首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AFA and F17 are afimbrial and fimbrial adhesins, respectively, produced by pathogenic Escherichia coli strains in domestic animals. F17-related fimbriae are mainly detected on bovine and ovine E. coli associated with diarrhoea or septicaemia. The F17-G adhesin subunits recognize N-acetyl-D-glucosamine (GlcNAc) receptors present on bovine intestinal cells. Some F17 subtypes also bind to GlcNAc receptors present on human uroepithelial and intestinal Caco-2 cells or to the laminin contained in the basement of mammalian membranes. F17 is often associated with other virulence factors (aerobactin, serum resistance, CNF2 toxin, K99, CS31A or AFA adhesins) on pathogenic E. coli. A cluster of only four genes is required to synthesize functional F17-related fimbrial structures. The hypothesis of multifunctional F17 fimbrial subunits is supported by the fact that: i) the N-terminal part of the adhesin subunit participates in receptor recognition, whereas the C-terminal part is required for biogenesis of the fimbrial filament; and ii) the interaction between structural and adhesin subunits seems to be crucial for the initiation of monomer polymerization. Recently, determinants related to the afa gene clusters from human pathogenic E. coli associated with intestinal and extra-intestinal infections were identified in strains isolated from calves and piglets with diarrhoea and septicaemia. Two afa-related gene clusters, designated afa-7 and afa-8, that encode afimbrial adhesins were cloned and characterized from bovine pathogenic E. coli. These animal afa gene clusters were plasmid and chromosome borne and were expressed by strains that produced other virulence factors such as CNF toxins, F17, PAP and CS31A adhesins. A high frequency of afa-8 and a low prevalence of afa-7 among bovine E. coli isolates were suggested by preliminary epidemiological studies. As with the human afa gene clusters, the animal ones encode an adhesive structure composed of two proteins: AfaE which mediates adhesion to epithelial cells and AfaD which is an invasin.  相似文献   

2.
Necrotoxigenic Escherichia coli (NTEC) are associated with intestinal and extraintestinal diseases in animals and human beings and produce Cytotoxic Necrotizing Factor 1 (CNF1) or 2 (CNF2). Fourty-three NTEC1, 42 NTEC2, and 32 CNF-negative isolates from cattle were tested by colony DNA hybridization, by plasmid DNA hybridization and by PCR assays for the presence of DNA sequences homologous to the operons coding for fimbrial (PAP/PRS, SFA/FIC, and F17) and afimbrial (AFA/Dr) adhesins of extraintestinal E. coli. Most NTEC1 isolates hybridized with the PAP probes and either the SFA probe (37%) or the AFA probes (49%). Most NTEC2 isolates, in contrast, hybridized with the F17 probe (45%), the AFA probes (19%), or the F17 and AFA probes (22%). A probe-positive plasmid was identified in each of the 19 NTEC2 isolates studied. They all hybridized with the CNF2 toxin probe (Vir plasmids) and most of them with the F17 (6 plasmids) or AFA (7 plasmids) probes. PCR amplification was obtained with 6 of the 11 NTEC isolates tested for the papGII/prsG genes; with all 5 NTEC isolates tested for the sfa and related operons; but with none of the 18 NTEC isolates tested for the afa and related operons. pap-, sfa-, and afa-related sequences are thus present in NTEC isolates from cattle in addition to f17-related operons and may code for adhesins corresponding to specific colonization factors. f17- and afa-related sequences can be located on the Vir plasmids along with the cnf2 gene. Existence of new variants of the AFA/Dr family is evident from the negative results of this family-specific PCR assay.  相似文献   

3.
Necrotoxigenic Escherichia coli (NTEC) isolated from animals and humans can belong to the same serogroups/types and produce or carry the genes coding for fimbrial and afimbrial adhesins of the same family, P, S, F17, and/or AFA, raising the question of a potential zoonotic source of human infection. The main purpose of this study was to compare 239 NTEC1 strains (45 from cattle, 65 from humans and 129 from piglets) and 98 NTEC2 strains from cattle, using a uniform and standardized typing scheme. The O serogroups and the biotypes recognized amongst NTEC1 and NTEC2 strains were quite varied, although some were more frequently observed (serogroups O2, O4, O6, O8, O18, O78, and O83 and biotypes 1, 2, 5, 6, and 9). Hybridization, results with gene probes for the P family (PAP probe), S family (SFA probe), AFA family (AFA probe), F17 family (F17 probe) of fimbrial and afimbrial adhesins, could differentiate most NTEC1 strains, which are PAP-, SFA- and/or AFA-positive, from NTEC2 strains, which are mainly F17- and/or AFA-positive, but were of no help in differentiating between NTEC1 strains from cattle, humans, and piglets. All but seven (98%) NTEC1 and NTEC2 strains were serum resistant, 199 (59%) produced an aerobactin, and colicin (I, V, or unidentified) was produced by 22-34% of them. On the other hand, more than 90% of the NTEC1 strains were haemolytic on sheep blood agar compared with only 40% of the NTEC2 strains. Production of a classical haemolysin, active on sheep erythrocytes, and hybridization with the PAP probe were associated in a majority of NTEC1 strains (63-81%), but very rarely in NTEC2 strains (3%). Production of enterohaemolysin and hybridization with the PAP probe were much less frequently associated in NTEC strains (1-9%). It was thus possible neither to completely differentiate NTEC1 strains from cattle, humans, and pigs, nor to define a signature for the NTEC strains. Necrotoxigenic E. coli must still be identified on the basis of the production of the Cytotoxic Necrotizing Factors 1 or 2 (or of their encoding genes) and complete differentiation of NTEC1 strains from cattle, humans, and piglets, use additionnal methods.  相似文献   

4.
A total of 720 Escherichia coli strains isolated from diarrheic piglets on 756 swine farms were screened for the presence of the enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) gene by polymerase chain reaction (PCR). Escherichia coli strains that carried EAST1 genes were also tested by PCR for the presence of 4 fimbriae (F4, F5, F6, F41), 2 heat-stable enterotoxins (STa and STb), and 1 heat-labile enterotoxin (LT) gene. One hundred sixty-four (22.7%) of the 720 E. coli isolates carried genes for EAST1. Of these 164 isolates, 62 (37.8%) carried EAST1 genes only, 11 (6.7%) carried genes for at least 1 of the fimbrial adhesins, 51 (31.1%) carried genes for at least 1 of the enterotoxins, and 40 (23.8%) carried genes for at least 1 of the fimbrial adhesins and enterotoxins. Forty-six percent of strains that carried EAST1 genes carried STa genes, and 16% of strains that carried EAST1 genes carried F4. The isolation rate of enterotoxigenic E. coli strains carrying genes for EAST1 gene was 63%. The 6 major genotypes observed in this study (in decreasing order) were EAST1+, EAST1+STa+, EAST1+STa+STb+, EAST1+STa+F5+, EAST1+STa+F4+, and EAST1+STb+F4+. EAST1 is widely prevalent among diarrheagenic strains of E. coli and may represent an important virulence determinant in the pathogenesis of enteric colibacillosis of preweaned pigs.  相似文献   

5.
Putative colonization factors of the F17 family of fimbrial adhesins have been identified in necrotoxigenic Escherichia coli Type 1 and Type 2 (NTEC1 and NTEC2) from calves, pigs, and humans. The f17A and f17G gene variants, coding respectively for the major subunit and for the adhesin of the F17 fimbriae, were typed in 70 E. coli carrying f17-related sequences (15 NTEC1, 51 NTEC2, and four non-NTEC) by colony hybridisation with gene probes derived from the different f17A gene variants (a, b, c, and d) and by PCRs specific for each f17A and f17G (I and II) gene variants. Typing of f17A genes was not possible by colony hybridisation, as most 70 E. coli were positive with more than one gene probe. On the other hand, the PCRs allowed the typing of the f17A gene in 37 E. coli and of the f17G gene in all 70 E. coli. The f17Ab gene variant was detected in 13 NTEC2; the f17Ac, in all 15 NTEC1, six NTEC2 and two non-NTEC; and the f17Ad, in one non-NTEC. Seven additional NTEC2 were positive with the PCRs for two variants: f17Ab and f17Ac in three of them; f17Ac and f17Ad in four of them. Either these seven NTEC2 harbour two variants or the variant present can be detected by two PCRs. The remaining 25 NTEC2 and one non-NTEC tested negative with the PCRs for the four f17A gene variants, suggesting the existence of other variant(s). In contrast, all 70 E. coli were positive with the PCR for the f17GII gene variant and none with the PCR for the f17GI gene variant. The f17-related sequences were present on the CNF2/Vir plasmids in 27 out of the 46 NTEC2 from which plasmid DNA could be extracted: all but one of those positive for the f17Ab gene variant and various proportions of those positive for other variants. In contrast, no plasmid carried f17-related sequences in NTEC1 and non-NTEC.  相似文献   

6.
To investigate the association of pathogenic Escherichia coli fimbrial adhesins with the development of diarrhoea in piglets of different age groups and to test their relative competitiveness, piglets were orally inoculated with a mixture of E. coli strains harbouring F4, F5, F6, F18 and F41 fimbrial genes. A total of 537 E. coli strains with haemolytic activity were isolated from 36 diarrhoeic piglets. The F4 fimbrial gene was observed in 98.5%, 97.6% and 80.6% strains carrying fimbrial genes isolated from diarrhoeic piglets that were infected at 1, 3 and 5 weeks of age, respectively. These data demonstrate that F4 fimbriae are highly associated with diarrhoea in piglets of all age groups. Interestingly, the F18 fimbrial gene was observed in 2.4% and 25.4% strains carrying fimbrial genes isolated from the 3- and 5-week-old groups, respectively, which confirms that F18 fimbriae are associated with diarrhoea in piglets from late stages of suckling to post-weaning, and are more related to diarrhoea in weaned than in unweaned piglets.  相似文献   

7.
The adhesin-involved-in-diffuse-adherence (AIDA) afimbrial adhesin is produced by human, but not by animal, Escherichia coli, with the exception of German porcine verotoxigenic Escherichia coli (VTEC) [Clin. Diagn. Lab. Immunol. 8 (2001) 143]. Presence and localisation of DNA sequences (aidA) coding for and production of an AIDA adhesin were investigated in a collection of Belgian VTEC and non-VTEC E. coli isolated from piglets at weaning time. The 174 isolates were also studied by colony hybridisation for the presence of DNA sequences coding for the Stx2e verocytotoxin and the F18 fimbrial adhesin (fed): 71 were Stx2+F18+AIDA+, 26 were F18+AIDA+, 12 were AIDA+, two were Stx2+AIDA+, and one was Stx2+ only. Fifty-four of the 58 (F18+)AIDA+ isolates tested positive in a western blotting assay with an immune serum raised against the AIDA protein. Hybridisation with the AIDA gene probe on plasmid DNA profiles identified a probe-positive plasmid band in the 10 AIDA+ and in 24 of the 25 F18+AIDA+ isolates studied. Moreover in F18+AIDA+ isolates, only one plasmid band hybridised with both F18 and AIDA probes. These results confirm the presence of aidA-related genes in not only VTEC, but also non-VTEC, isolates from piglets and the production of an antigenically AIDA-related protein by the majority of probe-positive E. coli. Moreover the plasmid DNA hybridisation results suggest a localisation on the same plasmid of the aidA- and fed-related DNA sequences.  相似文献   

8.
A total of 604 Escherichia coli strains isolated from weaned pigs with diarrhea or edema disease on 653 swine farms were screened for the presence of the adhesin involved in diffuse adherence (AIDA) gene by polymerase chain reaction (PCR). Escherichia coli isolates that carried AIDA genes were also tested by PCR for the detection of 5 fimbriae (F4, F5, F6, F18, and F41), 3 heat-stable (STa, STb, and EAST1) and 1 heat-labile (LT) enterotoxin, and Shiga toxin 2e (Stx2e) genes. Forty-five (7.5%) of the 604 E. coli isolates carried the gene for AIDA. Of these 45 isolates, 5 (11.1%) carried EAST1 genes only, 1 (2.2%) carried genes for at least one of the fimbrial adhesins, 12 (26.7%) carried genes for at least one of the toxins, and 27 (60%) carried genes for at least one of the fimbrial adhesins and toxins. Fifty-one percent of strains that carried AIDA genes carried Stx2e genes, and 40% of strains that carried AIDA genes carried F18ab. The isolation rate of enterotoxigenic E. coli strain carrying genes for AIDA was 87%, and the isolation rate of Shiga toxin-producing E. coil strain carrying genes for AIDA was 49%. AIDA may represent an important virulence determinant in pigs with postweaning diarrhea or edema disease.  相似文献   

9.
Duplex real-time PCR assays were used as modules to cover partially automated detection of 12 genes encoding adhesins, enterotoxins and Shiga toxins in faecal E. coli isolates. For this a total of 194 E. coli isolates from pigs suffering from post-weaning diarrhoea (PWD), including 65 isolates with haemolytic activity, and 83 isolates from calves with diarrhoea were examined. Data obtained by PCR were compared with O-typing and with haemolytic activity as indirect virulence markers. E. coli O-types O139:K82, O141:K85, and O149:K91 accounted for 43.8% (n = 85) of all porcine strains and for 55.4% (n = 36) of the porcine strains, which exhibited haemolytic activity. These strains carried virulence genes by 65.9% (n = 56) and 80.6% (haemolytic E. coli, n = 29), respectively. The E. coli O-types O139:K82 and O141:K85 were significantly associated with the adhesin gene F18, and O149:K81 with the F4 gene. In this context, detection of the gene encoding F18 was coupled predominantly with the genes responsible for the production of the toxins ST-I, ST-II and Stx2, and the F4 gene with those of the enterotoxins ST-I, ST-II and LT. Both virulence patterns were detected more pronounced in E. coli strains with haemolytic activity. Fifty-six of a total of 83 E. coli isolates originating from calves were O-typed as O101 (O101:K28, O101:K30, O101:K32; n = 29), O78:K80 (n = 23), and O9:K35 (n = 4). Most of the E. coli O78:K80 strains carried the F17 gene (69.6%, n = 16). Virulence genes encoding for F4, F5 or ST-I were detected only in single cases. Intimin and Shiga toxin genes that are present in enterohaemorrhagic E. coli (EHEC) were not detected.  相似文献   

10.
A total of 476 Escherichia coli isolated from weaned pigs with diarrhea and/or edema disease were screened for the presence of the enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) gene by polymerase chain reaction (PCR). E. coli strains that carried EAST1 genes were also tested by PCR for the presence of genes for five fimbriae (F4, F5, F6, F18 and F41), two heat-stable (STa and STb) and one heat-labile (LT) enterotoxin, and Shiga toxin 2e (Stx2e). One hundred and forty nine (31.3%) of the 476 E. coli isolates carried the gene for EAST1. Of these 149 isolates, 66 (44.3%) carried the east1 gene only and 83 (55.7%) carried genes for the fimbrial adhesins or enterotoxins. E. coli which carried east1 gene also possessed genes for STa or F4 frequently. EAST1 may represent an additional determinant in the pathogenesis of E. coli diarrhea in weaned pigs.  相似文献   

11.
Polymerase chain reaction for 4 fimbriae (F4, F5, F6, F41), 2 heat-stable enterotoxins (STa, STb), and 1 heat-labile enterotoxin (LT) were performed on 400 Escherichia coli isolates to determine their genotype prevalence among enterotoxigenic E. coli isolates from preweaned pigs with diarrhea in the Republic of Korea. A total of 200 of the 400 E. coli isolates were also selected for characterization of the O serogroup. Of these 200 isolates, serogroup could be determined in 139 (69.5%) but not in 61 isolates (30.5%). Isolates of serogroup O101 were the most common, followed in descending order by 08, 020, 0162, 0141, and 0149. Ninety-seven (24.3%) of the 400 E. coli isolates carried genes for at least 1 of the entertoxins or fimbrial adhesins. Of these 97 isolates, 27 carried genes for at least 1 of the fimbrial adhesins and entertoxins. Sixty-six percent of the isolates that carried fimbrial adhesin genes carried genes for at least 1 of the enterotoxins, and 71% of the isolates that carried enterotoxin genes carried genes for at least 1 of the fimbrial adhesins. Genes for the F6 fimbriae were detected in 6% of the E. coli isolates, and F4+, F41+, and F5+ genes were detected in 4.3%, 3.3%, and 2% of the isolates, respectively. Genes for STa, STb, and LT were detected in 10%, 8.5%, and 4.3% of the isolates, respectively. The 6 major genotypes observed in this study (in decreasing order) were F6+, STb+, F41+, STa+STb+, F6+STa+, and STa+.  相似文献   

12.
E. coli strains isolated from pigs with postweaning diarrhea or edema disease were tested by phenotypic and genotypic methods for the presence of virulence antigens and genes, respectively. The slide agglutination and ELISA analyses were used for determination of F4, F5, F6, F17, and F41 fimbriae whereas the prevalence of fimbrial fedA and toxin eltI, estI, estII, stx1, stx2 and stx2e genes were recorded by the means of PCR. Only F4 antigen (ac variant) was found in strains of the serogroup O149:K91 isolated from pigs with diarrhea. PCR analyses showed that the fedA gene encoding F18 fimbriae was present in 61.9% of strains isolated from pigs with diarrhea and in 84.2% of strains isolated from pigs with edema disease. The eltI genes encoding heat-labile toxin I (LTI) were present only in 9 out of 21 strains recovered from pigs with diarrhea. Shiga toxin 2 variant (stx2e) genes were found in six isolates from edema disease and also in one strain from diarrhea. The PCR test used in the study was a sensitive and valuable method for determination of virulence factors of E. coli strains.  相似文献   

13.
The presence of the astA gene responsible for production of enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1) was examined in E. coli strains isolated from pigs with postweaning diarrhoea. Two hundred and seven isolates were tested using PCR for the astA marker and for heat-labile I (LTI), heat-stable I (STI), and heat-stable II (STII) enterotoxin genes. Moreover, the isolates were also analysed for their serotypes (O and K antigens) as well as for fimbrial adhesins using agglutination methods. It was shown that 96 (46.4%) of the isolates possessed the astA genetic determinant. The most common EAST1-positive E. coli serotype was O149:K91 and these strains were mostly LTI/STII-positive. A close correlation between the presence of F4 fimbriae and the EAST1 gene was also observed: 88 of 96 (91.7%) astA(+) isolates tested possessed the F4 antigen. Thus, EAST1 enterotoxin may represent an additional virulence determinant playing a role in the pathogenesis of porcine colibacillosis.  相似文献   

14.
Colony hybridizations with DNA probes for 3 heat-stable (STaP, STaH, and STb) enterotoxins and 1 heat-labile (LT) enterotoxin and for 4 adhesins (K99, F41, K88, 987P) were performed on 870 Escherichia coli isolates to determine pathotypes prevalent among enterotoxigenic E coli (ETEC) isolated from cattle in Belgium. One hundred thirty-two E coli isolates (15.2%) hybridized with probes STaP, K99, and/or F41. The 5 other probes were not hybridized by E coli isolates. Therefore, only STaP enterotoxin and K99 and F41 adhesins were virulence factors of ETEC isolated from cattle. Two major pathotypes accounted for 95% of the ETEC: STaP+K99+F41+ (67.4%) and STaP+K99+ (27.3%). The last 5% of probe-positive isolates had STaP+, STaP+F41+, or K99+F41+ minor pathotypes. Of 12 American ETEC isolates also assayed, 7 were positive with STb and/or 987P probes (pathotypes STaP+STb+, STaP+ 987P+, or STaP+STb+987P+) and may be porcine- rather than bovine-specific enteropathogens. The remaining 5 American ETEC isolates belonged to 3 minor pathotypes (STaP+, STaP+F41+, and K99+F41+) also found among Belgian E coli isolates. Such isolates may be derivatives of STaP+K99+F41+ or STaP+K99+ ETEC after in vivo or in vitro loss of virulence genes and/or non-ETEC isolates, which have acquired virulence genes by in vivo transfer.  相似文献   

15.
Six hundred and nine necrotoxigenic Escherichia coli type 1 and 2 (NTEC1 and NTEC2) and non-NTEC isolated in Western and Southern Europe, North Africa and Canada from diseased calves, pigs, humans, poultry, and 55 isolated from asymptomatic calves were studied for the identification of afa-related sequences to the recently described afa-7 and afa-8 gene cluster variants from two bovine Escherichia coli (Lalioui et al., 1999). Colony hybridization and PCR assays for the afaD-7, afaE-7, afaD-8 and afaE-8 identified the afa-related sequences to the afa-8 gene cluster in most (67/79; 85%) of the E. coli positive with the Afa-f family probe and in 14 additional strains negative with the Afa-f probe. No E. coli was positive for the afa-7 gene cluster. The existence of afa-8 positive strains was thus confirmed among bovine E. coli and for the first time among porcine, poultry and human E. coli. Sequencing of the afaE-8 amplicon of nine strains from the different host species showed a high degree of conservation (>95% at the DNA level; >92% at the amino-acid level). The afa-8 gene cluster was more frequent in E. coli from diseased calves (18%) than from piglets (12%), humans (6%) and poultry (5%). Bovine NTEC2 (26%) were more frequently positive than NTEC 1 (20%) and non-NTEC (11%). E. coli isolated from asymptomatic calves were rarely positive: one NTEC2 (3%) and no non-NTEC. The afa-8 gene cluster was located on the Vir plasmid in 11/23 NTEC2, but no plasmid localization was detected in NTEC1 or non-NTEC.  相似文献   

16.
A total of 434 Escherichia coli isolated from septicemic calves between 1958 and 1965 and 430 E. coli isolated from diarrheic calves between 1967 and 1970 were studied by colony hybridisation and PCR assays for the presence of the cnf1- and the cnf2-like genes. They were also studied for the presence of genes coding for putative virulence factors associated with the CNF toxins including F17-, Pap- and Sfa-fimbrial adhesins and the recently described CDT-III toxin and AfaVIII-afimbrial adhesin. Thirty (7%) of the 434 septicemic strains were positive for CNF by colony hybridisation. Twenty-six were confirmed as necrotoxigenic E. coli type 2 (NTEC2) and four as NTEC1 by PCR. Thirty-five (8%) of the 430 diarrheic strains were positive for CNF by colony hybridisation. Five of them were studied by PCR and confirmed as NTEC1. The 26 septicemic NTEC2 strains and 20 of the 35 diarrheic NTEC including three of the five NTEC1 were positive for CDT-III. All adhesins studied were present in NTEC as well as in non-NTEC. NTEC1 were mainly Pap-, Sfa- and/or Afa8-positive, whereas NTEC2 were mainly F17- and/or Afa8-positive. This study shows that necrotoxigenic E. coli with their associated adhesins and toxins were present in calves as early as 1958, but their prevalence seems to have increased since that time.  相似文献   

17.
A total of 1002 Escherichia coli strains isolated from pre-weaned pigs with diarrhoea on 1114 swine farms were screened for the presence of the adhesin involved in diffuse adherence (AIDA) gene by polymerase chain reaction (PCR). Escherichia coli isolates that carried AIDA genes were also tested by PCR for the detection of five fimbriae (F4, F5, F6, F18 and F41), heat-stable (STa, STb) and heat-labile (LT) enterotoxin, enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1), and Shiga toxin 2 oedema disease (Stx2e) genes. Twenty-three (2.3%) of the 1002 E. coli isolates carried the gene for AIDA. Among 23 isolates shown to carry genes for AIDA, three carried the AIDA gene as the only shown virulence factor. Other isolates carried other virulence factor genes in addition to AIDA. Four isolates carried genes for at least one of the fimbrial adhesins and enterotoxins. Sixteen isolates carried genes for enterotoxins only. The AIDA may represent an additional virulence determinant in pre-weaned pigs with diarrhoea.  相似文献   

18.
Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. The organism causes diarrhea by adhering to and colonizing enterocytes in the small intestines. While much progress has been made in understanding the pathogenesis of ETEC, no homologous intestinal epithelial cultures suitable for studying porcine ETEC pathogenesis have been described prior to this report. In the current study, we investigated the adherence of various porcine ETEC strains to two porcine (IPEC-1 and IPEC-J2) and one human (INT-407) small intestinal epithelial cell lines. Each cell line was assessed for its ability to support the adherence of E. coli expressing fimbrial adhesins K88ab, K88ac, K88ad, K99, F41, 987P, and F18. Wild-type ETEC expressing K88ab, K88ac, and K88ad efficiently bound to both IPEC-1 and IPEC-J2 cells. An ETEC strain expressing both K99 and F41 bound heavily to both porcine cell lines but an E. coli strain expressing only K99 bound very poorly to these cells. E. coli expressing F18 adhesin strongly bound to IPEC-1 cells but did not adhere to IPEC-J2 cells. The E. coli strains G58-1 and 711 which express no fimbrial adhesins and those that express 987P fimbriae failed to bind to either porcine cell line. Only strains B41 and K12:K99 bound in abundance to INT-407 cells. The binding of porcine ETEC to IPEC-J2, IPEC-1 and INT-407 with varying affinities, together with lack of binding of 987P ETEC and non-fimbriated E. coli strains, suggests strain-specific E. coli binding to these cell lines. These findings suggest the potential usefulness of porcine intestinal cell lines for studying ETEC pathogenesis.  相似文献   

19.
The F17 antigen from bovine enterotoxigenic Escherichia coli strain (E coli 25KHO9), which adhered to calf intestinal villi, was isolated. An enterotoxin-negative derivative (25KHO9st) was used for further studies. Using an immunogold-labeling technique, the F17 antigen was characterized as a fimbrial protein. Pure fimbriae with a subunit molecular weight of 20,000 were obtained by homogenization and use of a sucrose gradient. The adhesion of E coli 25KHO9st was mediated by the F17 fimbriae, as both F17 antibodies and F17 protein blocked the adhesion of the strain 25KHO9st. The F17 fimbriae were serologically distinct from K88, K99, F41, and 987P fimbriae and did not agglutinate bovine, ovine, guinea pig, human, or chicken erythrocytes. Peptide fingerprint analysis revealed F17 and F(Y) adhesins to be homologous, if not identical.  相似文献   

20.
P fimbrial adhesins may be associated with the virulence of avian pathogenic Escherichia coli (APEC). However, most APECs are unable to express P fimbriae even when they are grown under conditions that favor P fimbrial expression. This failure can be explained by the complete absence of the pap operon or the presence of an incomplete pap operon in Pap-negative APEC strains. In the present study, we analyzed the pap operon, specifically the papA gene that encodes the major fimbrial shaft, to better understand the pap gene cluster at the genetic level. First, by PCR, we examined a collection of 500 APEC strains for the presence of 11 genes comprising the pap operon. Except for papA, all the other genes of the operon were present in 38% to 41.2% of APEC, whereas the papA was present only in 10.4% of the APEC tested. Using multiplex PCR to probe for allelic variants of papA, we sought to determine if the low prevalence of papA among APEC was related to genetic heterogeneity of the gene itself. It was determined that the papA of APEC always belongs to the F11 allelic variant. Finally, we sequenced the 'papA region' from two papA-negative strains, both of which contain all the other genes of the pap operon. Interestingly, both strains had an 11,104-bp contig interruptingpapA at the 281-bp position. This contig harbored a streptomycin resistance gene and a classic Tn10 transposon containing the genes that confer tetracycline resistance. However, we noted that the papA gene of every papA-negative APEC strain was not interrupted by an 11,104-bp contig. It is likely that transposons bearing antibiotic resistance genes have inserted within pap gene cluster of some APEC strains, and such genetic events may have been selected for by antibiotic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号