mono-culture, significant differences in growth were observed at J 16 (4.44% day−1) and J 44 (1.60% day−1); however, no significant differences were recorded at J 58 (1.16% day−1), J 93 (0.75% day−1) or J 128 (0.45% day−1). It was concluded that co-culture of giant tiger prawn with C. ligustica has a dietary advantage, especially in early age juveniles.  相似文献   

15.
Culture performance beyond metamorphosis of larval loach (Misgurnus anguillicaudatus) was examined in a feeding experiment of the early development stage (20 days after hatch; DAH). Total length, dry weight, length- and weight-specific growth rate (SGR) and survival were monitored in different diet regimes. During 20 days, diet treatments included: microparticle diets (A); live daphnia (Moina micrura) (B); live daphnia plus live chlorella (Chlorella pyrenoidosa) (C); and live daphnia plus microparticle diets (D). Fish survival rates during 20 days were 21.23 ± 4.2% (A), 73.19 ± 2.8% (B), 90.76 ± 3% (C) and 91.46 ± 3.1% (D), respectively. Length- and weight-specific growth rate after 20 DAH (final mean SGR; % day−1) were 5.36 ± 0.44 and 15.75 ± 1.52 (A), 9.29 ± 1.25 and 23.47 ± 2.23 (B), 9.42 ± 1.55 and 24.88 ± 2.9 (C) and 9.55 ± 1.23 and 24.40 ± 2.75 (D), respectively. Fish in treatments B, C and D displayed higher growth rates and were significantly longer and heavier than fish in treatment A by the end of the experiment (Ρ < 0.05). Fish in treatment A had highly significant greater (Ρ < 0.001) mortalities than in treatments B, C and D. There were no significant differences in any growth parameter between fish in treatments B, C and D, but the survivals in treatments C and D (90.76% and 91.46%) were significantly higher than in treatment B (73.19%, Ρ < 0.05). The results demonstrated that enriched prey and co-feeding may serve as a potential feeding strategy for loach larvae, and the form of co-feeding reduces the costs and dependence on live foods to a certain extent. We concluded that larval loach should be reared over metamorphosis using either of the following methods: feed with live daphnia supplemented with microparticle diets or with live chlorella. However, a prolonged rearing period of loach larvae is needed to detect nutritional problems and observe remote effects of co-feeding on weaning in the future.  相似文献   

16.
The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis) and Artemia, enriched and stored at 4°C temperature, were determined. The total starvation period was 16 h and samples were taken at the end of the 8th and 16th hours. In present study, the rotifer and nauplii catabolized a large proportion of the protein during the enrichment period. Lipid contents of both live preys increased during the enrichment period and decreased in nauplii and metanauplii throughout the starvation period but lipid content of the rotifer remained relatively constant during the starvation period. The changes observed in the amino acid compositions of Artemia and the rotifer were statistically significant (P < 0.05). The conspicuous decline the essential amino acid (EAA) and nonessential amino acid (NEAA) content of the rotifer was observed during the enrichment period. However, the essential amino acid (EAA) and nonessential amino acid (NEAA) contents of Artemia nauplii increased during the enrichment period. The unenriched and enriched rotifers contained more monounsaturated fatty acid (MUFAs) than polyunsaturated fatty acid (PUFAs) and saturated fatty acids (SFA). However, Artemia contained more PUFAs than MUFAs and SFA during the experimental period. A sharp increase in the amounts of docosahexaenoic acid (DHA) during the enrichment of the rotifer and Artemia nauplii was observed. However, the amount of DHA throughout the starvation period decreased in Artemia metanauplii but not in Artemia nauplii. Significant differences in tryptic, leucine aminopeptidase N (LAP), and alkaline phosphatase (AP) enzyme activities of Artemia and rotifer were observed during the enrichment and starvation period (P < 0.05). The digestive enzymes derived from live food to fish larvae provided the highest contribution at the end of the enrichment period. In conclusion, the results of the study provide important contributions to determine the most suitable live food offering time for marine fish larvae. Rotifer should be offered to fish larvae at the end of the enrichment period, Artemia nauplii just after hatching and before being stored at 4°C, and Artemia metanauplii at the end of the enrichment and throughout the starvation period.  相似文献   

17.
The effects of ration levels on growth, conversion efficiencies and body composition of fingerling Heteropneustes fossilis (6.8 ± 0.04 cm, 5.0 ± 0.02 g) were studied by feeding isonitrogenous (40% crude protein) and isocaloric (19.06 MJ kg−1 gross energy) diets representing 1, 3, 5, 7 and 9% of the body weight (BW) day−1 to triplicate groups of fish . Growth performance of the fish fed at the various ration levels was evaluated on the basis of live weight gain percentage (LWG%), feed conversion ratio (FCR), specific growth rate percentage (SGR%), protein retention efficiency (PRE%) and energy retention efficiency (ERE%) data. Maximum LWG% and SGR were obtained at a feeding rate of 7% BW day−1, whereas best FCR (1.6), PRE% and ERE% were recorded at a feeding rate of 5% BW day−1. Maximum body protein was also obtained for the group receiving the diet representing 5% of their body weight. However, a linear increase in fat content was noted with the increase in ration levels up to 7% BW day−1. The SGR, FCR, PRE and ERE data were also analyzed using second-degree polynomial regression analysis to obtain more precise information on ration level, with the results showing that the optimal ration for these parameters was 6.8, 6.1, 5.9 and 6.2% BW day−1, respectively. Based on the above second-degree polynomial regression analysis, the optimum ration level for better growth, conversion efficiencies and body composition of fingerling H. fossilis was found to be in the range of 5.9–6.8% of the BW day−1, corresponding to 2.36–2.72 g protein and 88.20–101.66 MJ digestible energy kg−1 diet day−1.  相似文献   

18.
In experimental culture conditions in tanks, the effect of weight (W: 11–452 g) and temperature (T: 14–29°C) on the growth rate (SGR, % bw day−1) and maximum daily food intake (SFR, % bw day−1) in sharpsnout sea bream (Diplodus puntazzo) was studied. The possible combined effect of both independent variables (W and T) was also analyzed by multiple regression analysis, fitting the data to the equation Ln Y = Ln a + b Ln W + cT + dT 2 + eT Ln W. Both SGR and SFR, and therefore feed efficiency (FE = SGR/SFR), were significantly influenced by the interaction between temperature and weight and may be expressed by means of the following equations: Ln SGR = −6.1705 + 0.5809T − 0.0087T 2 − 0.0249T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.949; ANOVA P < 0.0001); Ln SFR = −4.8257 + 0.4425T − 0.0063T 2 − 0.0163T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.964; ANOVA P < 0.0001).The results suggest that the optimum temperature for SGR and FE (T SGRopt and T FEopt), and the temperature at which the maximum SFR (T SFRmax) is reached, decreases with body weight, in accordance with the equations: T SGRopt = 33.297 − 1.435 Ln W; T FEopt = 29.332 − 1.890 Ln W; and T SFRmax = 34.941 − 1.304 Ln W, respectively. In this way, T SGRopt is 28.4, 26.7, and 24.7°C; T SFRmax is 30.5, 28.9, and 27.1°C and T FEopt is 22.9, 20.6, and 18°C for 30, 100 and 400 g body weight, respectively.  相似文献   

19.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

20.
Replicated groups of Atlantic cod were rearedfor up to 40 days in 100 l tanks stocked at adensity of 75 eggs l–1. Larvae weretransferred from rotifers, Brachionusplicatilis, to either fresh-hatched orenriched Artemia nauplii on each of days5, 15 and 25 post-hatch (ph). Rotifers wereprogressively withdrawn over a 5 day period.The type of Artemia offered(fresh-hatched, enriched) did not affectsurvival or growth rates at any of the 3transfer ages. Larvae transferred toArtemia from day 5 ph suffered a highincidence of swimbladder over-inflation andhigh mortality during metamorphosis (< 1%survival to day 36 ph). Cod in the day 15 and day25 transfer groups did not differ significantlyin weight-specific growth rate or size on day40 ph (mean standard length 13.8 mm, dry weight3.8 mg). Highest mean survival rates to day 40ph (18.1%) and lowest mortality followingtransfer to nursery tanks were also observed inthe day 25 transfer groups. Fish that receivedArtemia from day 5 ph containedcirca twice as much total lipid per unit bodyweight and had a 30% higher triacylglycerol(TAG) content compared to all other groups.Ratios of the essential fatty acidsdocosahexaenoic acid (DHA), eicosapentaenoicacid (EPA) and arachidonic acid (ARA) alsodiffered according to age-at-transition.DHA:EPA ratio exceeded 1 only in codtransferred to Artemia on day 25 ph.Based on these findings, it is recommended thatintensively reared Atlantic cod should continueto receive rotifers until completion ofmetamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号