首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eucalyptus camaldulensis × globulus and E. camaldulensis × grandis hybrids have been developed to combine the salt–waterlogging tolerance and high-quality wood fibre of their respective parents. The aim is to develop trees that will grow in relatively dry and/or saline environments and provide commercial wood products. Previous studies indicate that the hybrids exhibit faster growth than either of their pure species parents, and that there are significant differences in growth rates between them. We undertook a comparative study of the partitioning of above-ground biomass (AGB) to examine biomass and chloride (Cl) allocation of trees growing on two saline-irrigated sites in south-eastern Australia. Eucalyptus camaldulensis × globulus had a higher proportion of AGB in leaves (20–29% cf. 15–16%), and lower proportion in live branches (3–10% cf. 6–14%) than E. camaldulensis × grandis. The concentration of Cl was highest in the stembark (4.2–9.6 g kg−1) and lowest in the stemwood (0.6–2.0 g kg−1), suggesting that trees can export Cl through bark shedding. Total Cl content was strongly related to volume under bark (R2 = 0.99), and differences in partitioning of Cl into tree components differed between the hybrids in the same way as AGB. Preferential partitioning of Cl to live branches rather than foliage in E. camaldulensis × grandis suggests that this hybrid may be compartmentalising Cl to reduce the risk of Cl toxicity in the leaves.  相似文献   

2.
对巴西米纳斯吉拉斯州北部半干旱地区(15°09’S43°49’W)的赤桉(Eucalyptus camaldulensis)和大桉(Eucalyptus grandis)人工林的地上生物量、营养成分含量和菌根菌定植百分率进行了调查和分析。结果表明,赤按和大桉人工林的总地上生物量分别为33.6Mg·hm-2和153.1Mg·hm-2。赤桉树干、叶子、枝条和树皮的生物量分别占总生物量的64.4%,19.6%,15.4%,0.6%,大桉地上生物量的分配与赤按基本相同。赤桉叶子和枝条的干物质占其总生物量的35%,叶子和枝条中的N,P,K,Ca,Mg,and S的含量分别占总生物量这些营养元素的15.5%,0.7%,12.3%,22.6%,19%,1.4%。树干(包括树皮)中的营养成分累积相对比较低。与赤桉相比,大桉的营养含量变化较小。这2个树种的树干上部含有高浓度的磷,树皮也含有大量的营养物质,尤其是大桉;说明在半干旱地区,立地上脱落的植物性废物对降低树木生产力损失有重要意义。赤桉和大桉都有菌根营养。  相似文献   

3.
In the water-scarce environment of South Africa, drought-tolerant eucalypt species have the potential to contribute to the timber and biomass resource. Biomass functions are a necessary prerequisite to predict yield and carbon sequestration. In this study preliminary biomass models for Eucalyptus cladocalyx, E. gomphocephala and E. grandis · E. camaldulensis from the dry West Coast of South Africa were developed. The study was based on 33 trees, which were destructively sampled for biomass components (branchwood, stems, bark and foliage). Simultaneous regression equations based on seemingly unrelated regression were fitted to estimate biomass while ensuring additivity. Models were of the classical allometric form, ln(Y) = a+x1ln(dbh)+x2ln(h), of which the best models explained between 70% and 98% of the variation of the predicted biomass quantities. A general model for the pooled data of all species showed a good fit as well as robust model behaviour. The average biomass proportions of the stemwood, bark, branches and foliage were 60%, 6%, 29% and 5%, respectively.  相似文献   

4.
Abstract

Pools of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were examined in the soil and above-ground plant biomass at the end of a 7 year rotation at two E. tereticornis lowland sites and two E. grandis highland sites in Kerala, India. Potential export rates of these nutrients were also examined for different biomass removal scenarios from the plantations. Pools of nutrients were measured in the above-ground components of the tree crop, forest floor and understorey, and in soil down to 1 m depth. At harvest, large quantities of biomass and nutrients are removed from eucalypt plantation sites, with the quantities of nutrients exported unlikely to be replaced through natural atmospheric and weathering inputs. Between 24 Mg ha-1 and 115 Mg ha-1 of biomass was exported in stem wood across the sites, and this increased to 40-145 Mg ha-1 in scenarios where all of the branches, bark and understorey were also exported. Stem wood had the lowest concentration of nutrients and had a relatively low export of nutrient per kg of biomass. On average, 54 kg, 12 kg and 65 kg of N, P and K were removed per hectare in stem wood only, equivalent to 0.46%, 0.17%, and 6.7%, respectively, of above- and below-ground (to 1 m depth) site pools. Export increased to 194 kg, 30 kg, and 220 kg of N, P and K per hectare if the branches, bark and understorey were also removed (equivalent to 1.6%, 0.5% and 24.7% of above- and below-ground site pools down to 1 m depth). Export of Ca and Mg was also high, with an average of 88 kg and 11 kg of Ca and Mg removed per hectare if only the stem wood was taken (3.12% and 1.34% of total above-ground and exchangeable below-ground to 1 m depth), increasing to 501 kg ha-1 and 66 kg ha-1 if the branches, bark and understorey were also removed (21.7% and 11.3% of total above-ground and available below-ground to 1 m depth). Removals of this magnitude represent a significant proportion of site nutrient pools and have the potential to reduce future plantation productivity unless steps are taken to promote retention of biomass and nutrients on site and/or replacement of nutrients through fertilizer application.  相似文献   

5.
《Southern Forests》2013,75(2):147-153
Tree diameter under and over bark at breast height (dbh), wood density and bark thickness were assessed on samples from control-pollinated families of Eucalyptus grandis, E. urophylla, E. grandis × E. urophylla and E. urophylla × E. grandis. The material was planted in field trials in the coastal Zululand region of South Africa. At 75 months, between three and seven of the best trees per family were felled and wood samples collected. Genetic parameters for wood density, bark thickness and bark percentage (ratio of double bark thickness to overbark diameter) and the inter-trait correlations for the different species and hybrids were calculated. Genetic parameter estimates for wood density, bark thickness and bark percentage in the E. urophylla × E. grandis hybrids showed these traits to be under total additive genetic control. This was confirmed by the intermediate hybrid means for these traits relative to those of the parental species. There was a very low correlation between dbh and wood density for the E. urophylla × E. grandis hybrids (rG = –0.07 and rP = 0.064). Amongst the E. urophylla families there was a moderate positive and significant phenotypic correlation between wood density and bark thickness (rP = 0.391), and between wood density and bark percentage (rP = 0.442).  相似文献   

6.
Genetic variability for juvenile traits, which included basal diameter, height, biomass accumulation, and growth increment, was studied in eight provenances involving four species, Eucalyptus grandis, E. saligna, E. camaldulensis and E. urophylla, under uniform greenhouse conditions. The species differed significantly for all juvenile traits including individual mean allozyme heterozygosity, and high levels of variability were observed within and among species, which indicated that scope for selection exists for these traits. There was considerable reduction in genetic variability for all traits at 6 months of age when compared to that observed at 4 months. Eucalyptus saligna recorded the highest mean for basal diameter and biomass accumulation, while E. camaldulensis exhibited the highest mean for height. The two E. camaldulensis provenances exhibited the highest individual mean heterozygosities (0.425 and 0.417), followed by E. saligna (0.296 and 0.258), E. urophylla (0.254 and 0.233), and E. grandis (0.300 and 0.163). The juvenile traits were correlated with individual mean allozyme heterozygosity to examine the possibility of developing a genotypic basis for early selection of potentially superior individuals in a tree improvement program.  相似文献   

7.
The objective of this study was to evaluate biomass allocation and nutrient pools in aboveground biomass components in 18-month-old plantations of Eucalyptus saligna and E. urophylla × E. grandis (i.e. E. urograndis) in Brazil. The plantations were established by pulp companies in a large area comprising three soil types (Acrisols, Vertisols and Leptosols) in the grassland biome in southern Brazil, and an operational regime of planting and maintenance fertilization was used to ensure full availability of nutrients. Vertisols showed the highest availability of soil nutrients, and the P and Ca concentrations in aboveground biomass were also highest in this type of soil. The nutritional status of both species indicates great consumption of nutrients, particularly of P, K and Ca. At this early age, canopy biomass components still made the largest relative contribution, although debarked stem biomass already accounted for 41.5% and 37.4 of total aboveground biomass in E. saligna, and E. urograndis, respectively. Nutrient concentrations in biomass components were similar across species. For all macronutrients, except Ca and Mg, the concentration gradient followed the order wood < bark < branches < leaves. For all micronutrients, except Cu, the concentration gradient followed the order wood < branches ≈ bark < leaves. At the plantation stage studied, i.e. before canopy closure, the importance of the components as nutrient pools followed the order leaves > branches > wood > bark. The branches hold the majority of Ca reserves in biomass and are a very important pool of Mg, K, P and B. The bark makes a small contribution to total biomass, but stores a similar amount of Ca as leaves, being the second major pool after the branches. Comparison of the nutrients supplied by fertilization and the amounts stored in soil and aboveground indicates that the operational dose should be adjusted to each type of soil after further experimental fertilizer trials, as the supply of N and P appears to be too high, particularly for Vertisols. This is leading to the immobilization of P in biomass components that are not of importance in the biological or biochemical nutrient cycles, thus increasing the risk of larger exports of P during biomass removal.  相似文献   

8.
Eucalyptus stands in semi?arid areas may contribute to enhance carbon (C) stocks in both biomass and soil. However, the limited information available is mainly focused on short?rotation plantations. In this study, the above? and below?ground C pools in five 50?year?old Eucalyptus camaldulensis Dehnh. stands planted on Miocenic evaporitic deposits in Sicily, Italy, with a xeric and thermic pedoclimate, were measured. Above?ground biomass was determined by partitioning and weighing branches, stem and leaves. Below?ground C pools included the determination of litter, root biomass, and soil organic and inorganic C. In terms of the above?ground biomass, the E. camaldulensis stand accumulated on average 116?Mg ha?1 corresponding to 55?Mg C ha?1. Below?ground biomass consisted mainly of larger roots, followed by fine and medium roots (33?Mg ha?1 corresponding to 14?Mg C ha?1). Litter accumulation on the soil surface accounted for 13?Mg ha?1 corresponding to 5?Mg C ha?1. The amount of C stored in soil was 554?Mg C ha?1, of which 75% was in organic form. Although E. camaldulensis is planted extensively throughout the Southern Hemisphere and tropics where it is managed over short rotations (c. 2–4 years), the results obtained from this study make this species important in terms of future afforestation planning for longer rotations due to its potential to sequester C, particularly in the below?ground components.  相似文献   

9.
Accurately and non-destructively quantifying the volume, mass or nutrient content of tree components is fundamental for assessing the impact of site, treatment, and climate on biomass, carbon sequestration, and nutrient uptake of a growing plantation. Typically, this has involved the application of allometric equations utilising diameter and height, but for accurate results, these equations are often specific to species, site, and silvicultural treatment. In this study, we assessed the value of incorporating a third piece of information: the height of diameter measurement. We derived a more general volume equation, based on the conical approximation, using a diameter projected to the base of the tree. Common equations were developed which allowed an accurate estimate of stem volume, dry weight and nutrient content across two key plantation grown eucalypt species, Eucalyptus grandis W. Hill ex Maiden and Eucalyptus globulus (Labill.). The conical model was developed with plantation-grown E. grandis trees ranging from 0.28 to 15.85 m in height (1.05 g to 80.3 kg stem wood dry weight), and E. globulus trees ranging from 0.10 to 34.4 m in height (stem wood dry weight from 0.48 g to 652 kg), grown under a range of contrasting cultural treatments, including spacing (E. grandis), site (E. globulus) and fertilization (nitrogen and phosphorus) for both species. With log transformed data the conical function (Vcon) was closely related to stem sectional volume over bark and stem weight (R2 = 0.996 and 0.990, respectively) for both E. grandis and E. globulus, and the same regressions can be applied to both species. Back transformed data compared with the original data yielded modelling efficiencies of 0.99 and 0.97, respectively. Relationships between Vcon and bark dry weight differed for the two species, reflecting differing bark characteristics. Young trees with juvenile foliage had a different form of relationship to older trees with intermediate or adult foliage, the change of slope corresponding to heights about 1.5 m for E. grandis and age 1 year for E. globulus. The Vcon model proved to be robust, and unlike conventional models, does not need additional parameters for estimating biomass under different cultural treatments. More than 99% of the statistical variance of the logarithm of biomass was accounted for in the model. Vcon captures most of the change in stem taper associated with cultural treatments and some of the change in stem form that occurs after the crown base has lifted appreciably. Fertilization increased N and P concentrations in stem wood and bark, and regressions to estimate N and P contents (the products of biomass and concentration) were dependent on treatment. For instance, there was a large growth response to N fertilization in E. globulus corresponding with a change (P < 0.05) in the intercept of the regression to estimate N content.  相似文献   

10.
11.
Variation in growth, arsenic and heavy metal uptakes by aboveground tissues (leaves, stems and branches) of 13 hybrid Eucalyptus clones selected for biomass production in a Mediterranean environment (E. camaldulensis × E. viminalis; E. camaldulesis × E. grandis; E. camaldulensis × E. globulus subsp. bicostata) was investigated on agricultural soils field-contaminated with arsenic (As), cadmium (Cd), chrome (Cr), lead (Pb), copper (Cu) and zinc (Zn) in an ex situ nursery experiment in central Italy. Large variation in growth and contaminant uptake amongst the tested clones was observed. All plants survived and 12 clones grew better than the control (E. camaldulensis). All clones accumulated the contaminants to which they were exposed: As, Cu, Pb and Zn concentrations were significantly higher in leaves than in stems and branches, supporting the potential for phytoremediation of these contaminants by Eucalyptus short rotation woody crops (SRWC). Significant positive correlations between the average contents of Cd–Pb, Cd–Cu, Cd–Zn, Pb–Cu, Pb–Zn and Cu–Zn in the aboveground tissues were detected. Clones revealed better phytoextraction performance than that of the control. Four promising clones for biomass production and phytoremediation were identified for prospective use in SRWC on contaminated soils in Mediterranean environments.  相似文献   

12.
There is a need to calibrate models for carbon accounting in forest systems if they are to be applied for carbon trading and off-set schemes. One such model, Full Carbon Accounting Model (FullCAM), calculates stem mass by taking annual inputs of tree growth in stem volume and multiplying these by basic stem wood density. Stem mass is then multiplied by user-entered coefficients to determine the mass of other tree components. Using datasets of Pinus radiata and Eucalyptus globulus that comprised of between 73 and 187 observations, we determined empirical relationships that can be used in FullCAM to relate basic stem wood density to stand age, and masses of bark, foliage or branches to mass of stem wood for these two species. All fitted relationships were highly significant (p < 0.001), explaining between 35 and 89% of the variance. These calibrations were then tested using three case studies where data on volume yield curves and repeated measures of biomass of stand components were available: one of P. radiata and two of E. globulus. Although accumulation of biomass in foliage and branches were not well predicted by the model, sensitivity analysis showed that this was relatively unimportant to total carbon storage because of the dominance of the stem, particularly once the stand is older than 5 years. Indeed, FullCAM accounted for 99% of the variance in measured above-ground biomass at all three sites because calibrations for the mass of stem was reasonably well constrained. Uncertainty analysis showed that despite the standard errors of parameters used in relationships for basic density and biomass partitioning, and for estimates of carbon contents of tree components, we can be 95% confident that sequestration of carbon in trees and debris of Pinus radiata and Eucalyptus globulus plantations are, on average, within 13% of that predicted by FullCAM. Ensis is a joint venture between CSIRO FFP P/L and Scion Australasia P/L  相似文献   

13.
云南省云杉立木生物量模型研建   总被引:2,自引:0,他引:2  
以云南云杉为研究对象,对云杉地上生物量和地下生物量模型进行研建。建立云杉地上总生物量、树干、树冠、干材、干皮、树枝、树叶独立模型与材积相容模型,采用分级联合控制和度量误差模型方法,建立地上总生物量和所有分量相容的立木生物量模型,建立根茎比模型对云杉地下生物量进行估计。结果表明:建立的云杉地上总生物量、树干、干材生物量二元模型预估精度均达95%以上,干皮生物量模型预估精度达94%以上,树冠、树叶、树枝生物量的预估精度均在92%以上,地下生物量模型预估精度在88%以上;所建立的模型可以用于云杉生物量的估计。  相似文献   

14.
《Southern Forests》2013,75(3):105-111
This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (g s) and stomatal density differ between the clonal hybrids across seasons and in response to water stress. Plants from one E. grandis × E. camaldulensis (GC) and two E. grandis × E. urophylla (GU1 and GU2) clones were grown for 18 months in 80 l planting bags. Plants were subjected to three watering treatments: control (100% field capacity), chronic water stress (maintained at 15% of field capacity) and acute water stress (cyclic water stress, where water was withheld until leaf wilting point, and a subsequent period of recovery followed). Stomatal conductance was measured after 6, 12 and 18 months growth. At 12 months of age, the recovery of g s 1, 2 and 7 d after rewatering (following acute water stress) was further investigated. The GC hybrid showed consistently higher g s than the GU clones at each measurement period. Stomatal conductance was 24–66% higher during winter (after 12 months growth) than during summer. The recovery of stomatal conductance from acute water stress was more rapid in the GC clone than the GU clones. Chronic water stress was shown to decrease g s in GU clones by up to 70%, but not in the GC clone. Water stress did not affect stomatal density or size. Remarkably, stomata were absent from the adaxial leaf surface of clone GU1 leaves, but not from the leaves of the other E. urophylla hybrid cross (GU2). Total biomass of the GC clone was significantly greater at 9 months growth, but after 18 months growth the GU1 clone had attained greater biomass accumulation (although not significantly). Measurement of g s, transpiration, stomatal density and total biomass in the GU1 clone indicated stomatal sensitivity to water stress, a favourable trait during periods of drought. The differing growth strategies of the GU and GC clones could be partially explained by their differences in stomatal sensitivity in response to water stress.  相似文献   

15.
The biomass of a six-year-old plantation of Prosopis juliflora was determined using simple linear regressions of (y) the tree components: stem (over bark), large branches, small branches and leaves on (x), diameter at the base of the trees. Similar regressions were used to estimate height and volume produced by both stem and large branches. Macronutrient concentrations in the different tree components were determined and multiplied by the appropriate total dry weights to obtain total contents per hectare. The total stem volume (at age 6) was 209 m3/ha and large branch volume was 75 m3/ha. Total biomass was 216 tons/ha. Over 77% of the total biomass was accounted for by stem and large branches. Nevertheless, the leaves plus small branches (making 22.6% of the biomass) contained over 50% of the total pool of the individual nutrients N, P, K and Mg. The implications of this finding on site depletion due to total tree use as fuelwood and folder is discussed.  相似文献   

16.
The potential export of nutrients from Eucalyptus plantations harvested for pulp production may be high. However, depending on the harvest method, the nutrients from the residue can be recycled. The aims of this study were (i) to quantify the content and distribution of nutrients in different residue components at harvest for a Eucalyptus dunnii Maiden plantation; and (ii) to quantify the decomposition rates of the harvest residues, and the return of nutrients to the soil in the temperate climate conditions of Uruguay. Six trees of a 9-year-old E. dunnii plantation with average diameter at breast-height (DBH) were harvested, and the biomass produced and the N, P, K, Ca and Mg contents in commercial and non-commercial logs, leaves, branches, bark and litter were estimated. Decomposition of the remains of leaves, branches, non-commercial logs, bark and litter was studied in the field for 2 years. Although commercial logs accounted for 61% of the biomass produced, only 27% of the N, 35% of the P, 18% of the K, 16% of the Ca and 41% of the Mg present in the forest were exported with the product. When logs are exported without de-barking in the site, the nutrient export would increase to 41%, 55%, 46%, 68% and 66% of the total extraction of N, P, K, Ca and Mg, respectively. Residue decomposition showed that the leaves lost the highest proportion of biomass (half life 0.86 years), and bark was most resistant to decomposition in the field (half life 5.36 years). As regards the nutrients, K was lost most rapidly and Ca showed the slowest loss, while N, P and Mg losses were generally more gradual, and proportional to the decomposition rate.  相似文献   

17.
文县杨个体生物量生长规律研究   总被引:1,自引:1,他引:0  
采用标准木法对文县杨地上部分生物量进行了调查,分析了地上部分各器官生物量与株高、胸径的相关关系,结果表明:文县杨地上部分生物量各器官的比例为树干56.12%、干皮7.8%、叶9.5%、枝21.4%、枝皮5.2%,其大小顺序依次为树干>枝>叶>干皮>枝皮;地上部分质量、树干质量、树皮质量、叶质量、枝质量等与株高和胸径均呈...  相似文献   

18.
Ralstonia solanacearum, the causal agent of bacterial wilt, has one of the widest host ranges of all phytopathogenic bacteria. This pathogen was first reported on Eucalyptus spp. in the late 1980s in Brazil. Since then, there have been reports of its occurrence on this host in Australia, China and Venezuela. Early in 1997, an 18‐month‐old clonally propagated Eucalyptus grandis × Eucalyptus camaldulensis (GC) hybrid in Zululand, KwaZulu/Natal, showed signs of wilting. The vascular tissue of infected trees was dicoloured and bacterial exudation was produced from cut surfaces. The bacterium was consistently isolated from diseased tissue, purified and identified as R. solanacearum biovar 3 race 1, using the BioLog bacterial identification system. Inoculation trials were conducted on three E. grandis × E. camaldulensis clones (GC515, GC550 and GC505). Clone GC550 displayed wilting after 3 days and all cuttings subsequently died. Clones GC515 and GC505 appeared to be less susceptible with cuttings not showing signs of disease until 7 days after inoculation. After 14 days, 90 and 80%, respectively, of cuttings of these two clones had died. This is the first report of bacterial wilt on Eucalyptus in South Africa.  相似文献   

19.
Four experiments were established on the semi-arid west coast plain of South Africa during the 1990s. The trails tested the survival and growth of several eucalypt species and hybrids, some of which were established in a climate that is drier than their natural distribution range. The aridity indices (AI; defined as mean annual precipitation [MAP]/mean annual potential evapotranspiration) ranged from 0.21 to 0.36 and MAP from 228 to 423 mm. The driest trial site (AI = 0.21 and MAP = 228) had high levels of mortality. However, a number of species (in particular, Eucalyptus gomphocephala, E. camaldulensis and E. tereticornis, as well as individual hybrids of the latter two species with E. grandis) survived and grew well at the remaining sites. Eucalyptus cladocalyx survived well and attained competitive growth rates only on the wettest site in the group (AI = 0.36). The dominant height of the top-performing genotypes at age 5 ranged between 9 and 10 m on the two wetter sites. This corresponded to mean annual increment values in excess of 10 m3 ha?1 a?1, which is comparable to volume obtained at more favourable aridity indices in the summer rainfall zone of South Africa and exceeds the growth rates obtained in several other arid zone studies globally. The E. grandis × E. camaldulensis hybrid ranked among the top performers in two trials, but its susceptibility to recently introduced pests and relatively poor wood quality makes it a less attractive choice for planting. The high density and durability of timber, acceptable growth rate (given the low rainfall conditions), and low pest and disease incidence make E. gomphocephala and E. cladocalyx the species of choice for planting in the drier and relatively wetter sections of the semi-arid zone, respectively.  相似文献   

20.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号