首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Marine ecosystems are a known net source of greenhouse gases emissions but the atmospheric gas fluxes, particularly from the mangrove swamps occupying inter-tidal zones, are characterized poorly. Spatial and seasonal fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from soil in Mai Po mangrove swamp in Hong Kong, South China and their relationships with soil characteristics were investigated. The N2O fluxes averaged from 32.1 to 533.7 μg m−2 h−1 and the CO2 fluxes were between 10.6 and 1374.1 mg m−2 h−1. Both N2O and CO2 fluxes in this swamp showed large spatial and seasonal variations. The fluxes were higher at the landward site than the foreshore bare mudflat, and higher fluxes were recorded in warm, rather than cold, seasons. The landward site had the highest content of soil organic carbon (OC), total Kjeldahl nitrogen (TKN), nitrate (NO3–N) and total phosphorus (TP), while the bare mudflat had the highest ammonium nitrogen (NH4+–N) concentration and soil denitrification potential activity. The N2O flux was related, positively, to CO2 flux. Soil NO3–N and TP increased N2O flux, while soil OC and TP concentrations contributed to the CO2 flux. The results indicated that the Mai Po mangrove swamp emitted significant amounts of greenhouse gases, and the N2O emission was probably due to soil denitrifcation.  相似文献   

2.
Forests are the largest C sink (vegetation and soil) in the terrestrial biosphere and may additionally provide an important soil methane (CH4) sink, whilst producing little nitrous oxide (N2O) when nutrients are tightly cycled. In this study, we determine the magnitude and spatial variation of soil–atmosphere N2O, CH4 and CO2 exchange in a Eucalyptus delegatensis forest in New South Wales, Australia, and investigate how the magnitude of the fluxes depends on the presence of N2-fixing tree species (Acacia dealbata), the proximity of creeks, and changing environmental conditions. Soil trace gas exchange was measured along replicated transects and in forest plots with and without presence of A. dealbata using static manual chambers and an automated trace gas measurement system for 2 weeks next to an eddy covariance tower measuring net ecosystem CO2 exchange. CH4 was taken up by the forest soil (?51.8 μg CH4-C m?2 h?1) and was significantly correlated with relative saturation (Sr) of the soil. The soil within creek lines was a net CH4 source (up to 33.5 μg CH4-C m?2 h?1), whereas the wider forest soil was a CH4 sink regardless of distance from the creek line. Soil N2O emissions were small (<3.3 μg N2O-N m?2 h?1) throughout the 2-week period, despite major rain and snowfall. Soil N2O emissions only correlated with soil and air temperature. The presence of A. dealbata in the understorey had no influence on the magnitude of CH4 uptake, N2O emission or soil N parameters. N2O production increased with increasing soil moisture (up to 50% Sr) in laboratory incubations and gross nitrification was negative or negligible as measured through 15N isotope pool dilution.The small N2O emissions are probably due to the limited capacity for nitrification in this late successional forest soil with C:N ratios >20. Soil–atmosphere exchange of CO2 was several orders of magnitude greater (88.8 mg CO2-C m?2 h?1) than CH4 and N2O, and represented 43% of total ecosystem respiration. The forest was a net greenhouse gas sink (126.22 kg CO2-equivalents ha?1 d?1) during the 2-week measurement period, of which soil CH4 uptake contributed only 0.3% and N2O emissions offset only 0.3%.  相似文献   

3.
Relationships between CH4, CO2, and N2O emissions were studied in soil that had been freshly amended with large deposits of cattle wastes. Dynamics of CH4, CO2, and N2O emissions were investigated with flux chambers from early April to late June 2011, during the 3 months following cattle overwintering at the site. This 81-day field study was supplemented with soil analyses of available C and N content and measurement of denitrification activity. In a more detailed field investigation, the daily time course of emissions was determined. The field research was complemented with a laboratory experiment that focused on the short-term time course of N2O and CH4 production in artificially created anoxic soil microsites. The following hypotheses were tested: (i) a large input of C (and N and other nutrients) in cattle manure creates conditions suitable for methanogenesis, and therefore overwintering areas can produce large amounts of CH4; (ii) N2O is produced and emitted until the level of mineral N decreases, while the level of CH4 production is low; and (iii) production of CH4 is greater when N immobilization decreases the level of NO3 in soil. N2O emissions were relatively large during the first 3 weeks, then peaked (at ca. 4000 μg N2ON m−2 h−1) and soon decreased to almost zero; the changes were related to the mineral and soluble organic N content in soil. CH4 fluxes were large, though variable, in the first 2 months (600–3000 μg CH4C m−2 h−1) and were independent of C and N availability. Although time courses differed for CH4 and N2O, a negative relationship between N2O and CH4 emissions was not detected. Contrary to CH4 and N2O fluxes, CO2 emissions progressively increased to ca. 300 mg CO2C m−2 h−1 at the end of the field study and were closely related to air and soil temperatures. Diurnal measurements revealed significant correlations between temperature and emissions of CH4, N2O, and CO2. Addition of C to soil during anaerobic incubation increased the production and consumption of N2O and supported the emission of CH4. The results suggest that rapid denitrification significantly contributes to the exhaustion of oxidizing agents and helps create microsites supporting methanogenesis in otherwise N2O-producing upland soil. The results also indicate that accurate estimate of gas fluxes in animal-impacted grassland areas requires assessment of both diurnal and long-term changes in CH4, CO2, and N2O emissions.  相似文献   

4.
The increasing frequency of periodic droughts followed by heavy rainfalls is expected for this current century, but little is known about the effects of wetting intensity on the in situ biogenic greenhouse gas (GHG) fluxes of forest soils and soil microbial biomass. To gain new insights into the underlying mechanisms responsible for wetting-induced GHG fluxes in situ, rain simulation field experiments during a natural prolonged drought period were done under a temperate forest in northeast China. The intensity of rainfall-induced CO2 pulses increased from 0.84 to 2.08 g CO2–C m? 2 d? 1 with the intensity of wetting up to ca. 80% water-filled pore space, which coincided with an increase in soil microbial biomass and with a decrease in soil labile organic C following wetting. Methane uptake rates decreased from 1.76 to 0.87 mg CH4–C m? 2 d? 1 with the intensity of wetting. Wetting dry forest floor increased N2O fluxes from 6.2 to 25.9 μg N2O–N m? 2 d? 1, but there was no significant difference between all experimental wetted plots. The rainfall-induced N2O pulses with increasing wetting intensity were opposite to that of the CO2 pulses, showing a maximum response at the lowest wetting intensity. An analysis of the temperature sensitivity of GHG fluxes indicated that temperature had an increased effect on the in situ CO2 flux and CH4 uptake, respectively, under wetted and dry conditions. The global warming potential of GHG fluxes and Q10 value of the temperature response of CO2 fluxes increased linearly with wetting intensity. The results indicate that the rainfall-induced soil CO2 pulse is mainly due to enhanced microbial consumption on substrates and highlight the complex nature of belowground C-cycling responses to climate change in northeast China forests that normally experience periodic droughts followed by heavy rainfalls over the year.  相似文献   

5.
《Applied soil ecology》2007,35(2):390-403
A plan was developed to apply biosolid to soil of the former lake Texcoco to fertilize the pioneer vegetation. Because, no information exists about how differences in electrolytic conductivity (EC) might affect mineralization of biosolid and dynamics of C and N in soil, 20 soil samples forming a gradient in EC ranging from 22 to 150 dS m−1 were characterized, amended with 500 mg biosolid C kg−1 dry soil and incubated aerobically at 22 ± 2 °C while production of CO2, concentrations of ammonium (NH4+), nitrite (NO2), and nitrate (NO3), and NH3 volatilization were monitored at 22 ± 2 °C for 70 days. Soil characteristics showed large variations with maximum values often >10-times larger than minimum values. The production of CO2 in the unamended soil ranged from 25 to 159 mg CO2-C kg−1 day−1 and NH3 volatilization from 0 to 189 μg NH3-N kg−1 day−1. Application of biosolid increased production of CO2 significantly 1.4-fold and volatilization of NH3 11.5-fold. The EC explained most of the variation in production of CO2, while particle size distribution explained most of the variation in volatilization of NH3. The concentration of NH4+ in the biosolid-amended soil decreased sharply in the first 14 days, with the EC explaining most of the variation found, and remained constant thereafter with a small increase at day 70. Significant increases in the concentration of NO3 were generally found in soil with EC < 64 dS m−1. The EC explained most of the variation in production of CO2, and dynamics of NH4+ and NO3 while clay positively and sand content negatively affected NH3 volatilization. It was found that increases in EC inhibited C and N mineralization in soil of the former lake Texcoco.  相似文献   

6.
《Soil biology & biochemistry》2001,33(7-8):1077-1093
We studied soil moisture dynamics and nitrous oxide (N2O) fluxes from agricultural soils in the humid tropics of Costa Rica. Using a split-plot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter content, water retention capacity, and hydraulic conductivity. The top 2–3 cm of the soils consists of distinct small aggregates (dia. <0.5 cm). We measured a strong gradient of bulk density and moisture within the top 7 cm of the clay soil. Using automated sampling and analysis systems we measured N2O emissions at 4.6 h intervals, meteorological variables, soil moisture, and temperature at 0.5 h intervals. Mean daily soil moisture content at 5 cm depth ranged from 46% water filled pore space (WFPS) on clay in April 1995 to near saturation on loam during a wet period in February 1996. On both soils the aggregated surface layer always remained unsaturated. Soils emitted N2O throughout the year. Mean N2O fluxes were 1.04±0.72 ng N2O-N cm−2 h−1 (mean±standard deviation) from unfertilized loam under annual crops compared to 3.54±4.31 ng N2O-N cm−2 h−1 from the fertilized plot (351 days measurement). Fertilization dominated the temporal variation of N2O emissions. Generally fluxes peaked shortly after fertilization and were increased for up to 6 weeks (‘post fertilization flux’). Emissions continued at a lower rate (‘background flux’) after fertilization effects faded. Mean post-fertilization fluxes were 6.3±6.5 ng N2O-N cm−2 h−1 while the background flux rate was 2.2±1.8 ng N2O-N cm−2 h−1. Soil moisture dynamics affected N2O emissions. Post fertilization fluxes were highest from wet soils; fluxes from relatively dry soils increased only after rain events. N2O emissions were weakly affected by soil moisture during phases of low N availability. Statistical modeling confirmed N availability and soil moisture as the major controls on N2O flux. Our data suggest that small-scale differences in soil structure and moisture content cause very different biogeochemical environments within the top 7 cm of soils, which is important for net N2O fluxes from soils.  相似文献   

7.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   

8.
Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from −185 to −245 g C m−2 per year. Main data analysis uncertainty in the annual NEE arises from night-time u1 screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP=−NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m−2), the agricultural field becomes a source of carbon with a NBP in the order of −45 to −105 g C m−2 per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP −25 to −55 g C m−2 per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year’s CO2 exchange.  相似文献   

9.
《Applied soil ecology》2001,16(3):243-249
Very little is known about the effect of overgrazing on carbon loss from soil in semi-arid savannas and woodlands of South America. Soil carbon parameters were measured in a 10,000 ha restoration project in the western Chaco of Argentina (24°43′S and 63°17′W). Three situations were compared: highly restored (HRS), moderately restored (MRS) and highly degraded (HDS). Soil and litter samples were recovered in the dry and wet seasons. SOC and CO2–C values decreased from the HRS (7.0 kg m−2 and 130 g m−2) to the HDS (1.5 kg m−2 and 46 g m−2) whereas the C mineralization rate increased toward the less restored sites (0.96–2.29). Surface-litter C was similar in both sites under restoration (260 and 229 g m−2), being non-existent at the HDS. Leaves from woody species dominated surface-litter in the HRS, whereas grass material was predominant in the MRS. During the wet season, the SOC decreased, whereas both CO2–C and C mineralization rate increased. The magnitude of the between-season differences was highest at the HDS (62% in SOC, 55% in CO2, and 80% in C mineralization rate). We estimated that C loss since introduction of cattle into the forest was 58 Mg ha−1, reaching a total of 2×1015 g at for the entire Chaco. These values are higher than those caused by the conversion of savannas and other ecosystems into agriculture or cultivated pastures. The amount of C fixed in the highly restored site (275 g ha−1 per year) indicates that the Chaco soils have a significant potential as atmospheric carbon sinks.  相似文献   

10.
Soils in Mexico are often contaminated with hydrocarbons and addition of waste water sludge and earthworms accelerates their removal. However, little is known how contamination and subsequent bioremediation affects emissions of N2O and CO2. A laboratory study was done to investigate the effect of waste water sludge and the earthworm Eisenia fetida on emission of N2O and CO2 in a sandy loam soil contaminated with the polycyclic aromatic hydrocarbons (PAHs): phenanthrene, anthracene and benzo(a)pyrene. Emissions of N2O and CO2, and concentrations of inorganic N (ammonium (NH4+), nitrite (NO2?) nitrate (NO3?)) were monitored after 0, 5, 24, 72 and 168 h. Adding E. fetida to the PAHs contaminated soil increased CO2 production rate significantly 2.0 times independent of the addition of sludge. The N2O emission rate from unamended soil expressed on a daily base was 5 μg N kg?1 d?1 for the first 2 h and increased to a maximum of 325 μg N kg?1 d?1 after 48 h and then decreased to 10 μg N kg?1 d?1 after 168 h. Addition of PAHs, E. fetida or PAHs + E. fetida had no significant effect on the N2O emission rate. Adding sludge to the soil sharply increased the N2O emission rate to >400 μg N kg?1 d?1 for the entire incubation with a maximum of 1134 μg N kg?1 d?1 after 48 h. Addition of E. fetida, PAHs or PAHs + E. fetida to the sludge-amended soil reduced the N2O emission rate significantly compared to soil amended with sludge after 24 h. It was found that contaminating soil with PAHs and adding earthworms had no effect on emissions of N2O. Emission of N2O, however, increased in sludge-amended soil, but addition of earthworms to this soil and contamination reduced it.  相似文献   

11.
The purpose of this study was to investigate the effects of high cadmium and nickel soil concentrations on selected physiological parameters of Arundo donax L. A 2-year pot experiment was held in the field and the pots were irrigated with aqueous solutions of Cd and Ni in concentrations of 5, 50 and 100 ppm, against the control (tap water). At the end of the cultivation periods the pots soil was divided into three equal zones and total and NH4OAc extractable Cd and Ni concentrations were determined. The top zone exhibited the highest metal content. Cadmium and nickel total concentrations at the end of the experiment were up to 973.8 mg kg−1 and 2543.3 mg kg−1 respectively, while NH4OAc extractable Cd was up to 291.7 mg kg−1 and Ni up to 510.3 mg kg−1. Stomatal conductance ranged between 0.3 and 0.8 mol CO2 m−2 s−1, intercellular CO2 concentration ranged between 212.9 and 243.0 ppm CO2, stomatal resistance between 0.6 and 1.3 s cm−1, chlorophyll content (SPAD values) between 46.3 and 57.0 and chlorophyll fluorescence (Fv/Fm) ranged between 0.8 and 0.9. All studied physiological parameters did not show statistically significant differences among control and heavy metal treated plants for both years; therefore, high soil cadmium and nickel concentration did not inhibit stomatal opening and did not affect the function of the photosynthetic machine of A. donax plants.  相似文献   

12.
Soil of the former lake Texcoco is alkaline saline with pH often >10 and electrolytic conductivity (EC) >70 dS m?1 with rapidly changing water contents. Little is known how fertilizing this area with urea to vegetate the soil would affect emissions of carbon dioxide (CO2) and dynamics of N. Texcoco soil with electrolytic conductivity (EC) 2.3 dS m?1 and pH 8.5 (TEXCOCO A soil), EC 2.0 dS m?1 and pH 9.0 (TEXCOCO B soil) and 200 dS m?1 and pH 11.2 (TEXCOCO C soil) was amended with or without urea and incubated at 40% of water holding capacity (WHC), 60% WHC, 80% WHC and 100% WHC, while emissions of nitrous oxide (N2O) and CO2 and dynamics of ammonium (NH4+), nitrite (NO2?) and nitrate (NO3?) were monitored for 7 days. An agricultural soil served as control (ACOLMAN soil). The emission of CO2 increased in the urea amended soil 1.5 times compared to the unamended soil, it was inhibited in TEXCOCO C soil and was >1.2 larger in soil incubated at 40%, 60% and 80% WHC compared to soil incubated at 100% WHC. The emission of N2O increased in soil added with urea compared to the unamended soil, was similar in TEXCOCO A and B soils, but was <0.2 mg N kg?1 soil day?1 in TEXCOCO C soil and generally larger in soil incubated at 60% and 80% WHC compared to soil incubated at 40% and 100% WHC. The water content of the soil had no significant effect on the mean concentration of NH4+, but addition of urea increased it in all soils. The concentration of NO2? was not affected by the water content and the addition of urea except in TEXCOCO A soil where it increased to values ranging between 20 and 40 mg N kg?1. The concentration of NO3? increased in the ACOLMAN, TEXCOCO A and TEXCOCO B soil amended with urea compared to the unamended soil, but not in the TEXCOCO C soil. It decreased with increased water content, but not in TEXCOCO C soil. It was found that the differences in soil characteristics, i.e. soil organic matter content, pH and EC between the soils had a profound effect on soil processes, but even small changes affected the dynamics of C and N in soil amended with urea.  相似文献   

13.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

14.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems.  相似文献   

15.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

16.
Contradictory effects of simultaneous available organic C and N sources on nitrous oxide (N2O), carbon dioxide (CO2) and nitric oxide (NO) fluxes are reported in the literature. In order to clarify this controversy, laboratory experiments were conduced on two different soils, a semiarid arable soil from Spain (soil I, pH=7.5, 0.8%C) and a grassland soil from Scotland (soil II, pH=5.5, 4.1%C). Soils were incubated at two different moisture contents, at a water filled pore space (WFPS) of 90% and 40%. Ammonium sulphate, added at rates equivalent to 200 and 50 kg N ha?1, stimulated N2O and NO emissions in both soils. Under wet conditions (90% WFPS), at high and low rates of N additions, cumulative N2O emissions increased by 250.7 and 8.1 ng N2O–N g?1 in comparison to the control, respectively, in soil I and by 472.2 and 2.1 ng N2O–N g?1, respectively, in soil II. NO emissions only significantly increased in soil I at the high N application rate with and without glucose addition and at both 40% and 90% WFPS. In both soils additions of glucose together with the high N application rate (200 kg N ha?1) reduced cumulative N2O and NO emissions by 94% and 55% in soil I, and by 46% and 66% in soil II, respectively. These differences can be explained by differences in soil properties, including pH, soil mineral N and total and dissolved organic carbon content. It is speculated that nitrifier denitrification was the main source of NO and N2O in the C-poor Spanish soil, and coupled nitrification–denitrification in the C-rich Scottish soil.  相似文献   

17.
Using a soilless culture system mimicking tropical acidic peat soils, which contained 3 mg of gellan gum and 0.5 mg NO3?-N per gram of medium, a greenhouse gas, N2O emitting capability of microorganisms in acidic peat soil in the area of Palangkaraya, Central Kalimantan, Indonesia, was investigated. The soil sampling sites included a native swamp forest (NF), a burnt forest covered by ferns and shrubs (BF), three arable lands (A-1, A-2 and A-3) and a reclaimed grassland (GL) next to the arable lands. An acid-tolerant Janthinobacterium sp. strain A1-13 (Oxalobacteriaceae, β-proteobacteria) isolated from A-1 soil was characterized as one of the most prominent N2O-emitting bacteria in this region. Physiological characteristics of the N2O emitter in the soilless culture system, including responses to soil environments, substrate concentration, C-source concentration, pH, and temperature, suggest that the N2O emitting Janthinobacterium sp. strain A1-13 is highly adapted to reclaimed open peatland and primarily responsible for massive N2O emissions from the acidic peat soils. Regulation of N2O emitters in the reclaimed peatland for agricultural use is therefore one of the most important issues in preventing the greenhouse gas emission from acidic peat soil farmlands.  相似文献   

18.
《Applied soil ecology》2005,28(3):247-257
Carbon dioxide emissions from soils beneath canopies of two Mediterranean plants, Artemisia absinthium L. and Festuca pratensis Huds. cv. Demeter, were monitored over a 7-day period that included an artificial precipitation event of 4 cm. The experiments were conducted using 0.2 m3 soil microcosms inside greenhouses with CO2 concentrations of either 360 or 500 μmol mol−1. Carbon dioxide flux from the soil surface, as calculated using a diffusive transport model agreed well with CO2 flux measurements made using a dynamic flow system. Soil CO2 emissions did not differ significantly between the 360 and 500 μmol mol−1 CO2 treatments when soils were dry (volumetric soil moisture content ≤9%). A simulated precipitation event caused an immediate exhalation of CO2 from soil, after which CO2 emissions declined slightly and remained constant for approximately 36 h. CO2 emissions from soil microcosms with F. pratensis plants growing in 500 μmol mol−1 CO2 then rose to levels that were significantly greater than CO2 emissions from soils in the microcosms exposed to 360 μmol mol−1 CO2. For A. absinthium growing in 500 μmol mol−1 CO2, the rise in soil CO2 emissions following the wetting event was not significantly greater than emissions from soils with A. absinthium growing under 360 μmol mol−1 CO2. A. absinthium above ground biomass increased by 46.1 ± 17.9% (mean ± S.E., n = 4, P ≤ 0.05). Above ground biomass did not significantly increase for F. pratensis (14.4 ± 6.5%, P ≥ 0.10). Root biomass, on the other hand, increased for both species; by 50.6 ± 17.9% (P ≤ 0.05) for A. absinthium and by 55.9 ± 12.7% (P ≤ 0.05) for F. pratensis. Our results demonstrate two events following precipitation onto dry soils, an immediate release of CO2 followed by a gradual increase from enhanced biological activity The gradual increase was greater for the herbaceous ruderal perennial F. pratensis under elevated CO2.  相似文献   

19.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

20.
Documented approaches for measuring soil microbial activities and their controlling factors under field conditions are needed to advance understanding of soil microbial processes for numerous applications. We manipulated field plots with carbon (C) and nitrogen (N) additions to test the capability of a respiratory assay to: (1) measure respiration of endogenous soil C in comparison to field-measured CO2 fluxes; (2) determine substrate-induced respiratory (SIR) activities that are consistent with substrate availability in the field; and, (3) report N availability in the field based on assay responses with and without added N. The respiratory assay utilizes a microplate containing an oxygen-sensitive fluorescent ruthenium dye. Respiratory activities measured with this approach have previously been shown to occur within short (6–8 h) incubation periods using low substrate concentrations that minimize enrichment during the assay. Field treatments were conducted in a randomized full-factorial design with C substrate (casamino acids, glucose, or none) and inorganic N (±) as the treatment factors. With one exception, we found that respiration of endogenous soil C in the assay responded to the field treatments in a similar manner to CO2 fluxes measured in the field. Patterns of SIR with low concentrations of added amino acid or carbohydrate substrate (200 μg C g−1 soil) were consistent with field treatments. The ratio (Nratio) of carbohydrate respiration with added N (25 μg N g−1 soil) to the same without N in the assay was significantly (P < 0.05) decreased by field N amendment. The carbohydrate Nratio exhibited a logarithmic relationship (r = 0.64, P < 0.05) with extractable inorganic soil nitrate and ammonium concentrations. These data significantly extend and support the capability of this oxygen-based respiratory assay to evaluate in situ soil activities and examine factors that limit these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号