首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of excreta of earthworm species Aporrectodea caliginosa and Eisenia fetida on the mineralization of nitrogen compounds in soils has been studied. A single application of excreta obtained from three earthworms in one day increased the formation of nitrate nitrogen compounds in the soil by 10–50%. The application of ammonium nitrogen (in the form of NH4Cl) in amounts equivalent to the ammonium nitrogen content in the daily excreta of three earthworms had the same effect on the mineralization of nitrogen compounds. The effect of earthworm excreta, as well as the effect of ammonium nitrogen, on the nitrification process was an order of magnitude higher than their contribution to the formation of nitrates due to the oxidation of the introduced ammonium. Hence, ammonium—an important component of the earthworm excreta—can exert a stimulating effect on nitrification processes in the soil and produce long-term cumulative effects that are much more significant than the direct effect of this nitrogen compound.  相似文献   

2.
The objectives of our study were to quantify the impact of endogeic earthworms Aporrectodea caliginosa (Savigny) on iron (Fe), manganese (Mn) and zinc (Zn) mobility and availability in soil. Dried rye straw (Cecale cereale L.), clover aboveground parts (Trifolium pratense L.) or calcium carbonate were added to determine the effects on soil micronutrient mobility. To test the importance of soil–water saturation mediated by earthworms, soil samples were modified to 60% (control) and 100% (as in casts) water holding capacity (WHC). To assess availability of micronutrients, a cucumber plant (Cucumis sativus L.) bioassay were used. Earthworm casts had generally higher amounts of water-soluble micronutrients compared with bulk soils regardless of their moisture contents. The increased micronutrient mobility was more pronounced in casts from soil samples amended with plant residues (especially with straw) and was significantly higher than mobility in control soil for at least 1 week after the casts were deposited. Pre-incubation of soils amended with clover or straw with living earthworms for 4 weeks produced an increase in both shoot biomass and translocation rate of micronutrients (Mn, Zn) into xylem sap of cucumber compared to soils not worked by earthworms. The earthworm-mediated plant performances were determined 4 weeks after the earthworms were removed. The results demonstrated that earthworms can significantly impact the formation of mobile and available micronutrients in a soil. The relationship between micronutrient availability to cucumber plants and earthworm contribution to nitrogen (N) mineralization and micronutrient mobility are discussed.  相似文献   

3.

Purpose

The in situ stabilization of multielement-contaminated agricultural soils has limited effectiveness when using common single amendments. This study examined the use of drinking water treatment residues (WTR), based on (hydr)oxides of Fe, Al, or Mn, as a cost-effective solution to optimize the immobilization of metals (Cd, Pb, Zn) and As.

Materials and methods

Trace elements (TE) bioavailability was assessed under semi-controlled conditions in a pot study cultivating winter wheat (Triticum aestivum L. cv. Tiger) until maturity. An Fe-based WTR and a Mn-based WTR, applied at rates of 0.5 and 1% (m/m), were related to effects of lime marl (LM) application. Additionally, a bioassay with earthworms (Dendrobaena veneta) was conducted. Both bioassays were compared with measurements of NH4NO3-soluble, diffusive gradients in thin film (DGT)-available and soil solution TE concentrations, representing well-established surrogates for mimicking the bioavailable element fractions in soil.

Results and discussion

The application of the Fe-based WTR reduced As accumulation in vegetative wheat tissues (by up to 75%) and earthworms (by up to 41%), which corresponded with the findings from soil chemical analyses and improved plant growth and earthworm body weight. However, As concentrations in cereal grains were not affected, Cd or Pb accumulation by wheat was not mitigated, and Zn uptake was enhanced. By contrast, the Mn-based WTR effected the greatest reduction in Pb uptake, and lowered Cd transfer to wheat grain (by up to 25%). Neither the NH4NO3-soluble nor DGT-available concentrations matched with Cd and Zn accumulation in plants or earthworms, indicating interferences due to competition for binding sites according to the biotic ligand model.

Conclusions

The results obtained in this study suggest that a bioassay with key species prior to field application should be mandatory when designing in situ stabilization options. The application of WTR to an agricultural soil strongly affected TE bioavailability to plants and earthworms. Low application rates tended to improve biomass production of biota. Higher application rates involved risks (e.g., P fixation, TE inputs), and none of the amendments tested could immobilize all targeted elements.
  相似文献   

4.
用营养液培养方法研究了铁和两种形态氮素对玉米植株吸收铁、锰、铜、锌等微量元素及其在体内分布的影响。结果表明:与硝态氮(NO3--N)相比,铵态氮(NH4+-N)显著提高了玉米对铁的吸收,降低了对锰、铜及锌的吸收。供铁也明显提高了植株地上部铁的吸收总量,降低了锰及锌的吸收量,尤其是在供应No3--N时这种作用更为明显。在缺铁条件下,NH4+-N处理的玉米新叶中铁的含量明显高于NO3--N处理;而新叶、老叶、茎中锰、锌、铜含量以及根中锰、锌含量都明显低于NO3--N处理。但使用NH4+-N时,根中铜的含量较高。在供铁条件下,NH4+-N处理的玉米植株四个不同器官中锰和锌的含量显著低于NO3--N处理的植株,而铜的含量正好相反。在缺铁条件下,玉米新叶中活性锰、活性锌的含量显著高于供铁处理;与NO3--N相比,NH4+-N的供应也显著降低了玉米新叶中活性锰以及活性锌的含量。  相似文献   

5.

Purpose

Fruiting vegetables are generally considered to be safer than other vegetables for planting on cadmium (Cd)-contaminated farms. However, the risk of transferring Cd that has accumulated in the stems and leaves of fruiting vegetables is a major issue encountered with the usage of such non-edible parts. The objective of this study was to resolve the contribution of arbuscular mycorrhizal (AM) fungi to the production of low-Cd fruiting vegetables (focusing on the non-edible parts) on Cd-contaminated fields.

Materials and methods

An 8-week pot experiment was conducted to investigate the acquisition and translocation of Cd by cucumber (Cucumis sativus L.) plants on an unsterilized Cd-contaminated (1.6 mg kg?1) soil in response to inoculation with the AM fungus, Funneliformis caledonium (Fc) or Glomus versiforme (Gv). Mycorrhizal colonization rates of cucumber roots were assessed. Dry biomass and Cd and phosphorus (P) concentrations in the cucumber shoots and roots were all measured. Soil pH, EC, total Cd, phytoavailable (DTPA-extractable) Cd, available P, and acid phosphatase activity were also tested.

Results and discussion

Both Fc and Gv significantly increased (P?<?0.05) root mycorrhizal colonization rates and P acquisition efficiencies, and thus the total P acquisition and biomass of cucumber plants, whereas only Fc significantly increased (P?<?0.05) soil acid phosphatase activity and the available P concentration. Both Fc and Gv significantly increased (P?<?0.05) root to shoot P translocation factors, inducing significantly higher (P?<?0.05) shoot P concentrations and shoot/root biomass ratios. In contrast, both Fc and Gv significantly decreased (P?<?0.05) root and shoot Cd concentrations, resulting in significantly increased (P?<?0.05) P/Cd concentration ratios, whereas only Gv significantly decreased (P?<?0.05) the root Cd acquisition efficiency and increased (P?<?0.05) the root to shoot Cd translocation factor. Additionally, AM fungi also tended to decrease soil total and phytoavailable Cd concentrations by elevating plant total Cd acquisition and soil pH, respectively.

Conclusions

Inoculation with AM fungi increased the P acquisition and biomass of cucumber plants, but decreased plant Cd concentrations by reducing the root Cd acquisition efficiency, and resulted in a tendency toward decreases in soil phytoavailable and total Cd concentrations via increases in soil pH and total Cd acquisition by cucumber plants, respectively. These results demonstrate the potential application of AM fungi for the production of fruiting vegetables with non-edible parts that contain low Cd levels on Cd-contaminated soils.
  相似文献   

6.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

7.

Purpose

Humic substances (HS) being natural polyelectrolyte macromolecules with complex and disordered molecular structures are a key component of the terrestrial ecosystem. They have remarkable influence on environmental behavior of iron, the essential nutrient for plants. They might be considered as environmental friendly iron deficiency correctors free of synthetic iron (III) chelates disadvantages. The main goal of this study was to obtain water-soluble iron-rich humic compounds (IRHCs) and to evaluate their efficiency as chlorosis correctors.

Materials and methods

A facile preparation technique of IRHCs based on low-cost and available parent material was developed. The iron-containing precursor (ferrous sulfate) was added dropwisely into alkaline potassium humate solution under vigorous stirring and pH-control. A detailed characterization both of organic and inorganic parts of the compounds was provided, the iron species identification was carried out jointly by EXAFS and Mössbauer spectroscopy. Bioassay experiments were performed using cucumber Cucumis sativus L. as target plants. Plants were grown in modified Hoagland nutrient solution, prepared on deionized water and containing iron in the form of IRHCs. Total iron content in dry plants measured by spectrophotometry after oxidative digestion and the chlorophyll a content determined after acetone extraction from fresh plant were used as parameters illustrating plants functional status under iron deficiency condition.

Results and discussion

The high solubility (up to130 g/l) and iron content (about 11 wt%) of the IRHCs obtained allow considering them to be perspective for practical applications. A set of analytical methods has shown that the main iron species in IRHCs are finely dispersed iron (III) oxide and hydroxide nanoparticles. An application of the precursor solution acidification allows to obtain compounds containing a significant part of total iron (up to 30 %) in the form of partly disordered iron (II–III) hydroxysulphate green rust GR(SO4 2?). Bioavailability of iron from IRHCs was demonstrated using bioassay in cucumber plants grown up on hydroponics under iron deficiency conditions.

Conclusions

The application of iron oxides chemistry for humic substance containing solution was proved to be an effective approach to synthesis of IRHCs. Using bioassay on cucumber plants C. sativus L. under iron deficiency conditions, the efficiency of compounds obtained as chlorosis correctors was demonstrated. Application of water-soluble IRHCs led to significant increase of chlorophyll a content (up to 415 % of the blank) and iron content in plants (up to 364 % of the blank) grown up on hydroponics.  相似文献   

8.
The effect of soil properties and distance from the source of technogenic emission on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into daisy family plants (Asteraceae) has been studied. It has been found that the high level of anthropogenic load related to the atmospheric emissions from the Novocherkassk power plant (NPP) favors the accumulation of heavy metals (HMs) in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni is revealed in plants growing near the NPP. The main factors affecting the distribution of HMs in the above- and underground organs of plants include individual physiological features of plant species controlling the barrier functions of different plant organs. Ambrosia artemisiifolia L., Artemisia austriaca Pall. ex. Wild. Jack., and Tanacetum vulgare L. are accumulators of HMs. The resistance of herbaceous plants to pollution has been determined from the acropetal coefficient and actual biogeochemical mobility of HMs. Ambrosia artemisiifolia L. is most resistant to contamination with Mn; Achillea nobilis L. is most resistant to Pb, Ni, and Cd; Cichorium intybus L. is most resistant to Zn and Cu.  相似文献   

9.
The aim of this study was to determine the responses of nitrifiers and denitrifiers to understand microbial pathways of nitrous oxide (N2O) emissions in grassland soils that received inputs of sheep excreta. Sheep dung and synthetic sheep urine were applied at three different rates, simulating a single, double, or triple overlapping of urine or dung depositions in the field. Quantitative PCR and high-throughput sequencing were combined with process-based modeling to understand effects of sheep excreta on microbial populations and on pathways for N2O production. Results showed that emissions of N2O from urine were significantly higher than from dung, ranging from 0.12 to 0.78 kg N2O-N ha?1 during the 3 months. The N2O emissions were significantly related to the bacterial amoA (r?=?0.373, P?<?0.001) and nirK (r?=?0.614, P?<?0.001) gene abundances. It was autotrophic nitrification that dominated N2O production in the low urine-N rate soils, whereas it was denitrification (including nitrifier denitrification and heterotrophic denitrification) that dominated N2O production in the high urine-N rate soils. Nitrifier denitrification was responsible for most of the N2O emissions in the dung-treated soils. This study suggests that nitrifier denitrification is indeed an important pathway for N2O emissions in these low fertility and dry grazed grassland ecosystems.  相似文献   

10.

Purpose

Antimony (Sb) contamination in the environment is a worldwide concern. To address such contamination issues, we studied the adsorption of Sb in four different types of soils. We investigated the main chemical and physical factors that influenced the adsorption of Sb, and distinguished between the different adsorption abilities of naturally occurring crystalline and amorphous iron (Fe) compounds in these soils.

Materials and methods

Adsorption of Sb in ferrosol, primosol, isohumosol, and sandy soil was studied using batch experiments. Transmission electron microscopy and X-ray photoelectron spectroscopy were used to examine the character and location of Sb adsorbed on individual particles in these soils without affecting its geochemical environment. In addition, the crystalline and amorphous Fe compounds in these soils were separated and analyzed using X-ray diffraction. The relationship between these Fe compounds and Sb adsorption was also explored.

Results and discussion

The sorption capacities of the four soils increased on addition of Sb in solution, reaching values of 10.8, 4.33, 5.45, and 1.19 g kg?1 for ferrosol, primosol, isohumosol, and sandy soil, respectively. The adsorption of Sb in ferrosol was much higher than for other soils because of its higher Fe oxide content. In fact, the Sb content adsorbed on ferrosol showed a good exponential relationship with its Fe content. The X-ray photoelectron spectroscopy results indicated that the Fe2p and O1s binding energies decreased after the adsorption of Sb in the ferrosol. This suggests that an electron transfer occurred between Sb and Fe through an oxidation-reduction reaction, after Sb adsorption in the ferrosol.

Conclusions

The adsorption abilities of Sb in the four soils were in the order of ferrosol > isohumosol > primosol > sandy soil. The amounts of Sb adsorbed by these soils were significantly positively correlated with their Fe contents (Sb?=??3.78?+?2.88?×?Fe, P?<?0.01), but were negatively correlated with their sand contents (Sb?=?12.30???0.12?×?Sand, P?<?0.01). The X-ray diffraction analysis results showed that crystalline Fe compounds have a higher capacity for Sb adsorption than amorphous Fe compounds.
  相似文献   

11.
Seedlings of sour orange (Citrus aurantium L.) and Carrizo citrange (C. sinensis L. cv. Washington navel x Poncirus trifoliata)] were grown in plastic pots containing a sand: perlite mixture and watered with a modified Hoagland No 2 nutrient solution throughout the experiment. Three-months-old plants were divided in three groups and sprayed with 0.018 M iron sulfate (FeSO4 .7H2O), 0.018 M manganese sulfate (MnSO4 .H2O), or deionized water. Two months later, plants were harvested and divided into top leaves that grown after the treatments, basal leaves that existed prior to the treatments, stems that partially came in contact with the spray, and roots. The manganese (Mn) spray resulted in a significant increase of Mn concentrations in top leaves, basal leaves, stems and roots of sour orange, and in top leaves, basal leaves, and stems of Carrizo citrange. The iron (Fe) spray significantly increased the concentrations of Fe in the stems and basal leaves of both genotypes. For both genotypes, transport of Mn from basal (sprayed) leaves to top (unsprayed) ones was found. However, the results of this experiment did not give any evidence neither for Mn translocation from sprayed tissues to roots nor for Fe transport from sprayed tissues to unsprayed ones (top leaves, roots). Mn and Fe were found to be relatively mobile and strictly immobile nutrients, respectively, within citrus plants after their foliar application as sulfate salts.  相似文献   

12.
It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant community types. We hypothesized that L. terrestris burrows would be used for longer than a typical L. terrestris lifetime, and that the distribution and activity pattern of the two earthworm species would respond differently to changes in soil moisture and temperature. For 7 years we recorded earthworm distribution and activity state bi-weekly to a depth of 1.5 m, tracked L. terrestris burrows using images captured annually, and measured soil temperature and moisture. Activity and vertical distribution of earthworms was closely linked to earthworm species and soil temperature in the fall, winter and spring. Lumbricus terrestris typically remained active through the winter, whereas the A. caliginosa complex was more likely to enter an aestivation period. Activity of all earthworms decreased substantially in July and August when soil temperature was at its highest and soil moisture at its lowest for the year. Most L. terrestris burrows were used continuously and moved very little during the 7-year study, likely creating spatiotemporally stable hotspots of soil resources. The different patterns of response of these species to soil temperature and moisture suggests that endogeic earthworms are more likely than anecic earthworms to adjust activity states in response to climate change mediated shifts in soil moisture and temperature.  相似文献   

13.
New methodological approaches and an algorithm for the quantitative assessment of accumulating a substance by a plant (C p ) with due regard for its concentration in the soil (C n ) are proposed. The first approach is the approximation of concentration curves by the functions C p = f(C n ) and their parameters. The second one is the standardization of the coefficients of biological sorption (K b ) of a substance upon its stable concentration in the soil using the function K b = f(C n ). As compared to the variation-statistical values of the mean and extreme concentrations, or the coefficients K b , the proposed parameters are characterized by a higher accuracy and sensitivity. They may be successfully used for quantitative studies of the mechanism and the intensity of the absorption of substances by plants, for the prediction of the accumulation of substances in the trophic chain, and the assessment of soil self-purification (detoxification) and comparative ratings.  相似文献   

14.
A hydroponic experiment was performed to investigate silicon (Si) and Phytophthora drechsleri root rot effects on growth and tissue partitioning of Si, zinc (Zn), iron (Fe), and manganese (Mn) in two cucumber cultivars (Cucumis sativus L. cvs. ‘Dominus’ and ‘Super Dominus’). Root length, plant height, and root fresh weight were significantly decreased by P. drechsleri, which were all significantly alleviated by 1.0 mM Si. Increasing Si level in the nutrient solution was accompanied with its enhanced uptake by cucumbers. Plants infected with P. drechsleri transported lower Mn to shoot than non-infected plants. Influence of P. drechsleri infection on root Fe concentration was dependent on cucumber cultivar while a decrease in root Zn concentration was found in infected cucumbers. Silicon nutrition increased Zn and Fe uptake in both cucumber cultivars. It is suggested that Si nutrition improved the crop growth, particularly under biotic stress, and hereby, increased micronutrients uptake by cucumber.  相似文献   

15.
The relationship between the main physicochemical properties of soils and the accumulation of natural Zn and 65Zn radionuclide has been studied, and the capacity of soils to limit the mobility of the element in the soil–plant system has been assessed. The contribution of each of the selected soil state parameters to the accumulation of zinc by barley has been determined, and the soil state parameters have been ranked. It has been found that the largest contributions to the variation of the resulting parameter (65Zn accumulation coefficient, Ka) are made by mobile Fe (25%), free carbonates (21%), and acid-soluble Zn (18%). The largest contributions to the ZnacKa are made by free carbonates (13%) and mobile Fe (8%). The contributions of physical clay and organic carbon in soils and qualitative composition of humic substances are almost similar (4% for each). No differences in the inactivating capacity of different soils (soddy-podzolic soils, gray forest soils, and chernozems) for 65Zn are observed. This is related to the fact that the transfer of 65Zn to plants is statistically significantly controlled by the contents of free carbonates, mobile iron, and potentially plantavailable forms of stable natural Zn (carrier of 65Zn) rather than the quantitative and qualitative composition of organic matter and the degree of dispersion of mineral particles. The analysis of the ZnacKa/65Zn Ka ratios has shown that the share of plant-available Zn in the acid-soluble form of the metal (1 M HCl) is 0.61 on the average for the studied soils, and its share in the total Zn content in the soils is only 0.14.  相似文献   

16.

Purpose

Polychlorinated biphenyls (PCBs) are persistent soil contaminants that resist biodegradation and present serious risks to living organisms. The presence of biochar in soils can lower the availability of PCBs to biota. In this study, the effect of biochar enrichment in soils on bioaccumulation of PCBs was investigated.

Materials and methods

We applied two types of biochar including pine needle biochar (PC) and wheat straw biochar (WC), and an activated carbon (AC) to soil (2 % w/w) and employed two alternative methods to quantified rates of bioaccumulation: a living bioassay (using earthworm, Eisenia fetida, as a model organism) and a triolein-embedded cellulose acetate membrane (TECAM).

Results and discussion

Our results show that the application of biochar or AC greatly reduced the uptake of PCBs (particularly less-chlorinated PCBs) by earthworms (the reduction in total PCBs concentration was up to 40.0 and 49.0 % for PC and WC treatments, while 71.6 % for AC application). We found that the bioaccumulation factors (BAFs) for PCBs in the earthworms in biochar/AC-enriched soils were strongly correlated with O:C ratio of the biochar/AC (R 2?=?0.998, p?<?0.05). We observed that BAFs increased at log K OW below 6.3 and decreased at log K OW values greater than 6.3. We demonstrated that the concentration of PCBs in TECAM membranes were positively correlated with the concentration of PCBs earthworms in soil.

Conclusions

TECAM offers an efficient and cost-effective method for predicting the bioavailability of PCBs in field-contaminated soils undergoing sorbent-based remediation.
  相似文献   

17.
The hydrolase activity was studied using the fluorescein diacetate (FDA) hydrolysis assay in order to assess the microbial activity in composts and vermicomposts obtained with participation of Eisenia fetida andrei, Aporrectodea caliginosa, and A. rosea earthworms from cattle manure, leaves, and peat. The hydrolase activity (the Michaelis—Menten constant, K m ) was found to be lower in the vermicomposts than in the composts and correlated with a corresponding decrease in the length of fungal hyphae. The determination of the hydrolase activity according to the reaction of FDA hydrolysis may be recommended to control the process of vermicomposting and the quality of vermicomposts. Thus, the process of vermicomposting may be characterized with the use of the functional (hydrolase activity) and structural (microbial biomass, length of fungal hyphae) approaches.  相似文献   

18.
The aim of this study was to evaluate the effectiveness of soil-applied aqueous extract of Amaranthus retroflexus L. in preventing lime-induced iron (Fe) chlorosis of pear trees (Pyrus communis L.). Tree growth, nutritional status, yield and fruit quality were also assessed. The aqueous extract was obtained by soaking dried and ground canopy (epigeal part) of spontaneous A. retroflexus plants in tap water. A. retroflexus extract was chosen because of its ability to solubilize Fe from calcareous soil, which was found to be 100-fold higher than deionized water alone. Two experiments were carried out (controlled environment and commercial field conditions) where soil-applied aqueous extract of A. retroflexus alone or mixed with iron sulfate (FeSO4) was compared with synthetic Fe-chelate and an untreated control. Soil-applied aqueous extract of A. retroflexus increased shoot length, leaf SPAD and total plant biomass in controlled environment. In the commercial orchard control trees showed severe leaf Fe-chlorosis symptoms effectively prevented by Fe-chelate. The supply of A. retroflexus aqueous extract improved Fe nutrition of trees, particularly when enriched with FeSO4. Fe-chelate increased tree yield but decreased fruit weight, leaf potassium (K) and manganese (Mn) concentration. At harvest, all strategies raised fruit soluble solid concentration compared to the untreated control. Results showed that soil-applied A. retroflexus aqueous extract improved Fe nutritional status of pear trees, probably because of the natural Fe chelating capacity of the compounds released by its tissues.  相似文献   

19.
The aim of this study was to investigate the burrowing activity of two earthworm species: the endogeic Drawida sinica and one undescribed Amynthas species incubated in Vertisol and Ultisol presenting different soil organic C content. Because of their contrasting feeding behaviours, we hypothesised that soil type would have a bigger influence on the burrowing activity of the endogeic than the anecic species. Repacked soil columns inoculated with earthworms for 30 days were scanned using X-ray tomography and the compiled images used to characterise the burrow systems. After scanning, the saturated hydraulic conductivity (K sat) was also measured. The Amynthas species burrows were less numerous (30 vs. 180), more vertically oriented (57 vs. 37°), more connected from the surface to the bottom of the columns (73 vs. 5 cm3) and had a higher global connectivity index (83 vs. 28%) than those of D. sinica. The K sat was threefold faster in columns incubated with Amynthas and was linked to the volume of percolating burrows (R 2 = 0.81). The soil type did not influence Amynthas burrow characteristics. In contrast, there were 30% more D. sinica burrows in the Vertisol than in the Ultisol while other burrow characteristics were not affected. This result suggests that these burrows were more refilled with casts leading to shorter and discontinuous burrows. The K sat was negatively related to the number of burrows (R 2 = 0.44) but was not statistically different between the Vertisol and the Ultisol, suggesting a constant impact of this species on the K sat. We found that a decrease in the amount of soil organic C by 50% had only a small influence on earthworm burrowing activity and no effect on the K sat.  相似文献   

20.
Knowledge of spatial variability of soil properties is critical for precision farming and identification of pollution hot spots. This study examined the spatial dependence and variability of microelements to produce nutrient maps for site-specific nutrient management and for environmental modeling. A total of 94 grid samples (50 × 50 m2) were collected and analyzed for available zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), cadmium (Cd), and lead (Pb) using an atomic absorption spectrometer. Coefficient of variation (CV) indicated that all the microelements were high in heterogeneity (CV > 35%). Available Zn was found deficient in 66.4% of soil samples and might be one of the limiting nutrients for crop growth, Cu and Ni were in medium, and Fe and Mn in very high range. Pb and Cd were lower than standard values, but careful management will avoid toxicity. Significant correlation was found between Zn with Fe (r = 0.377); Ni with Mn and Fe (r = 0.350 and 0.205, respectively); and Pb with Mn and Ni (r = 0.298 and 0.221, respectively). Spatial variability of soil microelements was mapped by ordinary kriging using exponential model for Fe, Mn, Ni, Cd, and Pb; Gaussian model for Cu, and spherical model for Zn. Semivariogram showed strong to weak degree of spatial dependence for all microelements. The study highlighted the importance for the creation of nutrient management zones for Zn availability. The spatial variability maps generated could be used as a guide for precise and site-specific micronutrient management in the study region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号