首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth responses of nine human intestinal bacteria to liquid culture of Cordyceps militaris Link. Pt. (Ascomycotina: Clavicipitaceae) collected from a pupa of Bombyx mori L. (Lepidoptera: Bombycidae) were examined using spectrophotometric and impregnated paper disk methods and compared to those of tetracycline and chloramphenicol, as well as those of Coptis japonica root-derived berberine chloride. The biologically active constituent of the cultures was characterized as cordycepin (3'-deoxyadenosine) by spectroscopic analysis. This compound revealed potent growth-inhibiting activity toward Clostridium paraputrificum and Clostridium perfringens at 10 microgram/disk without adverse effects on the growth of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium adolescentis, Lactobacillus acidophilus, and Lactobacillus casei, whereas tetracycline and chloramphenicol inhibited the growth of these lactic acid-producing bacteria, clostridia and Escherichia coli. However, C. militaris-derived materials revealed no growth stimulation on the bifidobacteria and lactobacilli. These results may be an indication of at least one of the pharmacological actions of C. militaris. As a naturally occurring antibacterial agent, cordycepin could be useful as a new preventive agent against various diseases caused by clostridia.  相似文献   

2.
The inhibitory activity of Coptis japonica root-derived materials was evaluated against lens aldose reductase isolated from male Sprague-Dawley rats and compared to that of three commercially available isoquinoline alkaloids (berberine sulfate, berberine iodide, and palmatine chloride), as well as quercitrin as aldose reductase inhibitor. The biologically active constituents of C. japonica extract were characterized as the isoquinoline alkaloids, berberine chloride and palmatine iodide, by spectral analysis. The inhibitory effects varied with both chemical and concentration used. The IC(50) values of berberine chloride and palmatine iodide are 13.98 and 13.45 nM, respectively. Among three berberines and two palmatines, the inhibitory activity was much greater for the choridated and sulfated analogues than for those with iodide. Quercitrin was a much more potent inhibitor than berberines and palmatines. Nonetheless, berberines and palmatines may be useful as lead compounds and new agents for aldose reductase inhibition.  相似文献   

3.
The growth-inhibiting activity of anthraquinone-2-carboxylic acid and lapachol identified in the inner bark of taheebo, Tabebuia impetiginosa, toward 10 human intestinal bacteria was evaluated by using a paper disk diffusion bioassay and compared to those of seven lapachol congeners (1,4-naphthoquinone, naphthazarin, menadione, lawsone, plumbagin, juglone, and dichlone) as well as two commercially available antibiotics, chloramphenicol and tetracycline. Anthraquinone-2-carboxylic acid exhibited very strong growth inhibition of Clostridium paraputrificum at 1 microg/disk while 100 microg/disk of lapachol was needed for moderate growth inhibition of the same organism. These two isolates exhibited weak inhibition of Clostridium perfringens and Escherichia coli at 100 microg/disk while no adverse effects were observed on the growth of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium infantis, Lactobacillus acidophilus, and Lactobacillus casei at 1000 microg/disk. Structure-activity relationships indicate that a methyl group in the C-2 position of 1,4-naphthoquinone derivatives might play an important role in antibacterial activity.  相似文献   

4.
Antiphotooxidative components were isolated from the methanolic extract of Coptis japonica Makino by liquid-liquid partitioning fractionation, subsequent column chromatography on Sephadex LH-20 and silica gel, and preparative silica gel TLC. The isolated compounds were identified as coptisine, jatrorrizhine, berberine, and magnoflorine by a combination of spectroscopic studies using UV-visible, IR, mass-spectrometry, and NMR. Coptisine, jatrorrizhine, and berberine isolated from Coptis japonica Makino showed strong antiphotooxidative activity in the chlorophyll-sensitized photooxidation of linoleic acid. However, these compounds did not show either inhibitory activity against lipid peroxidation in rat liver microsomes nor DPPH radical scavenging activity, indicating that their antiphotooxidative activity was not due to the radical chain reaction breaking ability but due to singlet oxygen quenching activity. Commercially available authentic protoberberines (berberine chloride and palmatine chloride) also showed strong antioxidative activity in the chlorophyll-sensitized photooxidation of linoleic acid. The antiphotooxidative activities of the berberine chloride and palmatine chloride were significantly higher than that of ascorbyl palmitate in the chlorophyll-sensitized photooxidation of linoleic acid. These results clearly showed for the first time the antiphotooxidative properties of protoberberines in chlorophyll-sensitized photooxidation of oil.  相似文献   

5.
Among 21 medicinal plants, the growth-inhibiting activity of Pulsatilla cernua root-derived materials toward human intestinal bacteria was examined by using an impregnated paper disk method. The biologically active components of P. cernua roots were characterized as 4-hydroxy-3-methoxycinnamic acid and 3,4-dihydroxycinnamic acid by spectroscopic analysis. The activity was compared with that of six commercially available cinnamic acid derivatives trans-cinnamaldehyde, trans-cinnamic acid, cinnamyl alcohol, 2-methoxycinnamic acid, 3-methoxycinnamic acid, and 4-methoxycinnamic acid. The growth responses varied with each bacterial strain tested. Two isolated compounds revealed a potent inhibition against Clostridium perfringens, and moderate to weak activity against Escherichia coli was exhibited by 4-hydroxy-3-methoxycinnamic acid. Weak or no inhibitory activity was obtained against the bifidobacteria or Lactobacillus acidophilus. The inhibitory effect was much more pronounced in C. perfringens and E. coli as compared to B. adolescentis, B. bifidum, B. fragilis, B. longum, or L. acidophilus. Cinnamaldehyde exhibited a strong growth-inhibiting activity, but no inhibition was observed from treatments with trans-cinnamic acid, cinnamyl alcohol, 2-methoxycinnamic acid, 3-methoxycinnamic acid, and 4-methoxycinnamic acid. These results may be an indication of at least one of the pharmacological actions of P. cernua root.  相似文献   

6.
The selective responses of Ginkgo biloba leaf-derived materials against six intestinal bacteria was examined using an impregnated paper disk method and compared with that of bilobalide, ginkgolides A and B, kaempferol, and quercetin. The components of G. biloba leaves were characterized as kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside), kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside, and quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) by spectroscopic analysis. The growth responses varied with each bacterial strain tested. At 2 mg/disk, kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) and quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) revealed potent inhibition against Clostridium perfringens, and kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside showed a clear inhibitory effect on Escherichia coli. At 0.5 mg/disk, quercetin 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) showed a strong activity against C. perfringens, but weak activity was exhibited by kaempferol 3-O-alpha-(6' "-p-coumaroylglucosyl-beta-1,4-rhamnoside) against C. perfringens and kaempferol 3-O-(2' '-O-beta-D-glucopyranosyl)-alpha-L-rhamnopyranoside against E. coli. No inhibition was observed from treatments conducted with bilobalide, ginkgolides A and B, kaempferol, or quercetin. Furthermore, these isolated compounds did not inhibit Bifidobacterium bifidum, B. longum, B. adolescentis, or Lactobacillus acidophilus.  相似文献   

7.
The characterization of herbal materials is a significant challenge to analytical chemists. Goldenseal (Hydrastis canadensis L.), which has been chosen for toxicity evaluation by NIEHS, is among the top 15 herbal supplements currently on the market and contains a complex mixture of indigenous components ranging from carbohydrates and amino acids to isoquinoline alkaloids. One key component of herbal supplement production is botanical authentication, which is also recommended prior to initiation of efficacy or toxicological studies. To evaluate material available to consumers, goldenseal root powder was obtained from three commercial suppliers and a strategy was developed for characterization and comparison that included Soxhlet extraction, HPLC, GC-MS, and LC-MS analyses. HPLC was used to determine the weight percentages of the goldenseal alkaloids berberine, hydrastine, and canadine in the various extract residues. Palmatine, an isoquinoline alkaloid native to Coptis spp. and other common goldenseal adulterants, was also quantitated using HPLC. GC-MS was used to identify non-alkaloid constituents in goldenseal root powder, whereas LC-MS was used to identify alkaloid components. After review of the characterization data, it was determined that alkaloid content was the best biomarker for goldenseal. A 20-min ambient extraction method for the determination of alkaloid content was also developed and used to analyze the commercial material. All three lots of purchased material contained goldenseal alkaloids hydrastinine, berberastine, tetrahydroberberastine, canadaline, berberine, hydrastine, and canadine. Material from a single supplier also contained palmatine, coptisine, and jatrorrhizine, thus indicating that the material was not pure goldenseal. Comparative data for three commercial sources of goldenseal root powder are presented.  相似文献   

8.
The inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum was investigated using two lipid model systems. All eight strains, including six strains of L. acidophilus and two strains of B. longum, demonstrated an inhibitory effect on linoleic acid peroxidation. The inhibitory rates on linoleic acid peroxidation ranged from 33 to 46% when 1 mL of intracellular cell-free extract was tested. In the second model system, the cell membrane of osteoblast was used as the source for biological lipid. The results indicated that all strains were able to protect biological lipids from oxidation. The inhibition rates on cell membrane lipid peroxidation ranged from 22 to 37%. The effect of L. acidophilus and B. longum on inhibition of fluorescent tissue pigment accumulation was also obtained for osteoblastic cells. The inhibition rates on fluorescent tissue pigment accumulation ranged from 20 to 39%. The antioxidative effect of each milliliter of intracellular cell-free extract of L. acidophilus and B. longum was equivalent to 104-172 ppm of butylated hydroxytoluene (BHT). These results indicated that all strains demonstrated high antioxidative activity. The scavenging ability of lipid peroxidation products, tert-butyl hydroperoxide and malondialdehyde, was also evaluated. The results showed that L. acidophilus and B. longum were not able to scavenge the tert-butyl hydroperoxide. Nevertheless, malondialdehyde was scavenged well by these strains.  相似文献   

9.
The mechanism of enhanced effect of (-)-epigallocatechin-3-gallate (EGCG) on huperzine A's (HUP) inhibition of acetylcholinesterase (AChE) activity in rats was investigated. The inhibitory effects of HUP at 10 and 5 microg/kg on AChE activity were quite weak in the whole phase. In contrast, upon addition of EGCG (100 mg/kg) to the HUP 10 and 5 microg/kg groups, remarkably enhanced inhibitory effects with maximum inhibitory percentages of 90.94 and 88.13% were observed under the same conditions. EGCG also can greatly prolong the inhibitory time. The mechanism of the enhanced effects of EGCG on HUP's inhibition of AChE activity was investigated by steady fluorescence spectroscopy, infrared spectroscopy, and ultraviolet spectroscopy. HUP hardly interacted with the main transport protein, whereas there was a very strong binding interaction between EGCG and bovine serum albumin. The enhanced transport of HUP is a possible cause of the enhanced effect of EGCG on HUP bioactivity.  相似文献   

10.
β-Glucans obtained from barley, seaweed, bacteria, and mushroom sclerotia were incubated with pure cultures of Bifidobacterium infantis, Bifidobacterium longum, and Bifidobacterium adolescentis for a 24 h batch fermentation to evaluate their bifidogenic effect with inulin as the positive control. The pH value in all culture media was decreased by 0.5-1.5 units. All β-glucans supported the growth of the three bifidobacteria with B. infantis, having a relatively larger increase in populations (3-4 log(10) colony forming units). B. infantis produced almost double the amount of total short-chain fatty acids (SCFAs) than the other two bifidobacteria. The SCFA profile of B. infantis had a relatively higher proportion of propionic and butyric acid but less acetic acid than the other bifidobacteria. The utilization of all the β-glucans isolated from different sources regardless of their differences in glycosidic linkages and molecular weight by all three bifidobacteria was comparable to that of inulin.  相似文献   

11.
为研究不同香辛料精油对熟制鸡胸肉中产气荚膜梭菌(C.perfringens)的影响,该文以肉桂精油、艾草精油和茴香精油为研究对象,对C.perfringens标准株(ATCC13124)和分离株(C1)抑菌效果,筛选出抑制最佳浓度,采用BP神经网络构建C.perfringens的生长/残存动力学模型,并以相关系数(R~2)和均方根误差(RMSE)评价模型精度,以期快速预测不同精油浓度条件对C.perfringens影响。结果表明:经肉桂精油处理后的ATCC13124和C1浓度最低,抑制效果最强;采用BP神经网络模型构建不同精油对熟制鸡胸肉中C.perfringens的预测模型,肉桂精油对ATCC13124和C1的R~2分别为0.963和0.976,RMSE分别为0.327和0.271CFU/g,预测效果最佳;利用验证集对模型鲁棒性进行验证,结果表明R~2均在0.917以上,RMSE在0.200~0.640 CFU/g之间,结果表明,BP神经网络模型可以较好的预测熟制鸡胸肉中产气夹膜梭菌的生长/残存情况;为肉类加工过程中控制C.perfringens提供理论依据。  相似文献   

12.
Tumor-associated fatty acid synthase (FAS) is implicated in tumorigenesis and connected to HER2 (human epidermal growth factor receptor 2) by systemic analyses. Suppression of FAS in cancer cells may lead to growth inhibition and cell apoptosis. Our previous study demonstrated that (-)-epigallocatechin 3-gallate (EGCG), the green tea catechin, could down-regulate FAS expression by suppressing EGFR (epidermal growth factor receptor) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/Akt activation in the MCF-7 breast cancer cell line. Herein, we examined the effects of EGCG on FAS expression modulated by another member of the erbB family, that is, HER2 or HER3. We identified that heregulin-beta1 (HRG-beta1), a HER3 ligand, stimulated dose-dependent FAS expression in breast cancer cell lines MCF-7 and AU565, but not MDA-MB-453. The time-dependent increase in FAS expression after HRG-beta1 stimulation was also observed in MCF-7 cells, and this up-regulation was de novo RNA synthesis dependent. Treatment of MCF-7 cells with EGCG markedly inhibited HRG-beta1-dependent induction of mRNA and protein of FAS. EGCG also decreased the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 that were demonstrated as selected downstream HRG-beta1-responsive kinases required for FAS expression using dominant-negative Akt, PI3K inhibitors (LY294002 and wortmannin), or MEK inhibitor (PD98059). FAS induction by HRG-beta1 was also blocked by AG825, a selective HER2 inhibitor, and by genistein, a selective tyrosine kinase inhibitor, indicating the formation of a heterodimer between HER2 and HER3, and their tyrosine kinase activities are essential for HRG-beta1-mediated elevation of FAS. Additionally, growth inhibition of HRG-beta1-treated cells was parallel to suppression of FAS by EGCG. Taken together, these findings extend our previous study to indicate that EGCG may be useful in the chemoprevention of breast carcinoma in which FAS overexpression results from HER2 or/and HER3 signaling.  相似文献   

13.
Liquors from rice husk autohydrolysis, containing xylooligosaccharides (XOS), other saccharides, and nonsaccharide compounds, were refined by membrane processing to increase the proportion of substituted XOS in refined liquors. XOS were assayed for composition and degree of polymerization (DP) distribution and hydrolyzed with commercial enzymes for obtaining XOS with DP in the range of 2-6. Nanofiltered, hydrolyzed liquors were subjected to ion exchange processing to yield a final product containing monosaccharides, XOS (accounting for 55.6% of the nonvolatile solutes), and other nonvolatile compounds. The solution obtained after enzymatic hydrolysis with commercial xylanases (in which 82.8% of XOS were in the DP range of 2-6) was examined as a medium for promoting the growth of Bifidobacterium adolescentis CECT 5781, B. longum CECT 4503, B. infantis CECT 4551, and B. breve CECT 4839. The growth rate of B. adolescentis (0.58 h(-1)) was higher than the ones determined for B. longum, B. infantis, and B. breve (0.37, 0.30, and 0.40 h(-1), respectively). The percentage of total XOS consumption by B. adolescentis was 77% after 24 h, the highest percentage of utilization corresponding to xylotriose (90%), followed by xylobiose (84%), xylotetraose (83%), and xylopentaose (71%).  相似文献   

14.
The production of galactooligosaccharides (GOSs) by transgalactosylation using beta-galactosidase from Bifidobacterium longum BCRC 15708 was studied. Other than lactose, galactose, and glucose, two types of GOSs, tri- and tetrasaccharides, were formed after beta-galactosidase action on 40% lactose. Trisaccharides were the major type of GOS formed. Generally, an increase of the initial lactose concentration in the reaction mixture resulted in a higher GOS production. A maximum yield of 32.5% (w/w) GOSs could be achieved from 40% lactose solution at 45 degrees C, pH 6.8, when the lactose conversion was 59.4%. The corresponding productivity of GOSs was 13.0 g/(L.h). Transgalactosylation activity of beta-galactosidase from a test organism showed a relatively lower sensitivity toward glucose and galactose than that from other organisms. The addition of 5% or 10% glucose or galactose to the reaction mixture did not significantly (p>0.05) reduce the transgalactosylation reaction of beta-galactosidase.  相似文献   

15.
beta-Galactosyl-trehalose oligosaccharides (beta-GTOs) were enzymatically prepared as a mixture of 6-beta-galactosyl-trehalose (1) and 4-beta-galactosyl-trehalose (2) with a 9:1 ratio (w/w). The beta-GTO mixture showed a highly enhanced hygroscopicity as compared to those of trehalose and other sugars used. At 72 h of incubation under 90% relative humidity and room temperature, it had a large increase in weight due to its moisture absorption, which was five times larger than that of trehalose, 1.9 times larger than that of sucrose, and 1.5 times larger than that of maltotriose. It was very effective in the growth promotion of Bifidobacteria, such as Bifidobacterium longum and Bifidobacterium bifidum, which was better than the growth promotion in the cases of trehalose and galactooligosaccharide. It also showed a highly anticariogenic property; it had only 10% cell proliferation of Streptococcus sobrinus for that of the sucrose control and 60% inhibition of insoluble glucan synthesis. Its effectiveness of inhibition was two and 1.5 times better than that of trehalose and one and two times than xylitol, respectively, against cell growth and glucan synthesis. Conclusively, the functionality of the beta-GTO in terms of hygroscopicity, bifidogenicity, and anticariogenicity was considerably improved as compared to that of trehalose. It is thus suggested that the beta-GTO might be applied as an effective humectant and prebiotic substitute with enhanced noncariogenicity in food applications.  相似文献   

16.
Summary In vitro maintenance of plant organs can enhance programs in plant breeding and germplasm resources. In bulbous plants, such as onion (Allium cepa L.) and leek (A. ampeloprasum L.) induction and storage of in vitro bulblets could enable long term maintenance of special genotypes. In vitro cultivated seedlings of onion and leek were induced to form bulblets by increase in sucrose concentration (30, 50, 150 g/1), and addition of benzyladenine (BA-0, 12.5 mg/1), or ethephon (0, 5, 20 days). The highest bulbing ratios were obtained within combinations of sucrose and ethephon treatments. BA caused not only bulb swelling but also an increase of multiple adventitious shoot formation. Increasing the sucrose concentration and treatment with ethephon are used to obtain bulblets for in vitro storage under conditions of slow growth.Abbreviations BA benzyladenine - BDS medium according to Dunstan & Short (1977) - BD maximal basis (bulb) diameter - BI bulbing index - BC basal callus - BS basal sprouting - ND bulb neck diameter  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) plays important roles in the maintenance of cellular redox balance. It was not until recently that the importance of G6PD in regulation of cellular growth and apoptosis emerged. In the present study, we found that G6PD-deficient fibroblasts were more susceptible to peroxynitrite-induced cytotoxicity. Treatment with peroxynitrite generator 3-morpholinosydnonimine (SIN-1) hydrochloride caused apoptosis in human fibroblast in a dose-dependent manner. This was preceded by a decrease in the intracellular level of glutathione (GSH) as well as accumulation of p53. The extent of apoptosis and glutathione depletion were greater in G6PD-deficient fibroblasts than in the normal counterpart. Pretreatment with green tea polyphenol epigallocatechin-3-gallate (EGCG) effectively blocked peroxynitrite-induced glutathione depletion, p53 accumulation, and apoptosis in both normal and G6PD-deficient cells. EGCG, administered to cells alone or as pretreatment, caused activation of Akt. The protective effect was abolished by phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin, and LY294002. Our findings suggest that G6PD deficiency enhances the toxicity of peroxynitrite and that EGCG initiates cell survival signaling via the PI3K/akt pathway.  相似文献   

18.
Protein hydrolysates, prepared by enzymatic digestion of soybean protein and egg white albumin using several proteases, inhibited the crystal growth of calcium carbonate. Each hydrolysate showed different inhibitory activities, suggesting the key role of peptide structures in the inhibition. The deamidation of protein hydrolysates by glutaminase increased not only the inhibitory activity toward the crystal growth of calcium carbonate but also the resistance of the hydrolysates against peptic digestion. Furthermore, the addition of sodium chloride, citric acid, or lactose into the reaction mixture enhanced the inhibitory activity. The protein hydrolysates inhibited both nucleation and crystal growth of calcium carbonate and also affected the crystal morphology.  相似文献   

19.
Epithelial to mesenchymal transition (EMT) is critical for the progression, invasion, and metastasis of epithelial tumorgenesis. Here, we provided molecular evidence associated with the antimetastatic effect of green tea polyphenol epigallocatechin-3 gallate (EGCG) in an oral squamous cell culture system by showing a nearly complete inhibition on the invasion (P < 0.001) of squamous cell carcinoma-9 (SCC-9) cells via a reduced expression of matrix metalloproteinase-2 (P < 0.001) and urokinasetype plasminogen activator (P < 0.001). EGCG exerted an inhibitory effect on cell migration (P < 0.001), motility (P < 0.001), spread, and adhesion (P < 0.001). We performed Western blot to find that EGCG inhibited p-focal adhesion kinase (p-FAK), p-Src, snail-1, and vimentin, indicating the anti-EMT effect of EGCG in oral squamous cell carcinoma. EGCG was also sufficient to inhibit phorbol-12-myristate-13-acetate-induced cell invasion and matrix metalloproteinase-9 expression, as evidenced by its inhibition on the tumor growth of SCC-9 cells in vivo via cancer cell xenografted nude mice mode. These results suggested that EGCG could reduce the invasion and cell growth of tumor cells, and such a characteristic may be of great value in developing a potential cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号