首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在油气开发领域,经常采用网格模型对地形进行描述,而网格模型的大数据量成为实时绘制的瓶颈。因此,对地形网格模型进行简化的同时必须对现有算法进行加速。提出了一种三维地质模型的快速建模方法:通过删除顶点法矢量变化不明显的点来减少数据量,同时运用GPU技术将海量地形数据进行并行计算进而提高建模速度。试验结果表明,该算法能够在保证在失真较低的情况下实现数据运算速度的大幅提升以及网格模型较大幅度的简化,从而满足实时显示的需要。  相似文献   

2.
基于三维点云的玉米果穗几何建模   总被引:1,自引:0,他引:1  
果穗是玉米产量的构成器官,为构建高精度玉米果穗几何模型,提出了一种基于三维点云数据的玉米果穗几何建模方法。针对玉米果穗形态结构特征,选取Artec Spider三维扫描仪搭建玉米果穗点云数据快速获取系统并获取果穗点云,然后通过点云配准、重采样和孔洞修补操作得到高质量果穗三维点云,最后基于Voronoi图的网格重建方法重构果穗网格模型。结果表明,所重建的玉米果穗具有较高的真实感,且与基于计算机视觉算法相比精度大幅提高。基于三维点云的玉米果穗几何建模对于玉米果穗的种质资源保存、基于三维数据的果穗考种、玉米器官三维模板资源库构建等工作具有重要的推动作用。  相似文献   

3.
针对CAGD中散乱数据光顺拟合的一般模型的求解问题,采用罚函数方法处理几何约束。根据最优性条件,将反映曲面光顺性的泛函极小化问题,离散化为曲面参数域网格点上的九点差分格式。得到了关于拟合曲面在网格点上函数值的线性方程组,并证明了该线性方程组的系数矩阵对称正定的性质.保证了采用超松弛法求解线性方程组的收敛性。为了验证所提出方法的有效性,对空间散乱分布的14个数据点,当模型参数取不同值时。分别进行了拟合。试验结果表明,用超松弛法能够简单快速实现散乱数据点的光顺拟合。  相似文献   

4.
针对分割后的心脏体数据显示问题,提出了基于GPU光线投射算法的高质量三维可视化新方法。该方法为了解决传统光线投射算法绘制速度慢的问题,采用GPU进行加速,并结合空体素跳过和光线提前终止忽略无效体素的采样。同时,为了获得高质量的重建结果,该方法结合心脏体数据的特点设计传递函数,基于体素梯度模白适应地调整采样步长,并应用Blinn-Phong多光源光照模型增强可视化效果。实验结果表明,该方法在实现实时绘制的同时,能够获得高质量的体绘制效果。  相似文献   

5.
基于点云数据的植物叶片三维重建   总被引:1,自引:1,他引:0  
叶片是植物最重要的器官之一,为构建植物叶片的高精度几何模型,提出了一种基于三维点云数据的植物叶片几何建模方法。针对植物叶片形态特征,选定最适三维扫描仪进行叶片点云数据获取,通过点云的配准、简化及去噪等操作得到高质量叶片点云数据,在此基础上进行叶片网格生成与网格优化,最终得到高精度植物叶片网格模型。利用该方法分别对黄瓜、玉米和两个品种的葡萄叶片进行几何建模,结果表明,所构建的叶片模型能够较好地保持叶片形态特征,且较以前的方法在精确度和真实感方面有了较大的提高。该研究对于推动数字植物几何建模及进一步基于几何模型的可视化计算具有重要意义。  相似文献   

6.
通过三维激光扫描技术得到的树木枝干点云数据,不仅数据量大,而且特征复杂,不适合采用传统的方法提取等值线。对此,首先把点云数据中树木的枝和干分为不同的部分,然后建立点云的分层模型,并分析点云在树高方向上的数据量分布。在高精度采样下,将分层点云作为等值线的采样数据,对每层数据中不同部分的树木枝干点云分别采用凸包算法进行连接,建立树木枝干的等值线模型。结果表明:在没有先验等值线知识和建立点云对象模型的条件下,利用迭代的凸包算法可以有效地对树木枝干离散点云数据进行连接,得到的等值线符合一般等值线的特点。最后通过实例验证了方法的适用性。图8表1参11  相似文献   

7.
通过三维激光扫描技术得到的树木枝干点云数据,不仅数据量大,而且特征复杂,不适合采用传统的方法提取等值线。对此,首先把点云数据中树木的枝和干分为不同的部分,然后建立点云的分层模型,并分析点云在树高方向上的数据量分布。在高精度采样下,将分层点云作为等值线的采样数据,对每层数据中不同部分的树木枝干点云分别采用凸包算法进行连接,建立树木枝干的等值线模型。结果表明:在没有先验等值线知识和建立点云对象模型的条件下,利用迭代的凸包算法可以有效地对树木枝干离散点云数据进行连接,得到的等值线符合一般等值线的特点。最后通过实例验证了方法的适用性。图8表1参11  相似文献   

8.
基于离散单元法的水稻籽粒快速颗粒建模研究   总被引:2,自引:0,他引:2  
[目的]离散单元法(discrete element method,DEM)主要用于离散颗粒物料研究领域,非规则形状颗粒建模耗费大量时间,且模型精度对颗粒间的动力学响应特性有较大影响,故本文采用离散单元法研究水稻籽粒快速颗粒建模方法,旨在提高非规则形状颗粒建模效率及精度。[方法]以‘中早39号’早稻籽粒为研究对象,通过非接触式3D激光扫描法重构籽粒3D模型;采用手动填充颗粒建模方法,设置球体坐标、接触半径及物理半径使填充颗粒模型三轴尺寸及体积接近实际籽粒;采用自动填充颗粒建模方法,对籽粒3D模型划分网格及获取网格单元坐标信息,然后通过工程离散单元法(engineering discrete element method,EDEM)中的应用程序编程接口(API)实现多球快速聚合颗粒建模;通过高斯拟合法对自动填充颗粒建模中的填充参数进行优化分析,并通过籽粒自然堆积角仿真与试验对比验证模型精度。[结果]重构籽粒3D模型与实际籽粒对比尺寸误差均在5%以内;手动填充颗粒模型填充球数164个,耗时约25 h,尺寸误差均在5%以上;自动填充颗粒模型填充球数203个,球体物理半径为1.2 mm时颗粒模型最优,耗时约1 h,尺寸误差除厚度外均在5%以下;自动填充颗粒自然堆积角仿真结果与试验结果误差为0.76%。[结论]基于EDEM中API自动填充颗粒建模方法具有高效、精确等优点,为非规则形状颗粒物料的离散单元法研究提供了一种有效的颗粒建模方法。  相似文献   

9.
基于L-系统规则组合机制的植物建模新方法   总被引:1,自引:0,他引:1  
L-系统是基于植物学规则进行树木建模的经典方法之一,已被广泛地应用于虚拟植物生成与应用中,但在实际建模中还存在规则提取难,建模周期长等问题。针对这个问题提出了L-系统规则组合的建模新方法,该方法利于树木形态及生长规则的复用,从构建基本的分枝结构、叶序、花序和果实等器官不同造型库出发,并结合相关的植物形态学、植物生理生态学知识和野外实测的树木形态因子数据,进行器官模型组合,最终形成树木三维几何模型。最后以龙眼树等为建模实例,基于该方法快速实现了三维建模,取得了较好的效果。目前该方法较适于构建具有复杂器官的高大乔木,还不足以模拟所有的植物,通过介绍该方法,希望在一定程度上降低L-系统建模的难度,达到快速建模的目的。  相似文献   

10.
利用Visual Basic结合ActiveX组件MapX对渔业调查水域进行采样点智能规划的技术、方法和开发流程进行了介绍.所生成的模块能提供以网格为单元对渔业调查水域进行科学规划,实现各调查样区的无缝联结.该系统操作简便,突出了专业特色,节省了购买和学习地理信息系统软件的成本.该模块被应用于太湖水质调查中,通过与用户交互自动生成以网格为单元的采样点及相应的地理坐标参数,为解决传统采样点布设方法中缺乏地理坐标界定的缺陷提供了理想的解决方案.在后期渔业水域调查数据统计中,亦可利用该系统对空间数据和水域调查数据进行管理与统计,自动生成和输出基于调查数据空间分布的专题图.  相似文献   

11.
【目的】果树冠层体积、结构的精准测量可以为药、肥的变量施用和果树估产等提供重要的参考依据。针对植株冠层枝叶空间分布不规则的特点,现有的果树冠层体积实时测量方法测量精度较差,难以准确量化柑橘果树冠层体积及结构,为了实现对果树冠层体积的精准测量,搭建了基于SICK LMS111-10100型激光传感器的果树冠层扫描检测平台,并提出了一种基于不规则三棱柱模块的果树冠层体积测算方法。【方法】研究以5株冠形规则的球形景观树、10株冠形不规则的柑橘树为靶标,分别在0.5、1.0和1.5 m·s-1 3个行进速度下使用常用的长方体分割法、不规则三棱柱分割法等2种方法测算冠层体积,并以人工测量为基准进行误差分析。【结果】长方体分割法测量景观树误差范围分别为4.17%—6.59%、4.56%—7.42%和4.17%—9.86%;不规则三棱柱分割法测量景观树误差范围分别为2.37%—4.63%、3.18%—5.00%和4.10%—5.73%,2种方法测算果树冠层体积相对误差差值范围-0.28%—4.22%,平均差值1.78%。长方体分割法测量柑橘树误差范围分别为11.63%—31.02%、11.88%—33.23%和13.28%—33.30%;不规则三棱柱分割法测量柑橘树误差范围分别为3.25%—6.69%、4.50%—8.31%和5.66%—11.55%,2种方法测算果树冠层体积相对误差差值范围6.43%—26.20%,平均差值13.04%。【结论】不规则三棱柱分割法测算误差明显小于长方体分割法,精度更高;对于同一靶标,当速度为0.5 m·s-1时,2种方法的测量精度最高,随着速度的增加,激光采样点密度下降,相对误差有增大的趋势。当扫描规则靶标时,2种方法精度差异较小;当扫描不规则靶标时,长方体分割法误差较大。长方体分割法处理单帧数据的平均时间为2.86 ms,不规则三棱柱分割法处理单帧数据的平均时间为4.73 ms,均小于激光传感器的扫描周期20 ms,可以达到实时获取并处理数据的目的。  相似文献   

12.
陆面模型为区域农田土壤墒情监测提供了很好的途径,优化选择模型的网格尺度可以最有效地的利用空间输入信息,提高计算效率。本研究以海河平原内的1°×1°(115.5~116.5°(E),38~39°(N))为研究区,运用陆面模型CLM3.0分别在(1/120)~1°的14种不同网格尺度上对2003年3—5月的土壤墒情进行了独立模拟,分析在一定精度的空间输入数据条件下,陆面模型的网格尺度在该区域春季土壤墒情模拟中的优化取值。研究表明,结合模型输入数据的空间分辨率选择合适的网格尺度,可有效地减少计算机浮点计算取舍引起的误差;网格的无限精细并不能提高模拟效果,需要依据土壤砂粒百分含量数据的精度、变程及模拟目的优化选择陆面模型的网格尺度。当仅需要获得区域的土壤墒情平均值时,网格尺度的优化取值在土壤砂粒百分含量数据变程的1.4倍附近;当需要获得区域的土壤墒情空间变异特征时,网格尺度的优化取值在土壤砂粒百分含量数据变程的28%附近;当需要获得区域的土壤墒情空间变异特征及极大值时,网格尺度的优化取值在土壤砂粒百分含量数据变程的19%附近;当需要获得区域的土壤墒情的所有空间统计特征时,网格尺度的优化取值在土壤砂粒百分含量数据的空间最小尺度附近。  相似文献   

13.
【目的】我国于1979—1987年进行了第二次土壤普查(以下简称“二普”),2005—2017年进行了农田耕层土壤养分调查。两次调查均为地面采样量大的全国性调查。两次调查生成数据是我国目前最精细的土壤资源与质量时空数据。通过地统计检验方法,探讨我国在这两次调查中所获土壤质量数据的地统计检验特征,为这些数据用于表征土壤资源与质量时空分布状况,及其在其他行业和研究领域的应用提供参考。【方法】检验方法是在我国东、南、西、北、中不同地域选取7个代表性类型区,提取7片区在两次调查中获得的土壤剖面点和耕层采样点0—20 cm土层的土壤有机质含量。选择土壤有机质含量作为检验指标的原因之一是有机质含量是最重要土壤质量性状之一,其二该要素可量化表达。剖面点数据源于二普对典型土壤类型的剖面采样,采样特征为优先选取典型土壤类型,全国完成了10万个0—100 cm剖面分层采样、化验。经数据整合和多要素匹配,有6万个剖面点获得坐标。耕层采样点数据源于2005—2017年农田耕层养分调查,采样为网格化均衡分布的大样本量,全国完成了1 000万个有GPS定位坐标的耕层样本。每片区含土壤剖面点500—1 300个,耕层采样点50 000—250 000个。用普通克里格插值方法进行地统计分析和检验。对每片区剖面点和耕层采样点数据分别随机选取80%数据作为训练样本集建模,20%作为验证样本集。将验证样本预测值与实测值进行线性回归,计算R 2(决定系数)和RMSE(均方根误差),以此评价两组数据表达土壤要素空间分布特征的可靠性和误差。【结果】剖面数据的地统计检验显示,7片区二普剖面点数据表达的有机质含量分布状况可靠性均达极显著水平,但校验集预测值与实测值相关性较差,R 2值较低,为0.223—0.380,RMSE较高。2005—2017年耕层采样点数据地统计检验显示,通过网格化均衡分布和大样本量的地面采样,耕层采样点所获有机质含量分布图的可靠性和预测精度优于剖面点数据,R 2提高,RMSE下降。两组数据地统计结果还显示:尽管相隔30年,两时段调查展现的土壤有机质含量有一定变化,但两组数据反映的各片区土壤有机质含量空间分布总体规律相似。【结论】当土壤调查为网格化均衡分布的大样本量采样时,就表征土壤要素空间分布特征而言,其可靠性和精度较好;二普生成大比例尺土壤专题图数据(土壤图,有机质含量图,pH图,土壤氮、磷、钾养分含量图)和2005—2017年农田耕层养分调查数据均源于网格化均衡分布的大样本量地面调查,可靠性和精度优于二普剖面点数据。但剖面点含数据类别多,具有点坐标,也有可靠的土壤专题图表达,对了解多类别土壤要素空间分布特征极具价值。二普与农田耕层点养分调查间隔约30年,两时段数据有利于了解土壤质量时空演变。本研究还显示,获取精细土壤质量数据需要进行大样本量地面调查和采样,对于表征土壤类型、土体构造等稳定性要素而言,若地面采样量较小,将难以获得可靠性和精度优于二普的数据。从实际需求和我国已有工作基础考虑,今后土壤调查重点可考虑以土壤功能调查或缺区补漏调查为主。  相似文献   

14.
该文针对造林规划设计过程中需要用到的地形因子,基于组件式GIS二次开发的原理,运用ESRI公司的嵌入式组件开发工具MapObjects,讨论了规则数字网格高程模型与规则数字网点高程模型的建立过程,在此基础上对造林决策支持系统中立地类型划分、林种规划等所依赖的地形信息进行自动提取,并以小班坡向为例进行分析,提出了造林小班地形特征信息提取的最佳方法——基于统计分布理论的最大特征值法,从而有效地实现了地形信息的自动提取,为造林规划设计服务.   相似文献   

15.
[目的]避免和减轻超级杂交稻制种气候风险。[方法]应用数理统计方法建立气候要素值与地理要素值之间的关系模型,确定不同时段温度递减率,然后根据超级杂交稻制种基地气候风险等级指标,结合细网格点的纬度、经度和海拔高度等地理信息数据,进行细网格推算和分析。[结果]当不育系的育性转换临界温度指标为23.5℃时,其无风险制种区域主要分布在祁东、祁阳、常宁、耒阳及阳明山以南的道县、宁远、新田、临武、宜章等地,面积约0.8万km2;低风险区主要分布在湘中及湘东,面积约5.9万km2。[结论]该研究为超级杂交稻制种基地布局提供科学依据。  相似文献   

16.
在数据密集型计算环境中,数据的海量、高维、分布存储等特点,为数据挖掘算法的设计与实现带来了新的挑战。基于MapReduce模型提出网格技术与基于密度的方法相结合的离群点挖掘算法,该算法分为两步:Map阶段采用网格技术删除大量不可能成为离群点的正常数据,将代表点信息发送给主节点;Reduce阶段采用基于密度的聚类方法,通过改进其核心对象选取,可以挖掘任意形状的离群点。实验结果表明,在数据密集型计算环境中,该方法能有效的对离群点进行挖掘。  相似文献   

17.
植物叶片是植物最重要的器官之一,重建高精度的复杂叶片模型对于后续研究具有重要意义。但由于现实中复杂叶片的点云数据存在噪声、孔洞等问题,所以不易重建出高精度的叶片模型。基于激光点云数据的复杂植物叶片重建方法,该方法首先对原始点云数据进行去噪处理,然后采用三角剖分方法生成网格,再对网格进行优化处理,最后对存在孔洞的地方进行修补。结果表明,本方法能够根据激光点云数据快速重建出复杂植物叶片的高精度模型。  相似文献   

18.
为快速测定人工林杨木的综纤维素含量,按国家标准测定了42 个杨木木材样品的综纤维素含量,并用近红 外光谱仪测定相应的光谱。在350 ~ 2 500、1 300 ~ 2 050、2 050 ~ 2 500 nm 3 个不同的光谱区域,采用未处理、 Baseline、一阶导数、二阶导数等光谱预处理方法,再用PLS1、PLS2、PCR 3 种不同建模方法建立相应的校正模型与 交互验证模型。结果表明:当光谱区域为1 300 ~2 050 nm、光谱数据未进行预处理、采用PLS1 的建模方法、主成分 数为8 时,建立的校正模型有最佳预测效果;采用建立的模型对未参与建模的样本进行预测,预测结果与实测结果 间的相关系数为0.818 8。   相似文献   

19.
本文针对数字地面模型(D igital Terrain Model)的建模问题,将高程作为插值变量,通过建立采样点的平面坐标(x,y)及位置因子x2 y2作为输入,对应点的地面高程作为输出的1种描述空间采样数据的BP模型,用人工智能技术研究了1个小区域的高程插值问题。结果表明:基于BP法的人工智能技术可用于DTM的最优空间插值,插值结果可直接用于DTM数字建模,为数字地面模型的建立提供了1种新方法。  相似文献   

20.
为了提高海量林地三维点云数据配准的效率和精度,提出了一种基于快速点特征直方图(fast point feature histograms,FPFH)初始匹配与正态分布变换(normal distributions transform,NDT)精确配准相结合的配准算法。首先计算2个待配准点云的法向量,再使用k-d树结构对点云的FPFH特征进行加速计算。然后,根据2个点云相似的FPFH特征,使用采样一致性初始配准算法(sample consensus initial alignment,SAC-IA)求解初始变换矩阵、完成初始配准。最后,用DNT算法对点云体素化,并使用点云密度概率分布函数进行点云数据的精确配准。结果表明,FPFH-NDT算法的平均配准误差(相应点对的平均距离)为0.032 3 m,运行时间为256.376 s;在0.05~0.1 m的点云采样阈值范围内,FPFH-NDT算法的配准误差基本不受采样阈值变化的影响,其值稳定在0.03 m左右;当采样阈值>0.1 m时,配准误差随采样阈值的增大而增大;算法的配准时间整体上随点云采样阈值增大而减少。传统ICP算法的平均配准误差和时间分别为 0.526 3 m 和14.5 s;FPFH-ICP算法的平均配准误差和时间分别为0.042 5 m和289.346 s。FPFH-NDT算法与传统ICP算法相比在配准精度上有了很大的提高,与FPFH-ICP算法相比,在保证点云的配准精度的基础上,FPFH-NDT算法降低了算法的运行时间,提高了点云配准效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号