首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In two separate feeding experiments using a total of twenty-four individually housed Ayrshire cows six silages made from perennial ryegrass were offered ad libitum with supplements of concentrates. In Experiment I herbage with a dry matter (DM) concentration of 225 g kg−1 received either formic acid ('Add-F') at the rate of 2·0 litres t−1 or undiluted cane molasses at rates of 10, 20 and 30 litres t−l; the mean daily silage intakes were 9·54, 908, 9·27 and 9·49 kg DM per cow and the daily milk yields, corrected to 40 g fat kg−1, were 23·2, 22·3, 22·8 and 22·9 kg per cow respectively but none of the differences between the four treatments was significant. In Experiment 2 herbage with a DM concentration of 269 g kg−1 received formic acid at a uniform rate of 2·6 litres t−1 either with or without an additional application of molasses at 20 litres t−1; the mean daily silage DM intakes were 8·70 and 9·28 kg per cow and the daily fat-corrected milk yields were 22·2 and 21·9 kg per cow respectively and were not significantly different. In both experiments the effects of the treatments on milk composition were small and not significant. It is concluded that there were no advantages in applying molasses to herbage treated with formic acid, and that the rate of application of molasses to untreated herbage which equated with the formic acid application was 20·30 litres t−l when assessed on the basis of silage composition, intake and milk production.  相似文献   

2.
An experiment was carried out during 1984 to study the effect of treating grass at ensiling with three commercially available inoculant-type additives (H/M Inoculant, Grass Sile and Siron), formic acid (850 g kg−1; Add-F) or no additive on grass preservation, in-silo loss, intake and animal performance. Primary growth grass ensiled from 28–29 May into concrete-walled covered silos was of high dry matter (DM, 234 g kg−1), water-soluble carbohydrate content (WSC. 212 g kg DM−1) and digestibility (MADF, 250 g kg DM−1).
The untreated silage displayed good preservation and with the exception of the Sirontreated silage which showed significantly lower buffering capacity (Be) and volatile fatty acid (VFA) contents than the untreated silage, the application of inoculant-type additives did not improve silage preservation or decrease in-silo DM losses. The formic acid-treated silage displayed significantly lower Be, water-soluble carbohydrate, ash, ammonia nitrogen (g kg total N−1) and lactate contents than the untreated silage.
After a 133 d storage period, silages were offered to finishing beef cattle for an 84-d period. Cattle offered the silages displayed similar and non-significant daily DM intakes, daily liveweight gains, dressing proportions and daily carcass gains. From this experiment it appears unlikely that any of the additives evaluated will improve animal performance relative to a well-preserved untreated silage.  相似文献   

3.
A randomized block experiment was conducted to compare unwilted and wilted grass silages and the effects of the feed additive monensin sodium on the silage intake and performance of finishing beef cattle. Two regrowths from a predominantly perennial ryegrass (cv. S24) sward were ensiled either without wilting or after field wilting for 3 d (dry matter (DM) concentrations 161 and 266 g kg−1 respectively). Both silages were treated with formic acid (2·6 and 30 litre t−1 respectively) and were well preserved. The silages were offered ad libitum to forty-eight Charolais-cross cattle (thirty-two steers and sixteen heifers, mean initial live weight 351 kg) for 145 d. All animals received 2·2 kg concentrates per head daily and half of those on each silage treatment received in addition 200 mg monensin sodium per head daily. Silage DM intake was 5.04, 504. 5·48, 5·63 ± 0.134 kg d−l; fasted liveweight gain was 0·69, 0·77. 0·64 and 0·73 ± 0.033 kg d−l and carcass gain was 0·47, 0·50, 0·40 and 0·45 ± 0·020 kg d−1 for the unwilted silage without and with monensin and the wilted silage without and with monensin respectively. It is concluded that wilting grass of low DM concentration for 3 d prior to ensiling reduced the performance of finishing beef cattle below that obtained from well-preserved unwilted silage in spite of a higher DM intake being achieved with the wilted silage. The inclusion of monensin sodium in a silage-based diet increased performance without significantly affecting feed intake.  相似文献   

4.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

5.
The main object of the experiment was to assess the effect of the relative proportion of non-protein nitrogen (NPN) to total nitrogen in silage on digestion in the sheep. Four unwilted perennial ryegrass silages were made with the addition of formic acid at 0, 2·2, 4·2 and 5·2 litres t-1 to provide foods with NPN proportions reducing from 0·26 to 0·20 of the total N. The digestion of the silages was studied in a 4 × 4 Latin Square experiment with sheep cannulated in the rumen, proximal duodenum and terminal ileum.
Results for organic matter (OM), cellulose and N showed no major difference between silages in their digestion in the rumen, small intestine and caecum and colon, though small differences ( P <0·25) in rumen fermentation pattern and in the proportion of digestible OM disappearing in the small intestine were observed. Concentrations of ammonia N in the rumen and rates of rumen bacterial protein synthesis did not differ significantly between silages and there were no treatment effects on the passage of individual amino acids to the small intestine. The results indicate that the proportions of NPN to total N in the silages examined had little influence on the efficiency of silage N utilization in the rumen or on the passage of undegraded dietary protein to the small intestine.  相似文献   

6.
Four grass silages were made from perennial ryegrass ensiled after a 1h wilt in 2-t silos without additive application, with application of formic acid or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2). Effluent losses were monitored over the ensiling period (130 d).
Analyses of the silage showed that formic acid-treated silage had lower concentrations of lactic acid than the other silages. Both enzyme-treated silages had lower levels of cellulose, acid detergent fibre (ADF) and neutral-detergent fibre (NDF) than the untreated and formic acid treated silages. Effluent production was highest with enzyme-treated silages.
The silages were subsequently fed to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole-tract digestibilities of organic matter constituents were significantly lower ( P < 0·05) with both enzyme-treated silages (untreated; 0·736, formic acid; 0·722, enzyme 1; 0·694, enzyme 2; 0·703). Both untreated and enzyme 2-treated silages sustained higher nitrogen digestibilities (g g−1 intake) (untreated; 0·675, formic acid; 0·636, enzyme 1; 0·630, enzyme 2; 0·662) and N retentions (g d−1) untreated; 16·0, formic acid; 14·0, enzyme 1; 11·6, enzyme 2; 16·6), but none of these differences was significant. When formic acid-treated silage was offered, there was a greater amount of organic matter apparently digested in the rumen (ADOMR). Non-ammonia nitrogen and microbial nitrogen flows at the duodenum were similar on all diets. The efficiency of microbial protein synthesis was highest with enzyme 2-treated silage and lowest with formic acid-treated silage (untreated, 35·4; formic acid, 25·2; enzyme 1, 30·4; enzyme 2, 39·4), but none of these differences were significant.  相似文献   

7.
A mixture of perennial and hybrid ryegrasses(234 g DM kg-1) was forage harvested and ensiled after a 24-h wilt in good ensiling conditions in 2-t capacity silos with no additive application (control) or with the application of either Lactobacillus plantarum , 4 × 106 (g fresh weight of grass)-1, or of 31 formic acid t-1. Sufficient 2-kg capacity laboratory silos were also filled with grass to monitor the changes in chemical composition of the ensiled grass with time. In laboratory silos, inoculation with L. plantarum resulted in a more rapid fall in silage pH ( p < 0.001) and a more rapid production of lactic acid ( P < 0.001) than in the control silage. At the end of the storage period (laboratory silos, 80 d; 2-t silos, 200-300 d), the inoculated silos had lower pH ( p ammonia-N (g kg N1) and acetic acid contents ( p < 0.01) and higher water soluble carbohydrate (WSC), lactic acid (P<00.1) and ethanol ( p < 0.05) contents than the control silage. The formic acid-treated silage had significantly lower contents of ammonia-N (g kg N-1, p < 0.05), acetic and tactic acids (p<0.01) and higher contents of WSC and ethanol ( p < 0.01) than the control silage. When fed to wether sheep, the digestibilities of DM, organic matter and gross energy were not altered by additive treatment. The digestibility of modified acid-detergent fibre was lower for both the inoculated ( P < 0.01) and formic acid-treated silages ( p < 0.05). However, N retention was improved ( p < 0.05) by both additive treatments. Silage intake was improved ( p < 0.01) by additive treatment from 53.4 (control) to 58.0 (inoculated) and 60.4 (formic acid) g DM (kg live weight0.75)-1d-1.  相似文献   

8.
Three grass silages made in sunny weather in early July from second-harvest perennial ryegrass were compared in a 16-week feeding experiment with twelve Ayrshire cows. The silages were either unwilted or wilted with and without conditioning, and had mean dry matter (DM) concentrations of 201, 261 and 272 g kg−1, and in vitro DOMD concentrations of 650, 669 and 672 g kg−1 DM respectively. All the silages had formic acid ('Add-F') applied at a rate of 2.6 litres t−1 and were offered ad libitum plus 6 kg concentrates per cow per d. The daily intakes of silage DM were 905 kg per cow on the unwilted treatment and 9.86 and 9.65 kg on the wilted treatments with and without conditioning respectively. Daily milk yields were 171, 17.6 and 17.4 kg per cow on the unwilted, and wilted with and without conditioning treatments respectively and were not significantly different. Fat concentrations in the milk were not affected significantly by treatment, whereas the crude protein and solids-not-fat concentrations were significantly higher on the wilted than on the unwilted treatment. The efficiency of utilization of metabolizable energy for lactation was 6–7% lower with the wilted than with the unwilted silages and it is concluded that the unwilted silage was superior to the wilted silages as a feed for dairy cows.  相似文献   

9.
The fermentation characteristics and chemical composition of 57 first-cut and 30 second-cut samples of grass silages, made in bunker silos on commercial dairy farms in Wales in 1990, and treated with a nominal 61 t−1 of an acid salt-type additive at ensilage, is described. Typical chemical composition of grass cut for ensilage was 156 g kg−1 dry matter (DM) and 28 g kg−1 water soluble carbohydrate (WSC), with 181 g (kg DM) −1 crude protein (CP) and 232 g (kg DM) −1 modified acid detergent fibre (MADF). The effect of additive use was to produce silages with DM 230 g kg−1 pH 3·93, ammonia N 70 g kg−1 total N, with residual WSC 35 g (kg DM) −1, lactic acid 83 g (kg DM) −1, total acids 118 g (kg DM) −1 and butyric acid 0·7 g (kg DM) −1. No significant differences were found between first- and second-cut silages. Silage fermentation was restricted (i.e. lactic acid less than 60 g kg DM−1) in only 20% of the samples.
It is suggested that on commercial farms the application rate achieved may be insufficient to produce a restricted fermentation.  相似文献   

10.
A second cut of lucerne was wilted to 500 g DM kg−1 and either left untreated (control) or treated with formic acid (4.5 1 fresh forage t−1) or with a commercial inoculum of lactic acid bacteria (105 colony forming units (cfu) g forage−1). The forages were ensiled in 2-t capacity silos for 8 months, and later fed to six lambs (mean initial weight 27.7 ±1.60 kg) in a 3x3 duplicated Latin square with 27-d periods. Portions of the untreated and additive-treated forages were also ensiled in laboratory silos at 25 ° C for intervals up to 42 d. Results from the laboratory silos showed that the major increase in ammonia-N in silage occurred between 40 h and 7 d of fermentation; during this period, both formic acid and the inoculant produced a smaller increase in ammonia-N, than did the control. The pH of inoculated silage declined from 5.74 to 4.57 in 7 d, but it took 14 d for the pH of the control silage to fall below 5.0. Formic acid treatment immediately reduced the silage pH from 5.74 to 5.10 ( P < 0·01); the pH then remained unchanged until 21 d, after which it decreased slightly. When compared with control, lambs fed formic acid-treated silage consumed more ( P < 0·05) digestible organic matter; the response was associated with a trend towards decreased concentration of ammonia in plasma. Inoculation of lucerne silage did not ( P < 0·05) affect voluntary intake but increased ( P <0.05) apparent digestibility of fibre and tended to increase N retention.  相似文献   

11.
Two silages were made from primary growth perennial ryegrass and ensiled after the application of either formic acid or an enzyme mixture of cellulase and hemicellulase. Silage analysis showed both silages to be well preserved with low pH of 3·70 and 3·62 for the formic and enzyme treatments respectively. Formic acid-treated silage had a higher total amino acid concentration than enzyme-treated silage. The silages were offered to growing steers either as the sole diet or supplemented with rapeseed meal at 60 g or 120 g fresh weight kg−1 silage DM offered, in a 6 × 6 Latin square arrangement.
Non-ammonia nitrogen and microbial nitrogen flows at the duodenum (g d−1) were significantly ( P < 0·05) increased by supplementation of enzyme-treated silage compared with formic acid-treated silage (enzyme, 83·6, 58·7; enzyme + 60 g, 101·7, 75·3; enzyme + 120 g, 112·5, 80·7; formic, 91·9, 63·7; formic + 60g, 88·3, 67·9; formic + 120 g, 95·5, 67·1) respectively. Efficiencies of microbial protein synthesis were increased for supplemented enzyme-treated silage diets and values were reduced for supplemented formic acid-treated silage diets compared with the silage only diets (enzyme, 27·9; enzyme + 60 37·7; enzyme + 120 g, 38·6; formic, 33·7; formic + 60g, 31·2; formic + 120 g, 28·8). Total amino acid flow at the duodenum increased with supplementation of both silages; however, microbial amino acid flow increased significantly ( P < 0·05) with supplementation of enzyme-treated silage compared with formic acid-treated silage diets. Significantly greater amounts of cystine, methionine, alanine, valine and aspartic acid entered the small intestines of animals receiving supplemented enzyme silages compared with supplemented formic acid silages.  相似文献   

12.
A total of 1009 samples of silage made in bunker silos on commercial farms between 1972 and 1978 was analysed to investigate the effect of herbage water-soluble carbohydrate content (WSC) and weather conditions at ensilage on fermentation as measured by ammonia-N concentration and pH of first-cut grass silages.
Silage dry matter (DM) content had the major effect on fermentation. Factors influencing silage DM were rainfall and hours of sunshine during silage making, and DM content of the grass cut. WSC content of herbage ensiled also had a significant effect on subsequent fermentation. The major influences on herbage WSC were hours of sunshine and rainfall during the growing season.
The effect of chemical additives, albeit at poorly defined and often inadequate rates, was small in comparison to that of silage DM.
The minimum DM necessary to produce well-fermented silage without additive was approximately 260 g kg−1. Use of formic acid significantly reduced this requirement to 240 g kg−1 and to 252 g kg−1 for sulphuric add + formalin. The results indicate that the minimum herbage WSC necessary to prevent a clostridial fermentation developing in silage with a DM content of 230 g kg−1 is approximately 37 g kg−1 without additive and 30 g kg−1 with formic acid.
It is concluded that on commercial farms, weather conditions i.e. amount of rainfall and sunshine prior to and at ensilage, have a greater effect on subsequent silage fermentation than additive use.  相似文献   

13.
Perennial ryegrass, harvested as second-cut material on 10 and 11 July 1990, was treated with either formic acid at 31 t-1 or an acid-salt type additive at 61 t-1 and ensiled in roofed 150 t bunker silos. Subsequently both silages underwent a predominantly lactic fermentation. Nevertheless the acid-salt-treated silage had a significantly higher quantity of formic acid (19 vs 12 g kg DM-1) and significantly lower levels of lactic (98 vs 118 g kg DM-1) and acetic acid (11 vs 17 g kg DM-1) compared with formic acid-treated silage. In-silo losses and effluent production were similar.
Each silage was individually fed to 10 October-calving Friesian dairy cows (average weight 565 kg) from weeks 2 to 15 of lactation, together with 3 kg d-1 of a compound feed containing 190 g kg DM-1 crude protein and with an estimated metabolizable energy content of 12·6 MJ kg DM-1. The acid-salt additive had no significant effect on silage DM intake, daily milk yield, milk protein or cow liveweight change, but significantly increased milk butterfat content compared with formic acid-treated silage.
It is concluded that the acid-salt type additive produced little difference in terms of either silage fermentation or animal performance compared with formic add treatment.  相似文献   

14.
Silages were made from the first cut of a predominantly perennial ryegrass sward. The silages were either untreated (W) or treated with formic acid (31 t−1, F) or with 106 lactic acid bacteria (LAB) g−1 grass of each of three strains alone (A. Lactobacillus plantarum MTD1; B, Pediococcus species 6A2; C, L. plantarum 6A6) or in combination (AB. AC) to give seven treatments. The silage fermentation in 10-kg silos was followed chemically and microbiologically and the nutritive value of selected treatments evaluated using 2-t silos.
The control silage (W) fermented well. Addition of formic acid restricted fermentation and produced a silage with a high ethanol concentration. After day 4, all inoculated silages had lower pH values and higher lactic acid concentrations and a higher ratio of lactic acid to acetic acid than the control silage. Chemically there was little difference between the inoculated silages in terms of final composition. Microbiologically the LAB applied in treatments B and C dominated the LAB populations in those silages when applied alone; however, they were suppressed when applied in combination with inoculant A.
When fed to sheep, the intake of the formic acid-treated silage was significantly ( P < 0·01) lower than that of the other silages and the intake of silage treated with inoculant A significantly ( P < 0·001) higher than that of silages treated with inoculants B and C. The apparent organic matter ( P < 0·001) and nitrogen ( P < 0·01) digestibilities of the formic acid-treated silage were also significantly lower than those of the other silages.  相似文献   

15.
Data from twenty-two comparisons carried out at ADAS Experimental Husbandary Farms are used to compare untreated and formic acid-treated silages. Additive treatment led to an improved fermentation in some crops, particularly those of low DM concentration (<262 g kg-1). Where this occurred there were associated benefits in silage digestibility (+0·234 units), intake (+16%) and the growth rate of young cattle (+0·28 kg d-1). Where the fermentation of the untreated silage was good, both digestibility and animal performance associated with treated and untreated silages were similar. It is suggested that the justification for using formic acid in a commercial situation is thus restricted to occasions where the untreated crop would be liable to develop a clostridial fermentation. These may be when crops contain less than 35 g water-soluble carbohydrate kg-1.  相似文献   

16.
Ensiling of manured crops—effects on fermentation   总被引:1,自引:0,他引:1  
The quality of silage from crops fertilized with cattle manure and an inorganic fertilizer was compared in experiments from 1985 to 1989. Manure was spread either as farmyard manure (FYM, 25t ha−1) or as slurry (20-50t ha−1). Crops were direct cut (approximately 200 g DM kg−1) or wilted (approximately 300 g DM kg−1), precision chopped and ensiled in experimental silos. Silage was treated with 4 kg 85% fonnic acid t−1 fresh matter (FM), an inoculant or no additives. The use of manure, particularly FYM, resulted in more Bacillus spores on crops at harvest compared with fertilized crops. Clostridium spores increased as a result of manuring in 1989 only on FYM-treated crops. Differences in the chemical composition of crops were usually small between fertilizer treatments. The quality of silage from slurry-dressed crops, compared with that of silage from fertilized crops, varied between years. The FYM resulted in reduced silage quality, i.e. high pH values (> 4·5), high ammonia N (> 150 g kg−1 total N) and butyric acid (> 6·3 g kg−1 water) concentrations, and high numbers of Bacillus (105 g−1 FM) and Clostridium spores (105 g−1 FM). The concentration of lactic acid was low (≤ 12 g kg−1 water). Wilting and additives generally improved silage quality and reduced the differences between treatments. However, the efficiency of the inoculant on farmyard manured crops was limited.  相似文献   

17.
RESEARCH NOTE     
Data from twenty-two experiments conducted at tour ADAS Research Centres during 1980–92 were used to compare untreated silages with silages treated with formic acid, with or without added formalin, commercial inoculants or molasses. The sillages were made from herbage whose dry-matter (DM) and water-soluble carbohydrate (WSC) contents were 277 (s.e. 0.46) g DM kg−1 and 36 (s.e. 8.1) g kg−1 respectively. Inoculant use significantly decreased silage pH and ammonia-N, significantly increased lactic acid and total acid content, and decreased butyric acid and total short-chain fatty acids. Formic acid use significantly increased silage lactic acid and total acid content, and decreased butyric acid content, whereas formic acid+formalin significantly decreased silage ammonia-N level. Molasses had little effect upon silage fermentation. Improvements in silage fermentation, however, produced little benefit in terms of either silage DM intake or liveweight gain when the silages were offered to growing lambs.
It is suggested from the results that inoculant- and formic acid-based additives can be used to improve the fermentation of big-bale silages.  相似文献   

18.
Three grass silages were made from perennial ryegrass ensiled without additive application (U) or with the application of formic acid (F) or an enzyme mixture of hemicellulases and cellulases (E).
Analysis of silages showed that both untreated and enzyme-treated silages had higher lactic acid concentrations than formic acid-treated silage. Enzyme-treated silage had lower levels of ADF and NDF but higher concentrations of residual WSC than other silages.
The silages were fed to growing steers supplemented with either rapeseed meal (RSM) (60 g kg−1 silage DM) or fishmeal (FM) at a level isonitrogenous with RSM diets, so providing six diets (UR, UF, ER, EF, FR, FF). Organic matter intakes were similar, but ADF intakes were significantly ( P < 0·001) lower with enzyme-treated silage diets (UR, 1163; UF, 1160; ER, 1104; EF, 1035; FR, 1216; FF, 1213), as were intakes of NDF ( P < 0·01) (UR, 1946; UF, 1955; ER, 1877; 1772; FR, 2031; FF, 2041). Apparent whole tract digestibilities of organic matter were significantly ( P < 0·001) higher with enzyme-treated silages (UR, 0·644, UF, 0·644; ER, 0·668; EF, 0·678; FR, 0·633; FF, 0·633). Liveweight gains were generally higher with treated silage diets and RSM supported a greater response than FM (UR, 0·496; UF, 0·498; ER, 0·567; EF, 0·489; FR, 0·543; FF, 0·506) with both enzyme and formic acid-treated silages, although none of these differences were significant.  相似文献   

19.
In three separate feeding experiments using a total of twenty-six individually-housed Ayrshire cows, three wilted silages made from Blanca white clover were offered ad libitum with either different supplements or different proportions of grass silage. The clover silages contained 680 g white clover kg−1 on a DM basis, and had a mean DM concentration of 263 g kg−1 with 231 g CP kg−1 DM and 91 g ammonia-N kg−1 N. The pH values averaged 4·16 and the DOMD concentrations 611 g kg−1. In experiment 1 the daily intake of clover silage given alone was 15.2 kg DM per cow, i.e. 30·1 g kg−1 live weight, and decreased by 0·76 kg DM kg−1 barley DM and by 0·66 kg DM kg−1barley plus soybean meal DM when these feeds were offered as supplements. Milk yield and fat concentration were higher on the supplement treatments than on the clover silage-only treatment. In experiments 2 and 3 the intakes of silage and total DM increased as the weight of clover in the diet increased from 0 to 700 g kg−1 with parallel increases in milk yield. The effects on milk composition were small and generally non-significant. Although white clover silages with excellent fermentations were made, it is concluded that the main role of white clover in a silage system will be in mixed swards with grass to reduce the input of fertilizer N and to increase the voluntary intake of silage.  相似文献   

20.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号