首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Black poplar (Populus nigra L.) is an alluvial forest tree species whose genetic pool is decreasing in Europe. Poplar trees produce short-lived seeds that do not store well.

Aim

The feasibility of seed storage in conventional and cryogenic conditions after their desiccation from water content (WC) of 0.15 to 0.07 g H2O g?1 dry mass (g g?1) was investigated.

Methods

Seed germinability was evaluated (seeds with a radicle and green cotyledons were counted) after storage of seeds for a period of 3 to 24 months at different temperatures: 20°, 10°, 3°, ?3°, ?10°, ?20° or ?196°C.

Results

Seeds desiccated to a 0.07 g g?1 WC can be stored successfully at ?10 °C and ?20 °C for at least 2 years. A significant decrease in germination was observed only after 12 months of seed storage (WC 0.15 g g?1) at temperatures above 0 °C. We demonstrated that both fresh (0.15 g g?1 WC) and desiccated (0.07 g g?1 WC) seeds can be preserved at ?196 °C for at least 2 years.

Conclusions

Seed storage temperature and time of storage were statistically significant factors affecting seed storability. The presented data provide a foundation for the successful gene banking of P. nigra seeds.  相似文献   

2.

Context

Waterlogging is predicted to become more common in boreal forests during winter and early spring with climate change. So far, little is known about the waterlogging tolerance of boreal tree species during their winter dormancy.

Aim

The aim was to quantify the degree of waterlogging tolerance of 1-year-old dormant Norway spruce (Picea abies (L.) Karst.) seedlings.

Methods

The seedlings were exposed to waterlogging in a growth chamber at temperature of 2 °C for 4 weeks and then allowed to recover for 6 weeks during the growth stage. Shoot and root responses were monitored by physiological and growth measurements.

Results

No effect was found in the seedling biomass, but root mortality increased slightly during the early growth stage following waterlogging. The water potential of the needles became less negative at the end of the waterlogging and the early growth stage. The ratio of apoplastic to symplastic electrical resistance (R e/R i) of the needles was lower after waterlogging, indicating changes in the proportions of symplastic and apoplastic space. No differences were found between the treatments in the dark-acclimated chlorophyll fluorescence (F v/F m) of the needles. Slightly greater accumulation of starch and temporary reductions of some mineral nutrients in needles were found after waterlogging.

Conclusions

We conclude that in late winter and early spring, Norway spruce seedlings potentially tolerate short periods of waterlogging.  相似文献   

3.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

4.

? Context

Prescribed burning is increasingly recommended to control encroaching shrublands in the Mediterranean area.

? Aims

The aims of this paper are to analyze the fuel structural characteristics of Spartium junceum and how they influence fire behaviour during prescribed burning.

? Methods

Two winter–spring prescribed burns were conducted in 2009 and 2011. Fuel load and structure of S. junceum shrubs were assessed using the Cube Method, and shrub 3-D models were built using the FIRE PARADOX FUEL MANAGER software. Allometric equations to estimate S. junceum fuel load were developed. During burning, thermocouples measured temperature variations, which were then analyzed relative to fuel characteristics.

? Results

Fuel load components and distribution were strictly related to shrub height; in tall shrubs, most of the fine fuel was more than 1.5 m aboveground. Due to fuel vertical discontinuity, not all shrubs were burned in the fires, but wind increased fire sustainment and fuel consumption. Maximum temperatures (over 800 °C) and residence times were positively related to fuel load.

? Conclusion

S. junceum tall shrublands represent high hazard formations due to their elevated fuel load, mostly in fine fuel fractions. Vertical discontinuity among fuel strata limits fire propagation in mild weather conditions. Winter–spring prescribed burning cannot eliminate S. junceum shrublands, but do create shrub cover discontinuity. As S. junceum has fire-adapted morphological traits, a single burn is insufficient to control it.  相似文献   

5.

Context

To sustainably manage loblolly pine plantations for bioenergy and carbon sequestration, accurate information is required on the relationships between management regimes and energy, carbon, and nutrient export.

Aims

The effects of cultural intensity and planting density were investigated with respect to energy, carbon, and essential nutrients in aboveground biomass of mid-rotation loblolly pine plantations, and the effects of harvesting scenarios on export of nutrients were tested.

Methods

Destructive biomass sampling of a 12 years-old loblolly pine culture/density experiment, and analysis of variance were used to assess the effects of cultural intensity (operational vs. intensive) and six planting densities ranging from 741 to 4,448 trees ha?1. Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of energy, carbon, and nutrient export.

Results

The concentrations of energy, carbon, and nutrients varied significantly among stem wood, bark, branch, and foliage components. Cultural intensity and planting density did not significantly affect these concentrations. Differences in energy, carbon and nutrient contents among treatments were mainly mediated by changes in total biomass. Nutrient contents were affected by either cultural intensity or planting density, or both. Stem-only harvesting removed 71–79 % of aboveground energy and carbon, 29–45 % of N, 28–44 % of P, 44–57 % of K, 51–65 % of Ca, and 50–61 % of Mg.

Conclusions

Stem-only harvesting would be preferred to whole-tree harvesting, from a site nutrient conservation perspective.  相似文献   

6.

? Context

Coarse woody debris (CWD, ≥10 cm in diameter) is an important structural and functional component of forests. There are few studies that have estimated the mass and carbon (C) and nitrogen (N) stocks of CWD in subtropical forests. Evergreen broad-leaved forests are distributed widely in subtropical zones in China.

? Aims

This study aimed to evaluate the pools of mass, C and N in CWD in five natural forests of Altingia gracilipes Hemsl., Tsoongiodendron odorum Chun, Castanopsis carlesii (Hemsl.) Hayata, Cinnamomum chekiangense Nakai and Castanopsis fabri Hance in southern China.

? Methods

The mass of CWD was determined using the fixed-area plot method. All types of CWD (logs, snags, stumps and large branches) within the plot were measured. The species, length, diameter and decay class of each piece of CWD were recorded. The C and N pools of CWD were calculated by multiplying the concentrations of C and N by the estimated mass in each forest and decay category.

? Results

Total mass of CWD varied from 16.75 Mg ha?1 in the C. fabri forest to 40.60 Mg ha?1 in the A. gracilipes forest; of this CWD, the log contribution ranged from 54.75 to 94.86 %. The largest CWD (≥60 cm diameter) was found only in the A. gracilipes forest. CWD in the 40–60 cm size class represented above 65 % of total mass, while most of CWD accumulations in the C. carlesii, C. chekiangense and C. fabri forests were composed of pieces with diameter less than 40 cm. The A. gracilipes, T. odorum, C. carlesii and C. chekiangense forests contained the full decay classes (from 1 to 5 classes) of CWD. In the C. fabri forest, the CWD in decay classes 2–3 accounted for about 90 % of the total CWD mass. Increasing N concentrations and decreasing densities, C concentrations, and C:N ratios were found with stage of decay. Linear regression showed a strong correlation between the density and C:N ratio (R 2?=?0.821). CWD C-stock ranged from 7.62 to 17.74 Mg ha?1, while the N stock varied from 85.05 to 204.49 kg ha?1. The highest overall pools of C and N in CWD were noted in the A. gracilipes forest.

? Conclusion

Differences among five forests can be attributed mainly to characteristics of the tree species. It is very important to preserve the current natural evergreen broad-leaved forest and maintain the structural and functional integrity of CWD.  相似文献   

7.

? Context

While historical increases in forest growth have been largely documented, investigations on historical wood density changes remain anecdotic. They suggest possible density decreases in softwoods and ring-porous hardwoods, but are lacking for diffuse-porous hardwoods.

? Aims

To evaluate the historical change in mean ring density of common beech, in a regional context where a ring-porous hardwood and a softwood have been studied, and assess the additional effect of past historical increases in radial growth (+50 % over 100 years), resulting from the existence of a positive ring size–density relationship in broadleaved species.

? Methods

Seventy-four trees in 28 stands were sampled in Northeastern France to accurately separate developmental stage and historical signals in ring attributes. First, the historical change in mean ring density at 1.30 m (X-ray microdensitometry) was estimated statistically, at constant developmental stage and ring width. The effect of past growth increases was then added to assess the net historical change in wood density.

? Results

A progressive centennial decrease in mean ring density of ?55 kg?m?3 (?7.5 %) was identified (?10 % following the most recent decline). The centennial growth increase induced a maximum +25 kg?m?3 increase in mean ring density, whose net variation thus remained negative (?30 kg?m?3).

? Conclusions

This finding of a moderate but significant decrease in wood density that exceeds the effect of the positive growth change extends earlier reports obtained on other wood patterns in a same regional context and elsewhere. Despite their origin not being understood, such decreases hence form an issue for forest carbon accounting.  相似文献   

8.

Context

Cluster planting has become a conventional establishment method for oaks in Central Europe, where the spacing of seedlings within clusters varies between ‘nests’ (0.2?×?0.2 m) and ‘groups’ (1?×?1 m). Although the space between clusters is expected to fill with voluntary regeneration, its competitive effect on oak growth and quality had not been studied yet.

Aims

The aim of the study was to analyse the effects of inter- and intraspecific interactions on growth and quality of oaks grown in cluster plantings by quantifying the influence of neighbouring trees. In addition, we analysed whether the spatial position of oaks within groups (inner section or periphery) influenced their quality development.

Methods

Using Hegyi’s competition index, the influence of competition from intra- and interspecific trees from early, mid- and late-successional species, on diameter, height, slenderness and quality (length of branch-free bole) of 10- to 26-year-old oaks grown in cluster planting stands was quantified at seven sites in Baden-Württemberg and Hessen, Germany.

Results

In general, mid- and late-successional trees exerted a stronger competitive influence on growth of target oaks in clusters than the conspecific oaks and pioneer tree species. Oak quality development benefited from intraspecific competition, but self-pruning was not further promoted through additional interspecific competition. Within groups, inner oaks had a higher probability of developing into potential future crop trees than outer oaks.

Conclusion

Our study showed that intra- and interspecific competition had different effects on target oak trees and that these effect differed between nest and group plantings. The development of naturally regenerated and planted trainer trees in group plantings should be monitored carefully and if necessary be controlled through thinning or pollarding.  相似文献   

9.

Context

Although adventitious shoots are produced in many tree species in response to injury, little is known about the effects of salinity on sprouting.

Aims

The main objective was to examine the sprouting capacity of Pinus leiophylla seedlings in relation to injury and physiological changes induced by NaCl.

Methods

Seedlings were grown in controlled-environment growth rooms and treated with 0, 100, 150, and 200 mM NaCl. Numbers of adventitious shoots were recorded and growth and physiological parameters measured after 64 days of treatments and following a 30-day recovery period.

Results

NaCl treatments triggered sprouting of adventitious shoots, mainly in the lower parts of the stems. However, fewer sprouts were induced by 200 mM NaCl compared with the lower concentration treatments. These changes were accompanied by needle necrosis, decreased chlorophyll concentrations, seedling dry mass, and stem diameter. Stomatal conductance, net photosynthesis, and root hydraulic conductance decreased with increasing NaCl concentrations and did not return to the control levels after 30 days of stress relief.

Conclusions

Pinus leiophylla has the regeneration potential when exposed to salinity. However, very high salt concentrations induce severe physiological impairments and, consequently, a decrease of this regeneration potential.  相似文献   

10.

? Context

It is assumed that global change is already affecting the composition, structure and distribution of forest ecosystems; however, detailed evidences of altitudinal and latitudinal shifts are still scarce.

? Aims

To develop a method based on National Forest Inventory (NFI) to assess spatio-temporal changes in species distributions.

? Methods

We develop an approach based on universal kriging to compare species distribution models from the different NFI cycles and regardless of the differences in the sampling schemes used. Furthermore, a confidence interval approach is used to assess significant changes in species distribution. The approach is applied to some of the southernmost populations of Pinus sylvestris and Fagus sylvatica in the Western Pyrenees over the last 40 years.

? Results

An increase of the presence of the two species in the region was observed. Scots pine distribution has shifted about 1.5 km northwards over recent decades, whereas the European beech has extended its distribution southwards by about 2 km. Furthermore, the optimum altitude for both species has risen by about 200 m. As a result, the zone in which the two species coexist has been enlarged.

? Conclusions

This approach provides a useful tool to compare NFI data from different sampling schemes, quantifying and testing significant shifts in tree species distribution over recent decades across geographical gradients.  相似文献   

11.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

12.

Context

Prediction of the effect of harvests and climate change (CC) on the changes in carbon stock of forests is necessary both for CC mitigation and adaptation purposes.

Aims

We assessed the impact of roundwood and fuelwood removals and climate change (CC) on the changes in carbon stock of Finnish forests during 2007–2042. We considered three harvest scenarios: two based on the recent projections of roundwood and fuelwood demand, and the third reflecting the maximum sustainable cutting level. We applied two climate scenarios: the climate was in the state that prevailed around year 2006, or it changed according to the IPCC SRES A1B scenario.

Methods

We combined the large-scale forestry model MELA with the soil carbon model Yasso07 for mineral soils. For soils of drained, forested peatlands, we used a method based on emission factors.

Results

The stock change of trees accounted for approximately 80 % of the total stock change. Trees and mineral soils acted as carbon sinks and the drained peatland soils as a carbon source. The forest carbon sink increased clearly in both of the demand-based scenarios, reaching the level of 13–20 Tg C/year (without CC). The planned increase in the use of bioenergy reduced the forest sink by 2.6 Tg C/year. CC increased the forest carbon sink in 2042 by 38 %–58 % depending on the scenario. CC decreased the sink of mineral soils in the initial years of the simulations; after 2030, the effect was slightly positive. CC increased the emissions from the drained peatland soils.

Conclusions

It is likely that forest land in Finland acts as a carbon sink in the future. The changes in carbon stocks of trees, mineral soils, and peatland soils respond differently to CC and fuelwood and roundwood harvests.  相似文献   

13.

? Context

Biomass prediction is important when dealing for instance with carbon sequestration, wildfire modeling, or bioenergy supply. Although allometric models based on destructive sampling provide accurate estimates, alternative species-specific equations often yield considerably different biomass predictions. An important source of intra-specific variability remains unexplained.

? Aims

The aims of the study were to inspect and assess intra-specific differences in aboveground biomass of Pinus brutia Ten. and to fill the gap in knowledge on biomass prediction for this species.

? Methods

Two hundred one trees between 2.3 and 55.8 cm in diameter at breast height were sampled throughout the eastern- and southernmost natural distribution area of P. brutia, in Middle East, where it forms different stand structures. Allometric equations were fitted separately for two countries. The differences in biomass prediction at tree, stand, and forest level were analyzed. The effect of stand structure and past forest management was discussed.

? Results

Between-country differences in total aboveground biomass were not large. However, differences in biomass stock were large when tree components were analyzed separately. Trees had higher stem biomass and lower crown biomass in dense even-aged stands than in more uneven-aged and sparse stands.

? Conclusion

Biomass and carbon predictions could be improved by taking into account stand structure in biomass models.  相似文献   

14.

? Introduction

There has been an increasing interest in very early selection of radiata pine to reduce the breeding cycle for solid wood products. For such selection, new approaches are required to assess wood quality in wood from very young stems.

? Methods

Nursery seedlings of clones of radiata pine were grown in leant condition using two leaning strategies for 18–20 months. Opposite wood and compression wood were isolated from the leaning stems and tested for dynamic modulus of elasticity, density, longitudinal shrinkage, volumetric shrinkage and compression wood area using new methods evolved for testing small size samples quickly and reliably. The methods were tested for their efficiency in differentiating clones by their wood properties.

? Results

Leaning of stems provided distinct opposite and compression wood for testing. Automated image analysis method used for compression wood area assessment was found to be a quick and effective method for processing large number of samples from young stems. Compression wood was characterised by high basic density, high longitudinal shrinkage and low volumetric shrinkage than that of opposite wood. Acoustic velocity in opposite wood had a strong negative association with longitudinal shrinkage. The study signifies the importance of preventing mixing of opposite wood with compression wood while assessing wood quality in young stems thus making leaning a critical strategy. The comparison of wood properties of opposite wood revealed significant differences between clones. Opposite wood of the clone with the lowest dynamic modulus of elasticity exhibited the highest longitudinal shrinkage.

? Conclusion

Significant differences in measurable wood properties between clones suggest the prospects of early selection for solid wood products.  相似文献   

15.

? Context

Modification of stand density by thinning may buffer the response of tree growth and vigor to changes in climate by enhancing soil water availability.

? Aims

We tested the impact of thinning intensity on cambial growth of Aleppo pine (Pinus halepensis L.) under semi-arid, Mediterranean conditions.

? Methods

A multiple thinning experiment was established on an Aleppo pine plantation in Spain. We analysed the stem growth dynamics of two different crown classes under four different thinning intensities (15 %, 30 %, and 45 % removal of the basal area) for 2 years, based on biweekly band dendrometer recordings. Local relative extractable soil water was derived from the use of a water balance model Biljou© (available at https://appgeodb.nancy.inra.fr/biljou/) and used as an explanatory variable.

? Results

Radial growth was mainly controlled by soil water availability during the growing season, and differed by crown class. The growth rates of dominant trees were significantly higher than the growth rates of suppressed trees. Removal of 30 % and 45 % of the initial basal area produced a growth release in both dominant and suppressed trees that did not occur under less intense thinning treatments.

? Conclusions

Soil water availability was the main driver of radial growth during the growing season. Forest management confirmed its value for ameliorating the effects of water limitations on individual tree growth. These results may help managers understand how altering stand density will differentially affect diameter growth responses of Aleppo pine to short-term climatic fluctuations, promoting forests that are resilient to future climatic conditions.  相似文献   

16.

Context

High temperature stress in nurseries germinating Eucalyptus globulus seed is an important problem affecting germination synchrony and rate. Where there is a risk of high-temperature stress, then the choice of female parent may be important. This issue is particularly relevant to the production of full-sib families from mass-supplementary pollination where there may be opportunities for seed producers to manipulate the directionality of the crossing done in seed orchards.

Aims

This study aimed to quantify the maternal versus paternal influence of seed sensitivity to high temperature stress during germination.

Methods

A diallel crossing scheme involving four genotypes was used to test the relative importance of male and female genetic influences on the germination and development of E. globulus seed and their response to high temperature stress. Seed was germinated at optimum (25°C) and supra-optimal (32°C and 37°C) temperatures, and six traits describing the proportion and rate of seed germination and early seedling development were assessed.

Results

Both paternal and maternal effects affected the germination response, arguing for at least some influence of the nuclear genotype of the embryo. However, the response to high temperature stress was more influenced by the maternal than paternal parent.

Conclusion

Both the male and female genotype may affect various aspects of seed germination and early seedling development independent of seed size; however, some facets of the germination response will be mainly affected by the female parent.  相似文献   

17.

Context

Tube shelters have been shown to enhance field performance of several Mediterranean species, but responses of newly planted seedlings to the microenvironment induced by shelter walls with different light transmissivity are still poorly documented.

Aims

We studied effects of a range of shelters with varying light transmissivity on post-planting seedling responses during the wet season establishment phase for two Mediterranean trees of contrasting functional ecology.

Methods

Root growth, biomass allocation, water potential, and chlorophyll fluorescence of Quercus ilex and Pinus halepensis seedlings were evaluated across shelters varying in light transmissivity (80, 40, 20, and 10 % plus a mesh shelter) with irrigation.

Results

Plants in dark tubes (20 and 10 % light transmissivity) had less above- and belowground growth and more than two times greater leaf to protruding roots mass ratio, with shoot growth response of Q. ilex being less plastic. Ratio of leaf area/protruding roots area decreased when light transmissivity increased, although no differences were found at ≥40 % transmissivity. Xylem water potential indicated lack of water stress, and high maximum photosynthetic efficiency (F v/F m) values show no photoinhibition symptoms irrespective of light transmissivity.

Conclusion

Shelter transmissivity ≥40 % promotes rapid and vigorous root growth immediately after planting for these species. This minimum transmissivity should be considered as a target when designing shelters to help root development and improve water balance of Mediterranean seedlings.  相似文献   

18.

? Context

Harsh environmental conditions in xeric sites of Andean Patagonia, affect the emergence, survival, and growth of either naturally grown or planted Austrocedrus seedlings.

? Aims

We evaluated the effects of nurse shrubs and tree shelters on the survival and growth of Austrocedrus seedlings as compared to unprotected (control) areas and how differently produced seedling types perform under these treatments.

? Methods

In 2006, two Austrocedrus seedling types (1?+?2?=?S1 and Plug 2?+?1?=?S2) were planted under shrub cover (C1), tree shelter (C2), and control (C3). Soil surface temperature and moisture were measured for each treatment during the first growing season, while seedling survival and height were recorded during 5 years.

? Results

Survival was not affected by cover type the first year, but it was affected by seedling type (S1?>?S2). After an extremely dry second growing season, seedling survival significantly decreased in relation to either cover or seedling type. Five years after plantation, survival was significantly higher for C1 and C2 (40?C60 %) as compared to C3-S2 (18 %). Seedling height was significantly affected by cover, but not by seedling type.

? Conclusions

The use of nurse shrubs and/or tree shelters is useful in Austrocedrus seedling restoration trials. Seedling morphology appears as relevant for survival in semiarid environments.  相似文献   

19.

Context

Bark beetles are known to be associated with fungi, especially the ophiostomatoid fungi. However, very little is known about role of pine weevils, e.g., Hylobius abietis, as a vector of these fungi in Europe.

Aims

The aims of our study were to demonstrate the effectiveness of H. abietis as a vector of ophiostomatoid fungi in Poland and to identify these fungi in Scots pine seedlings damaged by weevil maturation feeding.

Methods

Insects and damaged Scots pine seedlings were collected from 21 reforestation sites in Poland. The fungi were identified based on morphology, DNA sequence comparisons for two gene regions (ITS, β-tubulin) and phylogenetic analyses.

Results

Sixteen of the ophiostomatoid species were isolated and identified. In all insect populations, Leptographium procerum was the most commonly isolated fungus (84 %). Ophiostoma quercus was also found at a relatively high frequency (16 %). Other ophiostomatoid fungi were found only rarely. Among these rarer fungi, four species, Leptographium lundbergii, Ophiostoma floccosum, Ophiostoma piliferum and Sporothrix inflata, were isolated above 3 %. L. procerum was isolated most frequently and was found in 88 % of the damaged seedlings. S. inflata was isolated from 26 %, while O. quercus occurred in 10 % of the seedlings.

Conclusion

This study confirmed that L. procerum and O. quercus were common associates of H. abietis, while others species were found inconsistently and in low numbers, indicating causal associations. H. abietis also acted as an effective vector transmitting ophiostomatoid species, especially L. procerum and S. inflata, to Scots pine seedlings.  相似文献   

20.

Context

Fine scale regeneration patterns of coexistent species are influenced by regeneration mechanisms and microsite requirements. Spatial patterns may be either disjunct or overlapping, which will determine competitive effects and microsite dominance, and future forest composition.

Aims

Using American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marshall) as an example, three hypotheses were tested: (1) random beech spatial patterns, (2) clumped spatial patterns of small sugar maple seedlings, and (3) disjunct beech and sugar maple patterns.

Methods

Individual stems were sampled in a contiguous grid of 1-m2 quadrats across a 576-m2 area at three sites. Densities were separated into three height classes (≤30 cm, 30–90 cm, and?>?90 cm, ≤4 cm diameter at breast height). Spatial statistics and regression were used to analyze spatial patterns and correlations.

Results

Beech and seedling sugar maple patterns were patchy, rejecting the first and not rejecting the second hypotheses. Hypothesis three was rejected because patches of the two species overlapped with advance regeneration beech overtopping sugar maple.

Conclusion

Patchy patterns of advance regeneration beech and post-harvest sugar maple establishment suggest spatiotemporal niche partitioning. Beech had a competitive height advantage following harvest, but sugar maple still occurred in beech-free patches and beneath overtopping beech at a fine scale. Self-replacing beech patterns will ensure the species will continue dominance unless a selective chemical or manual treatment is applied that removes beech and releases sugar maple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号