首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate luteinizing hormone (LH) and luteal progesterone (P4) secretion in systemic blood and blood near the ovaries in Mangalica (M) and Landrace (L) gilts by implanting catheters into the Vena jugularis and the Vena cava caudalis via the Vena saphena, respectively. Furthermore, leptin was analyzed in jugular vein blood. Blood was collected twice daily from day 7 to day 19 of the oestrous cycle and frequently (10-min intervals for 6 h) on day 9, day 12 and day 15 in M (n=3) and L gilts (n=4). L gilts had congruent pulsatile LH secretion in both veins, but the LH concentrations in M were always below the assay sensitivity during the luteal phase. In both breeds, episodic P4 secretion was found in the jugular and caval veins, and both sampling site and breed had an influence on P4 secretion (P<0.05). The mean concentration of P4 was higher (P<0.01) in utero-ovarian blood (75.8+/-5.3 in M; 49.6+/-4.2 ng/ml in L) than in the periphery (31.3+/-2.0 in M; 21.2+/-1.8 ng/ml in L). M pigs had a lower number of corpora lutea (9.7+/-2.3 vs. 20.5+/-4.4), and analysis of the P4 secretion ratio per corpus luteum revealed an influence of breed (P<0.01). This ratio was significantly higher in M (3.8+/-0.3 and 8.7+/-0.7 ng/ml) compared with the L gilts (1.4+/-0.1 and 2.8+/-0.3 ng/ml) in the jugular and caval veins, respectively. Blood sampling from the Vena cava caudalis is potentially more precise than from the Vena jugularis for evaluation of ovarian P4 secretion. Both the higher P4 concentration and increased leptin secretion (11.3+/-0.6 vs. 3.0+/-0.1 ng/ml, P<0.05) and consequently the altered LH secretion pattern in the Mangalica may contribute to the lower fecundity of this breed.  相似文献   

2.
The aim of the study was to compare how different feeding levels affect the ovarian potential of follicular development and oocyte maturation in response to superovulatory treatment in native Mangalica (M, n = 17) compared with Landrace (L, n = 20) pigs. Gilts of both breeds were fed high-energy (HI-2.5 kg) or low-energy (LO - 1.25 kg) feed during oestrus synchronization (15 days of Regumate feeding) till the time of oocyte aspiration (Day 6 after Regumate). Follicular growth was stimulated by the administration of 1000 IU equiue choriou gonadotropiu (eCG) 24 h after Regumate treatment, and ovulation was induced by injection of 750 IU human choriou gonadotropiu (hCG) 80 h after eCG administration. Ultrasound (US) investigation was done three times (4-10 h before, and 40-44 and 72-74 h after eCG administration) for the observation of follicular development. Oocyte and follicular fluid (FF) were collected endoscopically 34 h after hCG injection. Cumulus-oocyte complexes were evaluated, their morphology determined, and thereafter fixed and stained for chromatin evaluation. Oocytes were classified as meiosis-resumed (germinal vesicle breakdown, diakinesis, metaphase I to anaphase I) or matured (telophase I and metaphase II). FF concentrations of oestradiol and progesterone were measured by validated radioimmunoassays. In L gilts, differences were observed between HI and LO in the number of preovulatory follicles (32.3 +/- 10.5 vs 17.1 +/- 12.3, p < 0.05), but not in M (25.3 +/- 2.9 vs 28.8 +/- 7.3, p > 0.05). Initial follicular growth was not affected by feeding levels; however, preovulatory follicle size was larger in M (7.1 +/- 0.9 and 6.9 +/- 1.1 mm vs 5.7 +/- 0.7 and 5.5 +/- 0.8 mm; p < 0.05). No differences were obtained with relation to mature chromatin configuration in both breeds (L gilts: HI - 70% and LO-67% vs M gilts: HI - 67% and LO - 63%). A twofold higher oestradiol concentration was detected in FF of HI-M and LO-M (29.6 +/- 6.8 and 30.9 +/- 10.3 ng/ml respectively) compared with that of L (16.9 +/- 9.7 and 17.9 +/- 3.6 ng/ml, respectively; p < 0.05). The mean FF progesterone level was nearly fivefold higher in M (2020.4 +/- 1056 and 1512.2 +/- 1121.8 ng/ml) compared with L (386.2 +/- 113.7 and 298.8 +/- 125.9 ng/ml, p < 0.05). The results indicate an influence of the feeding of altered energy on the number of recruitable preovulatory follicles in modern Landrace but not in native Mangalica breed. Moreover, the follicular steroid hormone milieu differs between Landrace and Mangalica gilts but not depending on feeding levels. Oocyte maturation was not affected by diet.  相似文献   

3.
Only a very small amount of physiological data is available about the low fertility (mean litter size is 5.7+/-0.8) of Hungarian native breed, Mangalica (M), sows. The aim of the present paper is to reveal the differences in preovulatory follicle development and intrafollicular oocyte maturation between M and Landrace (L) gilts, with special reference to the peri- and postovulatory secretion and peripheral concentrations of estradiol-17beta (E2), progesterone (P4), and luteinizing hormone (LH). The number of preovulatory follicles was 6.8+/-1.4 and 19.6+/-6.6 in M and L gilts, respectively. A lower degree of cumulus expansion and a lower percentage of mature oocytes (TI/M II) was noted in M. Higher LH and E2 peak levels, a longer E2 to LH peak interval, and lower embryo survival was confirmed. Interestingly, despite the lower number of corpora lutea, a higher peripheral blood level of P4 was shown in M than in L gilts. Both diminished follicular development and protracted oocyte maturation may be involved in low fecundity in M, and the present findings may explain these reproductive phenomena.  相似文献   

4.
The generic GnRH agonist, Fertilan (goserelin), was tested for the ability to induce an LH surge and ovulation in estrus-synchronized gilts. Three experiments were performed to 1) examine the effect of various doses of Fertilan on secretion of LH in barrows, to select doses to investigate in gilts (Exp. 1); 2) determine doses of Fertilan that would induce a preovulatory-like rise of LH in gilts (Exp. 2); and 3) determine the time of ovulation after Fertilan treatment (Exp. 3). In Exp. 1, 10 barrows were injected on d 1, 4, 7, 10, and 13 with 10, 20, or 40 microg of Fertilan; 50 microg of Gonavet (depherelin; GnRH control) or saline (negative control); and sequential blood samples were collected for 480 min. There was a dose-dependent stimulation (P < 0.05) of LH release. Maximal plasma concentrations of LH (LH(MAX)) were 2.1 +/- 0.2, 4.1 +/- 0.3, 2.6 +/- 0.4, and 3.4 +/- 0.3 ng/mL after 10, 20, and 40 microg of Fertilan and 50 microg of Gonavet, respectively, and duration of release was 78 +/- 9, 177 +/- 12, 138 +/- 7, and 180 +/- 11 min, respectively. Fertilan doses of 10 and 20 microg were deemed to be the most suitable for testing in gilts. In Exp. 2, 12 gilts received (after estrus synchronization with Regumate and eCG) injections of 10 or 20 microg of Fertilan or 50 microg of Gonavet 80 h after eCG to stimulate a preovulatory-like LH surge and ovulation. An LH surge was induced in 3 of the 4 gilts in both of the Fertilan groups and in all of the Gonavet-treated gilts. Characteristics of induced release of LH did not differ among groups: LH(MAX), 5.0 +/- 0.9 vs. 4.6 +/- 1.8 vs. 6.6 +/- 1.1 ng/mL; duration, 11.7 +/- 2.0 vs. 12.3 +/- 2.2 vs. 14.3 +/- 0.5 h; interval from GnRH injection to LH(MAX), 4.0 +/- 2.0 vs. 6.7 +/- 1.3 vs. 5.8 +/- 1.6 h. In Exp. 3, estrus-synchronized gilts were injected with 20 microg of Fertilan (n = 8) or 50 microg of Gonavet (n = 4), and the time of ovulation was determined by repeated endoscopic examination. Time of ovulation ranged from 34 to 42 h postGnRH; however, ovulation occurred earlier in the Gonavet compared with the other groups (P < 0.05). Results of these experiments indicate that 1) barrows are an appropriate model for determining GnRH doses that can be effective in inducing a preovulatory-like LH surge in females; 2) the generic GnRH agonist Fertilan, at doses of 10 to 20 microg, can stimulate an LH surge in gilts, with subsequent ovulation; and 3) Fertilan at doses of 10 and 20 microg should be examined further for use in fixed-time insemination protocols.  相似文献   

5.
An experiment was conducted to evaluate the effect of exogenous gonadotropin releasing hormone (GnRH) on ovulation and embryonic survival in pubertal gilts. Gilts were assigned in replicates to a control (n = 10) and treatment (n = 10) group. Treatment consisted of an iv injection of 200 micrograms of GnRH immediately after initial mating on the first day of detected estrus. Control gilts were similarly injected with physiological saline. Blood samples were collected from the anterior vena cava immediately prior to injection, thereafter at 15-min intervals for 90 min, and subsequently, before slaughter on d 30 of gestation. Serum samples were analyzed for luteinizing hormone (LH) and progesterone by radioimmunoassay. Treatment with GnRH increased the quantity of LH released (P less than .05), with highest serum concentrations (ng/ml, means +/- SE) of gonadotropin in treated gilts (17.3 +/- 3.5) occurring at 75 min post-injection. In control gilts, serum concentrations of LH were not affected by injection of saline. Mean number of ovulations in treated gilts was also greater (P less than .05) than that of control animals (14.5 +/- .7 vs 12.1 +/- .6). However, treatment with GnRH did not enhance the number of attached conceptuses (normal and degenerating) present (treated, 10.9 +/- .9 vs control, 10.5 +/- .7) nor the percentage of viable fetuses (treated, 74.7 +/- 6.9 vs control, 83.5 +/- 5.0%) on d 30 of gestation. Although GnRH increased ovulation rate, mean weight of corpora lutea of treated and control gilts did not differ (402.8 +/- 16.3 vs 389.5 +/- 11.3 mg, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

7.
To determine whether pituitary concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) or hypothalamic content of gonadotropin releasing hormone (GnRH) change before puberty, 40 prepubertal gilts averaging 7 mo of age were slaughtered before or on the second, third or fourth day after relocation and boar exposure. Some gilts responded to relocation and boar exposure as indicated by swollen vulvae, turgid uteri and enlarged ovarian follicles at the time of slaughter. Pituitary concentrations of LH and FSH and hypothalamic content of GnRH were similar between gilts that responded to relocation and boar exposure and gilts that did not respond. In addition, boar exposure and relocation had no effect on pituitary concentrations of LH and FSH or on hypothalamic content of GnRH. To determine whether pituitary responsiveness to GnRH changes before puberty, a third experiment was conducted in which 72 gilts were injected with 400 micrograms of GnRH either before or on the second, third or fourth day after relocation and boar exposure. In gilts that subsequently responded (i.e., ovulated) as a result of relocation and boar exposure, pituitary responsiveness to GnRH was reduced as compared with gilts that failed to ovulate after relocation and boar exposure. Peak concentrations of serum LH after GnRH injection were 4.6 +/- 1.3 vs 9.8 +/- .8 ng/ml for responders vs nonresponders. Peak serum FSH after GnRH injection was also lower for responders than for nonresponders (29.5 +/- 4.2 vs 41.2 +/- 2.4 ng/ml). When compared with controls, relocation and boar exposure did not significantly affect GnRH-induced release of LH and FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The interaction among exogenous estradiol-17 beta, naloxone and gonadotropin releasing hormone (GnRH) in the control of luteinizing hormone (LH) secretion was studied in intact postpartum ewes nursing their offspring. One-half of 30 fall-lambing ewes were implanted subcutaneously with an estradiol-17 beta containing Silastic capsule between postpartum d 1 and 12 which doubled their serum concentrations of estradiol (16.0 +/- .1 vs 8.4 +/- .1 pg/ml). Blood samples were collected from implanted and non-implanted ewes at 15-min intervals for 5 h on d 3, 8, 13, 20 and 28 postpartum. Pre-injection samples were collected for 1 h, and ewes were injected with saline, naloxone (NAL;1 mg/kg) or GnRH (100 micrograms/ewe). When averaged across all days and implant groups, serum LH in the three post-NAL samples was higher (P less than .05) than in the three pre-NAL samples (3.6 +/- 1.2 vs .6 +/- .2 ng/ml). Post-GnRH concentrations of serum LH were lower (P less than .05) in estradiol-implanted ewes than in non-implanted ewes on d 8 and 13, but there were no differences in any LH characteristics on d 20 and 28 after implant removal on d 12. In non-implanted ewes, serum LH responses to GnRH increased (P less than .05) eightfold from d 3 (3.8 +/- 1.4 ng/ml) to d 8 (31.6 +/- 1.4 ng/ml), remained elevated through d 20, but declined by d 28 (10.8 +/- 1.4 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study describes follicle dynamics, endocrine profiles in multiparous sows with lactational oestrus compared with conventionally weaned sows (C). Lactational oestrus was induced by Intermittent Suckling (IS) with separation of sows and piglets for either 12 consecutive hours per day (IS12, n = 14) or twice per day for 6 h per occasion (IS6, n = 13) from day 14 of lactation onwards. Control sows (n = 23) were weaned at day 21 of lactation. Pre-ovulatory follicles (> or =6 mm) were observed in 100% of IS12, 92% of IS6 and 26% of C sows before day 21 of lactation and in the remaining 74% C sows within 7 days after weaning. All sows with pre-ovulatory follicles showed oestrus, but not all sows showed ovulation. Four IS6 sows and one IS12 sow developed cystic follicles of which two IS6 sows partially ovulated. Follicle growth, ovulation rate and time of ovulation were similar. E(2) levels tended to be higher in IS sows (p = 0.06), the pre-ovulatory LH surge tended to be lower in IS12 (5.1 +/- 1.7 ng/ml) than in C sows (8.4 +/- 5.0 ng/ml; p = 0.08) and P(4) levels were lower in IS12 and IS6 than in C sows (at 75 h after ovulation: 8.8 +/- 2.4 ng/ml vs 7.0 +/- 1.4 ng/ml vs 17.1 +/- 4.4 ng/ml; p < 0.01). In conclusion, sows with lactational oestrus induced by IS are similar to weaned sows in the timing of oestrus, early follicle development and ovulation rates, but the pre-ovulatory LH surge and post-ovulatory P(4) increase are lower.  相似文献   

10.
This study investigated the responsiveness of the pituitary-ovarian axis of prepubertal gilts to hourly injections (i.v.) with GnRH. Six gilts each at 70, 100, 150, and 190 d of age were assigned either to treatment with GnRH or saline. Treatments were given until gilts showed estrus or for 7 d, whichever came first. Hourly pulsing with GnRH resulted in gradually increasing concentrations of estradiol-17 beta (E2), a preovulatory surge of LH, and subsequently increased progesterone (P4) concentrations. The increase in serum P4 was preceded by ovulation and corpora lutea (CL) formation in two gilts 70 d of age and all older gilts. The interval (h) from start of GnRH treatment to peak E2 (88 +/- 3), peak LH (103 +/- 3), and concentrations of P4 greater than or equal to 1 ng/mL (144 +/- 4) did not differ (P greater than .50) for 18 gilts between 100 and 190 d of age. In two ovulating, 70-d-old gilts, the interval from onset of GnRH treatment to peak E2 (171 +/- 6), peak LH (186 +/- 0), and P4 greater than or equal to 1 ng/mL (216 +/- 4) was lengthened (P less than .001). Peak concentrations of E2 (pg/mL) were higher (P less than .01) at 190 d (48 +/- 2) and 150 d (49 +/- 2) than at younger ages and lower (P less than .01) in gilts 70 d of age (31 +/- 1) than in gilts 100 d of age (41 +/- 2). Peak LH (nanograms/milliliter) was higher (P less than .01) in gilts 100 d of age (12.7 +/- 6) than in older gilts. Concentrations of P4 were similar (P greater than .20) for all ovulating gilts. The number of CL (12.7 +/- .7) did not differ (P greater than .20) for 18 gilts 100 d of age or older but was higher (P less than .01) than that (4.5 +/- 1.1) for two gilts 70 d of age. Corresponding endocrine responses or ovulations were not observed in four 70-d-old gilts treated with GnRH or in gilts given saline. These findings indicate that the functional integration of the pituitary-ovarian axis is completed between 70 and 100 d of age. Hourly treatment with GnRH is an adequate stimulus to induce ovulation in prepubertal gilts as early as 70 d of age. Also, the number of follicles reaching ovulatory competency was similar (P greater than .20) in gilts between 100 and 190 d of age, when GnRH was given on a BW basis.  相似文献   

11.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Mature boars were subjected to chronic treatment with a gonadotropin-releasing hormone (GnRH) agonist, goserelin (D-Ser[But]6, Azgly-NH210), and serum luteinizing hormone (LH) and testosterone concentrations were measured. Ten sexually mature boars were randomly assigned to treatment (n = 5) or control (n = 5) groups. On day 0, boars were implanted sc (day 0) with 2 GnRH agonist implants (1 mg of GnRH/implant) or sham implants. Blood samples were collected at 12-hour intervals on days -2 and -1, at 6-hour intervals on days 0 through 4, and at 12-hour intervals on days 5 through 8. In addition, blood samples were collected at 15-minute intervals for 6 hours on days -1, 0, 4, and 8. Serum testosterone and LH concentrations were determined by radioimmunoassay. Maximal LH (7 +/- 1 ng/ml) and testosterone (26 +/- 3 ng/ml) concentrations were observed at 5 and 18 hours, respectively, after GnRH agonist treatment. Subsequently, LH and testosterone concentrations decreased to pretreatment values (0.3 +/- 0.1 ng/ml and 1.8 +/- 0.4 ng/ml, respectively) by 24 and 48 hours, respectively, after GnRH agonist implantation. Few differences in the characteristics of pulsatile LH release were observed between the groups. Testosterone and LH concentrations in samples collected at 6- and 12-hour intervals and pulsatile LH release did not change after sham treatment of control boars. Whereas previous reports indicated that chronic GnRH administration suppressed serum LH and testosterone concentrations in rams, rats, and dogs, our results indicate that chronic GnRH agonist treatment induced transitory increases, without subsequent suppression, in LH and testosterone concentrations in mature boars.  相似文献   

13.
Prenatal stress has been seen as a reason for reproductive failures in pig offspring mostly originated or mediated by changed maternal functions. Experiments were conducted in pregnant gilts (n=32) to characterize effects of elevated maternal glucocorticoids on the secretion of reproductive hormones (LH, progesterone) during the 1st (EXP 1), 2nd (EXP 2) and 3rd (EXP 3) trimester of pregnancy (TP). Transiently elevated cortisol release was repeatedly achieved by application of 100 IU adenocorticotropic hormone (ACTH) (Synacthen Depot) six times every second day beginning either on day 28 (EXP 1), day 49 (EXP 2) or day 75 of pregnancy (EXP 3). Glucocorticoid concentrations were examined in umbilical blood vessels of fetuses which mothers were subjected to ACTH at 2nd and 3rd TP (EXP 4). Furthermore, the pituitary function of newborn piglets of EXP 2 was checked by a LH-RH challenge test. In sows, LH concentrations were at low basal level (0.1-0.2 ng/ml) but with pulsatory release pattern during each TP. The number of LH pulses/6 h (LSM +/- SE) of saline treated Controls increased with ongoing pregnancy and decreased to the 3rd TP (1.3 +/- 0.2 in EXP 1 vs. 2.0 +/- 0.1 in EXP 2 vs. 1.4 +/- 0.1 in EXP 3, p<0.05). After ACTH treatment the number of LH pulses left unchanged in Experiments 1 and 2 (1.3 +/- 0.2 and 1.5 +/- 0.1) and decreased in EXP 3 (0.8 +/- 0.2, p<0.05). Differences (p<0.05) were obtained comparing the LH pulse number of ACTH and saline treated sows at the 2nd and 3rd TP. Moreover, areas under the curve (AUC) of each LH pulse and of LH over baseline were significantly reduced by treatment. Levels of progesterone increased (p<0.05) for 150 to 170 min after each ACTH application both in EXP 1 and EXP 2, but not in EXP 3. The mean progesterone concentration was different between trimesters, and ACTH and Controls (1st TP: 30.0 +/- 0.9 and 24.4 +/- 0.7 ng/ml; 2nd TP: 35.5 +/- 0.9 and 29.1 +/- 1.0 ng/ml; 3rd TP: 13.6 +/- 0.2 and 13.1 +/- 0.1 ng/ml; p<0.05). In fetuses (n=87) recovered 3 h after ACTH or saline (EXP 4), the plasma cortisol concentrations were significantly increased in umbilical vein (93.7 +/- 5.5 vs. 47.0 +/- 5.3 nmol/l) and artery (95.7 +/- 5.4 vs. 66.4 +/- 5.4 nmol/l), and in periphery (46.8 +/- 5.3 vs. 27.1 +/- 5.3 nmol/l) compared to controls. Plasma ACTH concentrations, however, did not differ in fetuses of both treatment groups. Postnatal LH-RH challenge tests (1st and 28th day post partum) induced LH surges in female piglets (n=67) both of ACTH and saline treated sows, but did not differ between groups (1st day: 7.2 +/- 0.8 vs. 8.1 +/- 0.7 ng/ml; 28th day: 10.5 +/- 1.7 vs. 13.6 +/- 2.2 ng/ml). However, basal LH of piglets whose mothers were submitted to ACTH during 2nd TP was lower on 1st day (1.7 +/- 0.2 vs. 2.3 +/- 0.2 ng/ml, p<0.05) but not on 28th day (1.0 +/- 0.2 vs. 1.1 +/- 0.2 ng/ml). However in both groups, the basal LH was always higher on 1st as on 28th day (p<0.05). Thus, chronic intermittent ACTH administration is able to influence the release pattern of maternal reproductive hormones. However, these findings demonstrate that these effects are dependent on the stage of pregnancy. Furthermore, it was shown that maternal cortisol can cross the placenta during gestation and thus may affect maternal-fetal interactions and, as a result, reproductive function of offspring.  相似文献   

14.
To test the hypothesis that orexin-B acts directly on the anterior pituitary to regulate LH and growth hormone (GH) secretion, anterior pituitary cells from prepuberal gilts were studied in primary culture. On day 4 of culture, 10(5) cells/well were challenged with 0.1, 10 or 1000 nM GnRH; 10, 100 or 1000 nM [Ala15]-hGRF-(1-29)NH2 or 0.1, 1, 10 or 100 nM, orexin-B individually or in combinations with 0.1 and 1000 nM GnRH or 10 and 1000 nM GRF. Secreted LH and GH were measured at 4 h after treatment. Basal LH and GH secretion (control; n = 6 pigs) was 183 +/- 18 and 108 +/- 4.8 ng/well, respectively. Relative to control at 4 h, all doses of GnRH and GRF increased (P < 0.0001) LH and GH secretion, respectively. All doses of orexin-B increased (P < 0.01) LH secretion, except for the 0.1 nM dose. Basal GH secretion was unaffected by orexin-B. Addition of 1, 10 or 100 nM orexin-B in combinations with 0.1 nM GnRH increased (P < 0.001) LH secretion compared to GnRH alone. Only 0.1 nM (P = 0.06) and 100 nM (P < 0.001) orexin-B in combinations with 1000 nM GnRH increased LH secretion compared to GnRH alone. All doses of orexin-B in combination with 1000 nM GRF suppressed (P < 0.0001) GH secretion compare to GRF alone, while only 0.1 nM orexin-B in combination with 10 nM GRF suppressed (P < 0.01) GH secretion compared to GRF. These results indicate that orexin may directly modulate LH and GH secretion at the level of the pituitary gland.  相似文献   

15.
Mean concentrations and the occurrence of pulsatile release of luteinizing hormone (LH) were determined in 14-wk-old crossbred boars (50.5 +/- 1.5 kg) after bilateral or unilateral castration at 10 wk of age. Blood was collected at 10-min intervals for 5 h. Then gonadotropin releasing hormone (GnRH; 40 micrograms) was given and sampling was continued at 5-min intervals for 1 h. Compared with intact boars, bilateral castration increased (P less than .001) mean LH (982 +/- 56 vs 389 +/- 56 pg/ml), pulsatile releases of LH (7.0 +/- .6 vs 2.0 +/- .6 pulses/5 h) and LH pulse amplitude (617 +/- 29 vs 360 +/- 58 pg/ml). Unilaterally castrated boars did not differ from intact boars in any of the above measures of LH secretion. Testis weight increased more between 10 and 14 wk of age in the unilateral castrates than in the intact boars (432 +/- 42 vs 245 +/- 34%; P less than .05). Thus, compensatory hypertrophy occurred within 4 wk of castration. Plasma testosterone was lower for bilateral castrates than for intact animals (.1 +/- .8 vs 3.6 +/- .9 ng/ml; P less than .05) while unilateral castrates (3.8 +/- 1.0 ng/ml) and intact boars did not differ. Plasma estradiol concentrations in bilateral and unilateral castrates were not different from levels found in intact boars (1.8 +/- 1.8, 8.8 +/- 2.1 and 6.0 +/- 1.8 pg/ml, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
High concentrations of estrogens in the peripheral circulation during late gestation inhibit synthesis of LH and markedly reduce pituitary content of LH at the end of pregnancy in most domestic species. Because blood concentrations of estrogen peak shortly before mid-gestation in the mare and then gradually decrease until parturition, we hypothesized that pituitary content of LH may increase during late gestation. To test this hypothesis 10 horse mares were challenged with a maximally stimulatory dose (2 micrograms/kg) of GnRH on d 240 and 320 of gestation and d 3 after parturition. A separate group of four mares were treated with GnRH on d 2 or 3 estrus. Blood samples were collected at -2, -1, 0, .25, .5, .75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 and 8 h relative to injection of GnRH and serum was analyzed for concentration of LH and FSH. Basal serum concentration and total quantity of LH released after GnRH stimulation (assessed by determining the area under the response curve) were not different on d 240 and 320 of gestation or on d 3 after parturition (12.5 +/- 3.5, 5.7 +/- 1.5 and 29.1 +/- 12.1 ng.min/ml, respectively) and were less (P less than .05) than on d 3 of estrus (311.0 +/- 54.0 ng.min/ml). There was little difference in the basal serum concentration of FSH at any of the time points examined. In contrast, GnRH-induced release of FSH continually decreased (P less than .05) from d 240 of gestation (559.8 +/- 88.9 ng.min/ml) to d 3 of estrus (51.8 +/- 6.2 ng.min/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study was designed to examine the effects of two seasons and stage of gestation on luteinizing hormone (LH) release in the gilt. Eleven Yorkshire-Landrace crossbred gilts were each fitted with an indwelling vena caval cannula. Blood samples were collected at 6 h intervals for six days during early (day 39 to 44) or mid-gestation (day 69 to 74). Serum progesterone, estradiol-17 beta and LH concentrations were determined in samples collected at 6 h intervals. Early and mid-gestation occurred during August and September in group 1 (n = 6) and during January and February in group 2 gilts (n = 5). To characterize pulsatile LH release, samples were collected at 15 min intervals for 8 h on day 40, 43, 70 and 73 of gestation. Following each 8 h sampling period, gilts were treated intravenously with 0.5 micrograms gonadotropin-releasing hormone (GnRH)/kg body weight and blood collected at 10 min intervals for 3 h. Progesterone concentrations decreased (p less than 0.01) from 22.1 +/- 0.4 ng/mL during early gestation to 18.2 +/- 0.4 ng/mL during mid-gestation. Estradiol-17 beta concentrations increased (p less than 0.01) from early to mid-gestation (13.5 +/- 0.8 versus 28.4 +/- 0.7 pg/mL). Frequency of LH pulses and LH pulse amplitude were higher (p less than 0.05) in pregnant gilts during January and February compared to August and September.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

19.
Prepuberal (P) gilts were induced to ovulate with pregnant mare serum gonadotropin followed 72 h later by human chorionic gonadotropin (hCG). Three P gilts and three mature (M) gilts each were ovariectomized on d 10, 14, 18, 22 and 26 (d 0 = day of hCG for P gilts and onset of estrus for M gilts). Gilts ovariectomized on d 14, 18, 22 and 26 were hysterectomized on d 6 to ensure maintenance of the corpora lutea (CL). Two to five grams of minced luteal tissue were dispersed using collagenase and hyaluronidase in HEPES buffered salt solution supplemented with glucose and bovine serum albumin. Dispersed cells were rinsed in Dulbecco's Modified Eagle Medium (DMEM), counted (ratio of large to total number of luteal cells determined) and then incubated for 1 h in DMEM. With aliquots standardized to 2.5 X 10(4) viable, large cells (greater than 25 micron diameter) were incubated in 1 ml DMEM for 2 h in the presence of either 10, 50, 100 or 1,000 ng luteinizing hormone (LH); .1, 1, 10 or 100 ng hCG; 10, 100 or 1,000 ng norepinephrine (NE) or either .75, or 1.5 mM dibutyrl cyclic adenosine monophosphate (dbcAMP). Progesterone (P4) in the medium was quantified by radioimmunoassay. Basal P4 production (no P4 stimulator added to the medium) on d 10, 14, 18, 22 and 26 for P gilts was 246 +/- 9, 66 +/- 4, 64 +/- 6, 41 +/- 3 and 69 +/- 6 ng/ml medium, respectively, and for M gilts was 281 +/- 12, 128 +/- 8, 53 +/- 4, 82 +/- 6, 101 +/- 5 ng/ml medium, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study examined the ability of estradiol-17 beta (E2) to suppress LH release in the sow during different months of the year. Six chronically ovariectomized sows were fitted with vena caval cannulas (d 0) and blood samples were collected at 6-h intervals for 6 d. Sows were treated s.c. with E2 capsules (24 mg of E2/275 kg of BW) at d 3. Additional blood samples were collected at 15-min intervals for 8 h on d 2 and 5. After each 8-h frequent sampling period, sows were treated i.v. with GnRH at .5 microgram/kg of BW, and blood samples were collected at 10-min intervals for 3 h. The protocol was repeated at monthly intervals for 13 mo. Luteinizing hormone concentrations were determined for all serum samples, and E2 concentrations were quantified in samples collected at 6-h intervals. Data were analyzed by split-block analyses of variance. Serum E2 concentrations increased (P less than .001) from 5.0 +/- .3 pg/ml before E2 treatment to 26.0 +/- .2 pg/ml after E2 treatment. The interval from GnRH administration to peak LH concentration was shorter (P less than .001) before E2 treatment than after E2 treatment (28.7 +/- 2.2 vs 71.0 +/- 2.2 min). It was evident that baseline LH, mean LH, pulse frequency, and pulse amplitude and LH release after GnRH administration failed to demonstrate seasonal changes. In summary, LH release was suppressed after treatment with E2 and was affected minimally by month of the year. In addition, E2 inhibitory effects of LH release included hypothalamic and anterior pituitary sites of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号