首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang F  Lin JS  Liu K 《Science (New York, N.Y.)》2011,331(6019):900-903
Exciting the CH-stretching mode of CHD(3) (where D is deuterium) is known to promote the C-H bond's reactivity toward chlorine (Cl) atom. Conventional wisdom ascribes the vibrational-rate enhancement to a widening of the cone of acceptance (i.e., the collective Cl approach trajectories that lead to reaction). A previous study of this reaction indicated an intriguing alignment effect by infrared laser-excited reagents, which on intuitive grounds is not fully compatible with the above interpretation. We report here an in-depth experimental study of reagent alignment effects in this reaction. Pronounced impacts are evident not only in total reactivity but also in product state and angular distributions. By contrasting the data with previously reported stereodynamics in reactions of unpolarized, excited CHD(3) with fluorine (F) and O((3)P), we elucidate the decisive role of long-range anisotropic interactions in steric control of this chemical reaction.  相似文献   

2.
Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by F?rster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions.  相似文献   

3.
The spins of the terrestrial planets likely arose as the planets formed by the accretion of planetesimals. Depending on the masses of the impactors, the planet's final spin can either be imparted by many small bodies (ordered accretion), in which case the spin is determined by the mean angular momentum of the impactors, or by a few large bodies (stochastic accretion), in which case the spin is a random variable whose distribution is determined by the root-mean-square angular momentum of the impactors. In the case of ordered accretion, the planet's obliquity is expected to be near 0 degrees or 180 degrees , whereas, if accretion is stochastic, there should be a wide range of obliquities. Analytic arguments and extensive orbital integrations are used to calculate the expected distributions of spin rate and obliquity as a function of the planetesimal mass and velocity distributions. The results imply that the spins of the terrestrial planets are determined by stochastic accretion.  相似文献   

4.
Angular distribution patterns of Auger electrons and of photoelectrons from a Cu (001) surface were measured at the same electron kinetic energy. These measurements reveal that the low kinetic energy angular distributions for Cu Auger electrons and Cu 3p(3/2) photoelectrons differ substantially. This direct comparison between the photoelectron and Auger electron angular distributions demonstrates that, in some circumstances, the Auger process produces a complicated source wave whose nature must be explored before Auger angular distributions can be used for surface structure analysis.  相似文献   

5.
Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles.  相似文献   

6.
Isolated diatomic molecules of iodine monochloride (ICl) were photodissociated by a beam of linearly polarized light, and the resulting ground-state Cl atom photofragments were detected by a method that is sensitive to the handedness (helicity) of the electronic angular momentum. It was found that this helicity oscillates between "topspin" and "backspin" as a function of the wavelength of the dissociating light. The helicity originates solely from the (de Broglie) matter-wave interference of multiple dissociating pathways of the electronic excited states of ICl. These measurements can be related to the identity and to the detailed shapes of the dissociating pathways, thus demonstrating that it is possible to probe repulsive states by spectroscopic means.  相似文献   

7.
A linear carbonyl sulfide (OCS) molecule surrounded by 14 to 16 para-hydrogen (pH(2)) molecules, or similar numbers of ortho-deuterium (oD(2)) molecules, within large helium-4 ((4)He) droplets and inside mixed (4)He/(3)He droplets was investigated by infrared spectroscopy. In the pure (4)He droplets (0.38 kelvin), both systems exhibited spectral features that indicate the excitation of angular momentum around the OCS axis. In the colder (4)He/(3)He droplets (0.15 kelvin), these features remained in the oD(2) cluster spectra but disappeared in the pH(2) spectra, indicating that the angular momentum is no longer excited. These results are consistent with the onset of superfluidity, thereby providing the first evidence for superfluidity in a liquid other than helium.  相似文献   

8.
Binder AB 《Science (New York, N.Y.)》1966,152(3725):1053-1055
Comparison of the distributions of Martian and lunar crater diameters indicates that the visible surface of Mars is 2.2 to 3 x 10(9) years old. This result implies that in the early history of Mars large-scale subaerial erosion occurred. Of 69 Martian craters with diameters greater than 10 kilometers, 13 percent have central peaks. This compares favorably with the frequency (11.7 percent) of central peaks among lunar craters and may indicate that the central peaks are a direct result of the impact mechanism rather than post-impact volcanism. A well-defined system of lineaments is shown in the Mariner photographs. The presence of these lineaments may indicate that Mars has lost appreciable angular momentum during its history.  相似文献   

9.
Irregular length of day (LOD) fluctuations on time scales of less than a few years are largely produced by atmospheric torques on the underlying planet. Significant coherence is found between the respective time series of LOD and atmospheric angular momentum (AAM) determinations at periods down to 8 days, with lack of coherence at shorter periods caused by the declining signal-to-measurement noise ratios of both data types. Refinements to the currently accepted model of tidal Earth rotation variations are required, incorporating in particular the nonequilibrium effect of the oceans. The remaining discrepancies between LOD and AAM in the 100- to 10-day period range may be due to either a common error in the AAM data sets from different meteorological centers, or another component of the angular momentum budget.  相似文献   

10.
When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered.  相似文献   

11.
Present theories of terrestrial planet formation predict the rapid ;;runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.  相似文献   

12.
Elementary triatomic reactions offer a compelling test of our understanding of the extent of electron-nuclear coupling in chemical reactions, which is neglected in the widely applied Born-Oppenheimer (BO) approximation. The BO approximation predicts that in reactions between chlorine (Cl) atoms and molecular hydrogen, the excited spin-orbit state (Cl*) should not participate to a notable extent. We report molecular beam experiments, based on hydrogen-atom Rydberg tagging detection, that reveal only a minor role of Cl*. These results are in excellent agreement with fully quantum-reactive scattering calculations based on two sets of ab initio potential energy surfaces. This study resolves a previous disagreement between theory and experiment and confirms our ability to simulate accurately chemical reactions on multiple potential energy surfaces.  相似文献   

13.
Neptune receives only 1/900th of the earth's solar energy, but has wind speeds of nearly 600 meters per second. How the near-supersonic winds can be maintained has been a puzzle. A plausible mechanism, based on principles of angular momentum and energy conservation in conjunction with deep convection, leads to a regime of uniform angular momentum at low latitudes. In this model, the rapid retrograde winds observed are a manifestation of deep convection, and the high efficiency of the planet's heat engine is intrinsic from the room allowed at low latitudes for reversible processes, the high temperatures at which heat is added to the atmosphere, and the low temperatures at which heat is extracted.  相似文献   

14.
Hawley JF 《Science (New York, N.Y.)》1995,269(5229):1365-1370
Supercomputer simulations have been used in conjunction with analytic studies to investigate the central issue of astrophysical accretion-disk dynamics: the nature of the angular momentum transport. Simulations provide the means to investigate and experiment with candidate mechanisms, including global hydrodynamic instabilities, spiral shock waves, and local magnetohydrodynamic (MHD) instabilities. Simulations have demonstrated that accretion disks are generally MHD turbulent. These results suggest that the fundamental physical mechanism for angular momentum transport in accretion disks has now been identified.  相似文献   

15.
本文着重讨论了质点系动量矩定理的矩心问题,给出相对于不同矩心的动量矩定理的应用条件。同时,提供并证明了一个新定理,举例说明了这一新定理的应用。  相似文献   

16.
Yan S  Wu YT  Zhang B  Yue XF  Liu K 《Science (New York, N.Y.)》2007,316(5832):1723-1726
The influence of vibrational excitation on chemical reaction dynamics is well understood in triatomic reactions, but the multiple modes in larger systems complicate efforts toward the validation of a predictive framework. Although recent experiments support selective vibrational enhancements of reactivities, such studies generally do not properly account for the differing amounts of total energy deposited by the excitation of different modes. By precise tuning of translational energies, we measured the relative efficiencies of vibration and translation in promoting the gas-phase reaction of CHD3 with the Cl atom to form HCl and CD3. Unexpectedly, we observed that C-H stretch excitation is no more effective than an equivalent amount of translational energy in raising the overall reaction efficiency; CD3 bend excitation is only slightly more effective. However, vibrational excitation does have a strong impact on product state and angular distributions, with C-H stretch-excited reactants leading to predominantly forward-scattered, vibrationally excited HCl.  相似文献   

17.
The reaction of [Cp*Fe(eta5-P5)] with Cu(I)Cl in solvent mixtures of CH2Cl2/CH3CN leads to the formation of entirely inorganic fullerene-like molecules of the formula [[Cp*Fe(eta5:eta1:eta1:eta1:eta1:eta1-P5)]12[CuCl]10[Cu2Cl3]5[Cu(CH3CN)2]5] (1) possessing 90 inorganic core atoms. This compound represents a structural motif similar to that of C60: cyclo-P5 rings of [Cp*Fe(eta5-P5)] molecules are surrounded by six-membered P4Cu2 rings that result from the coordination of each of the phosphorus lone pairs to CuCl metal centers, which are further coordinated by P atoms of other cyclo-P5 rings. Thus, five- and six-membered rings alternate in a manner comparable to that observed in the fullerene molecules. The so-formed half shells are joined by [Cu2Cl3]- as well as by [Cu(CH3CN)2]+ units. The spherical body has an inside diameter of 1.25 nanometers and an outside diameter of 2.13 nanometers, which is about three times as large as that of C60.  相似文献   

18.
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.  相似文献   

19.
Variations in the earth's rotation (UT1) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UT1 fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Ni?o of 1982-1983 was marked by a strong peak in the length of day.  相似文献   

20.
The data on radiative capture through the giant resonance have led to a model in which the capture is pictured as proceeding through a single broad (and therefore short-lived) state that can be called the giant-resonance state. This state is the one formed directly upon capture of a proton, and hence most of the capture radiation is emitted quickly in the direct-interaction mode. Some of the energy that is contained in the giant-resonance state is shared with the more-complicated states of the compound nucleus (that is, with states having many excited nucleons). This sharing, in turn, gives rise to the fine structure that is observed within the giant-resonance envelope. The constant angular distributions that are observed throughout the giant-resonance region support the single-state picture of the giant resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号