首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred to wheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring × Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the substitution lines were susceptible to Mayetiola destructor and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs.  相似文献   

2.
Frego (fg) bract is an important agronomic trait in tetraploid cotton, which has been widely introduced into several cotton varities or lines in the past several years. In order to help us further understand the underlying molecular mechanism of frego bract development, a map-base cloning strategy was used to localize the fg locus. An F2 population which comprised of 290 fg individuals derived from a cross of the multiple-marker line T582 (G. hirsutum, carrying the fg gene) with Hai7124 (G. barbadense) was constructed. Genetic linkage analysis was carried out to map of the fg locus with SSR and EST-SSR markers in tetraploid cotton. Genetic linkage analysis showed that the fg locus was flanked by the marker NAU3016 and NAU3172 on the long arm of chromosome 3, with the genetic distance of 0.3 cM and 4.7 cM, respectively. The information of fg locus provided the basic information for the final isolation of this important gene in tetraploid cotton, these marker information could be used in marker-assisted selection in cotton.  相似文献   

3.
Cytogenetic characterization by karyotyping and determination of DNA content by flow cytometry of seven cultivated varieties of Chenopodium was performed. Chenopodium quinoa cultivar Barandales and C. berlandieri subsp. nuttalliae cultigens Huauzontle, Quelite and Chia roja showed 2n = 4x = 36, x = 9. Statistically insignificant genome size differences for studied varieties ranged from 2.96 pg/2C (1 Cx = 724 Mbp) in C. quinoa to 3.04 pg/2C (1 Cx = 743 Mbp) in Huauzontle. Karyotype analyses revealed the presence of nine groups of four metacentric chromosomes, including two pairs of chromosomes with satellites. The first pair of satellites was located on the largest pair of chromosomes and the second on a different pair of chromosomes in all accessions analyzed. Variation among varieties was evident in chromosome size, genome length (GL) and the position of satellites. Chia roja exhibited greatest GL (58.82 μm) and biggest chromosomes (2.04 μm). Huauzontle showed the smallest GL (45.02 μm) and shortest chromosomes (1.60 μm). Comparison of GL in studied taxa was statistically significant and allowed to define three groups according to the use given to these plants. These data indicate that they are small, very stable genomes in terms of DNA content, and they support the allotetraploid origin(s) of C. berlandieri subsp. nuttalliae and C. quinoa.  相似文献   

4.
Wilt caused by Fusarium oxysporum f. sp. pisi is a serious production constraint for peas worldwide. An attempt was made to isolate wilt-resistant mutants in two susceptible pea genotypes, Arkel and Azad P-1, employing induced mutagenesis and in vitro selection techniques. Two thousand seeds of each genotype were mutagenized either with ethyl methane sulfonate (EMS, 0.2% and 0.3%) or gamma rays (5-22.5 kR) in 60Co gamma cell for three consecutive years. Screening of different mutagenized populations under wilt-sick plots resulted in the isolation of 25 mutants exhibiting complete or enhanced wilt resistance compared to parental genotypes. Five of these wilt-resistant mutants also outperformed the susceptible background genotypes in terms of yield and other horticultural traits. Efforts were also made to isolate wilt-resistant regenerants from callus cultures exhibiting insensitivity to culture filtrate (CF) of F. oxysporum f. sp. pisi. A total of 250 regenerants (R 0) were obtained from CF-insensitive calli selected from medium supplemented with 20% culture filtrate. When evaluated in artificially inoculated sick plots, only five R 2 lines obtained from the regenerants exhibited enhanced wilt resistance compared to parental cultivars. However, the selected lines did not exhibit resistance levels equivalent to those shown by wilt-resistant lines isolated through in vivo mutagenesis. To conclude, induced mutagenesis through irradiation and EMS treatments exhibited superiority over in vitro selection for inducing wilt resistance in peas.  相似文献   

5.
Effects of Brassica napus (N) and B. juncea (J) cytoplasm on seed characteristics of B. carinata (C) were examined. Alloplasmic lines of B. carinata were produced from N × C and J × C hybrids by recurrent backcrossing to the BC8 generation. Fourteen sets of reciprocal crosses were used. Compared with their euplasmic sibs, alloplasmic B. carinata line seeds with B. napus cytoplasm showed reduced dormancy, higher seed weight, lower germination rate at high temperatures, higher germination rate at low temperatures, and had lower erucic acid and higher linoleic acid contents. Alloplasmic B. carinata line seeds with B. juncea cytoplasm had higher seed weight but lower germination rate than their corresponding euplasmic sibs. These results showed a cytoplasmic effect on seed development, and an influence on seed weight, dormancy, and fatty acid composition. B. carinata was more deleteriously affected by cytoplasm from B. napus than by cytoplasm of B. juncea.  相似文献   

6.
Spontaneous chromosome doubling via union of unreduced (2n) gametes has been thought to be the way that common wheat (Triticum aestivum L.) was originated from the hybridization of T. turgidum L. with Ae. tauschii Cosson. Previous works have observed unreduced gametes in F1 hybrids of Ae. tauschii with six of the eight T. turgidum subspecies. It is not clear, however, whether the formation of these unreduced gametes is a norm in the F1 hybrids. In the present study, we tried to answer this question by assessing the occurrence frequency of unreduced gametes in 115 T. turgidumAe. tauschii hybrid combinations, involving 76 genotypes of seven T. turgdium subspecies and 24 Ae. tauschii accessions. Our data show that these hybrid combinations differed significantly (P ≤ 0.01, F = 11.40) in selfed seedset, an indicator for production of unreduced gametes. This study clearly showed that meiotic restitution genes are widely distributed within T. turgidum. However, significant differences were found between as well as within T. turgidum subspecies and in the interaction of the T. turgidum genotypes with those of Ae. taushii. The possible application of the meiotic restitution genes from T. turgidum in production of double haploids is also discussed.  相似文献   

7.
In traditional quantitative genetics, additive effects of genes acting in a population of biparental homozygous lines are estimated on the basis of the phenotypic observations only, usually by taking a difference between mean values for extreme lines. Current molecular methods allow to estimate the additive effects by additionally taking into account the marker data. In this paper we compare these two methods of estimation of additive gene action effects analytically, by simulations and by analysis of real data sets for doubled haploid lines and recombinant inbred lines. The analytic comparison shows under which conditions an agreement of the two methods can be achieved. In most of the considered experimental data and in simulations we observe that the additive effect calculated on the basis of the marker observations is smaller than the total additive effect obtained from phenotypic observations only. This result is discussed, and a weighted regression approach is proposed as a method which can close the gap between the purely phenotypic and genotypic approaches.  相似文献   

8.
Canker stain, caused by the fungus Ceratocystis platani, is a destructive disease in Platanus spp. It has been recently proved that resistant accessions can be produced and grown in Europe. However, additional resistant genotypes are still needed in order to avoid the onset of virulent pathogen strains favoured by the selection pressures exerted by genetically homogeneous resistant plane tree plantings. In this study we present the results of two parallel experiments performed on 975 accessions of P. × acerifolia seedlings and P. × acerifolia clones derived by cutting propagation from mature trees grown in the urban environments. The selection process was based on inoculation with C. platani and yielded 13 accessions that showed different types of resistant reactions and survived in a stable manner thoughout the period of observation. Selected accessions were characterised by sequencing the rDNA-ITS region and by developing PCR procedures capable of detecting P. orientalis and P. occidentalis LEAFY homoeologues. These molecular analyses enabled us to confirm the identification of the species, its hybrid origin and to assess an evident genetic variability among the accessions, which therefore have to be considered as different genotypes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
It is believed that unreduced gametes with somatic chromosome numbers play a predominant role in natural polyploidization. Allohexaploid bread wheat originated from spontaneous hybridization of Triticum turgidum L. with Aegilops tauschii Coss. Unreduced gametes originating via meiotic restitution, including first-division restitution (FDR) and single-division meiosis (SDM), are well documented in triploid F1 hybrids of T. turgidum with diploid Ae. tauschii (genomic constitution ABD, usually with 21 univalents in meiotic metaphase I). In this study, two T. turgidum lines known to carry genes for meiotic restitution were crossed to tetraploid Ae. tauschii. The resulting F1 hybrids (genomes ABDD), had seven pairs of homologous chromosomes and regularly formed 14 univalents and seven bivalents at metaphase I. Neither FDR nor SDM were observed. The distribution of chromosome numbers among progeny obtained by self pollination and a backcross to T. turgidum showed the absence of unreduced gametes. These results suggest that high homologous pairing interfered with meiotic restitution and the formation of unreduced gametes. This may be related to asynchronous movement during meiosis between paired and unpaired chromosomes or to uneven distribution of chromosomes in anaphases, resulting in nonviable gametes.  相似文献   

10.
The expression of the “glanded-plant and glandless-seed” trait was assessed using High Performance Liquid Chromatography (HPLC) analysis methods in different Gossypium hybrids obtained by crossing Australian diploid cottons and various diploid and tetraploid species. Significant variation in the gossypol content in the seed was observed among the analyzed genotypes. HPLC data demonstrated that the gossypol synthesis repression mechanism in the Australian diploid species belonging to C and G genomes was dominant but did not confirm its preferential functioning against A genome species bearing GL2 locus. About 10% of the produced seeds had total gossypol content lower than the limit imposed by the World Health Organisation (600 ppm) for the use of cotton flour in food and feed. HPLC analysis of the terpenoids aldehyde (TA) contents in the aerial parts of the hybrids showed important qualitative and quantitative variability. This result could indicate a certain separation between pigment gland morphogenesis and terpenoid synthesis mechanisms in cotton.  相似文献   

11.
Dry matter accumulation (DMA) and photosynthetic capacity are important traits that influence biological yield and ultimate grain yield in wheat. In this study, quantitative trait loci (QTLs) analyses for DMA of stem, leaves, total plant and photosynthesis traits (Fv/Fm) at the jointing and anthesis stages were studied, using a set of 168 doubled haploid lines (DHLs) derived from the cross Huapei 3 (HP3)/Yumai 57 (YM57). QTL analyses were performed using QTL-Network 2.0 software based on the mixed linear model approach. A total of 18 additive QTLs and 12 pairs of epistatic QTLs were distributed on 16 of the 21 chromosomes. Most of the additive QTLs associated with DMA co-located in the same or adjacent chromosome intervals with QTLs for grain yield and related traits. A major locus Qculmc.sau-5D.1 (14.2%) close to the molecular marker Xwmc215 detected at the jointing stage was shared by QTLs for heading date and vernalization sensitivity, indicating tight linkages or pleiotropisms. One pair of epistatic QTLs, Qleavesc.sau-4A and Qleavesc.sau- 6B, explained 13.11% of the phenotypic variation at anthesis. All QTL × environment interactions were detected at the jointing stage, showing the importance of the jointing stage in determining the final outcome of plant development.  相似文献   

12.
Leprosis, caused by citrus leprosis virus (CiLV) and transmitted by the tenuipalpid mite Brevipalpus phoenicis, is one of the most important viruses of citrus in the Americas. Sweet oranges (Citrus sinensis L. Osb.) are highly susceptible to CiLV, while mandarins (C. reticulata Blanco) and some of their hybrids have higher tolerance or resistance to this disease. The mechanisms involved in the resistance and its inheritance are still largely unknown. To study the quantitative trait loci (QTL; quantitative trait loci) associated with the resistance to CiLV, progeny analyses were established with 143 hybrid individuals of ‘Pêra’ sweet orange (C. sinensis L. Osb.) and ‘Murcott’ tangor (C. reticulata Blanco × C. sinensis L. Osb.) from controlled crossings. Disease assessment of the hybrid individuals was conducted by infesting the plants with viruliferous mites in the field. The experiment consisted of a randomized completely block design with ten replicates. The evaluated phenotypic traits were incidence and severity of the disease on leaves and branches, for a period of 3 years. The MapQTL™ v.4.0 software was used for the identification and location of possible QTL associated with resistance to CiLV on a genetic map obtained from 260 AFLP and 5 RAPD markers. Only consistent QTLs from different phenotypic traits and years of evaluation, with the critical LOD scores to determine the presence or absence of each QTL calculated through the random permutation test, were considered. A QTL was observed and had a significant effect on the phenotypic variation, ranging from 79.4 to 84% depending on which trait (incidence or severity) was assessed. This suggests that few genes are involved in the genetic resistance of citrus to CiLV.  相似文献   

13.
In order to elucidate the cytological mechanism of 2n pollen formation in Chinese jujube, a cultivar named ‘Linglingzao’ (2n = 2x = 24) which produces relative more 2n pollens naturally was employed for microsporogenesis analysis. Chromosomes paired in 12 bivalents at diakinesis and the first meiotic division was normal, whereas, the second division was characterized by frequent abnormal spindle orientation (parallel and tripolar spindles). Perpendicular, tripolar, and parallel spindles at metaphase II accounted for 72.93, 17.22, and 9.85% respectively. Perpendicular and tripolar spindles led to tetrads and triads formation respectively. Two types of parallel spindles were observed and a significant association correlation (r = 0.84, P < 0.05) between parallel spindle II (fused spindles) and dyads was found which meant only fused spindles can form dyads, while parallel spindle I with a long distance between two sets of chromosomes seemed to lead tetrad formation. At tetrad stage, the observed frequencies of tetrads, triads and dyads were 80.99, 16.40, and 2.61% respectively. By the rule that each tetrad can form four n pollens, each triad can form one 2n pollen and two n pollens, each dyad can form two 2n pollens, the frequency of 2n pollen estimated was 5.71%. Based on the pollen diameter difference between n and 2n pollens, frequency of 2n pollen observed was 6.15%. No significant difference was observed between frequency of 2n pollen estimated and that of observed. The results indicated that, tripolar spindles and fused spindles at metaphase II followed by more triads and few dyads formation at tetrad stage were responsible for the production of 2n pollen in Chinese jujube. 2n gametes observed correspond to first division restitution. Research on the cytological mechanism of unreduced pollen will provide a platform for unreduced pollen induction and polyploidy breeding in Chinese jujube.  相似文献   

14.
The primary aim of this study was to optimize in vitro culture protocols to establish an efficient reproducible culture system for different Brassica interspecific crosses, and to synthesize yellow-seeded Brassica napus (AACC) for breeding and genetical studies. Reciprocal crosses were carried out between three B. rapa L. ssp. oleifera varieties (AA) and five accessions of B. oleracea var. acephala (CC). All the parental lines were yellow-seeded except one accession of B. oleracea. Hybrids were obtained through either ovary culture from crosses B. rapa × B. oleracea, or embryo culture from crosses B. oleracea × B. rapa. A higher rate of hybrid production was recorded when ovaries were cultured at 4–7 days after pollination (DAP). Of different culture media, medium E (MS with half strength macronutrients) showed good response for ovaries from all the crosses, the highest rate of hybrid production reaching 45% in B. rapa (1151) × B. oleracea (T2). In embryo culture, the hybrid rate was significantly enhanced at 16–18 DAP, up to 48.1% in B. oleracea (T3) × B. rapa (JB2). The combinations of optimal DAP for excision and media components increased recovery of hybrids for ovary and embryo culture, and constituted an improved technique for B. rapa × B. oleracea crosses. In addition, yellow seeds were obtained from progenies of two crosses, indicating the feasibility of developing yellow-seeded B. napus through the hybridization between yellow-seeded diploids B. rapa and B. oleracea var. acephala.  相似文献   

15.
Usually, mapping studies in potato are performed with segregating populations from crosses between highly heterozygous diploid or tetraploid parents. These studies are hampered by a high level of genetic background noise due to the numerous segregating alleles, with a maximum of eight per locus. In the present study, we aimed to increase the mapping efficiency by using progenies from diploid inbred populations in which at most two alleles segregate. Selfed progenies were generated from a cross between S. tuberosum (D2; a highly heterozygous diploid) and S. chacoense (DS; a homozygous diploid clone) containing the self-incompatibility overcoming S locus inhibitor (Sli-gene). The Sli-gene enables self-pollination and the generation of selfed progenies. One F2 population was used to map several quality traits, such as tuber shape, flesh and skin color. Quantitative trait loci were identified for almost all traits under investigation. The identified loci partially coincided with known mapped loci and partially identified new loci. Nine F3 populations were used to validate the QTLs and monitor the overall increase in the homozygosity level.  相似文献   

16.
Reciprocal differences, mostly caused by cytoplasmic effects, are frequently observed in interspecific hybrids. Previously, we found that crosses onto Solanum demissum were much successful with the pollen of interspecific hybrids between S. tuberosum as female and S. demissum as male (TD hybrids) than the reciprocal ones (DT hybrids). To elucidate this reciprocally different crossability, we analyzed the pollen DNA of TD and DT using methylation-sensitive amplified polymorphism (MSAP) analysis. Using 126 primer combinations, MSAP analysis revealed 57 different bands between bulked pollen DNA samples of TD and DT. Individual examination of 16 TD and 9 DT plants disclosed eight bands uniformly different between TD and DT. Their sequencing results revealed two pairs of bands to be identical to each other, resulting in six distinct sequences. As expected, one band shared high homology with chloroplast DNA, and another one with mitochondrial DNA. However, one band that was apparently different at DNA sequence level and maternally transmitted from S. demissum, showed no homology with any known sequence. The remaining three bands were of DNA methylation level differences with no or uncertain homology to known sequences. To our knowledge, this is the first report detecting reciprocal differences in DNA sequence or DNA methylation other than those in cytoplasmic DNA.  相似文献   

17.
Squash silverleaf (SSL), caused by the silverleaf whitefly [Bemisia argentifolii (formerly known as Bemisia tabaci Gennadius, B strain)], is an important physiological disorder that affects squash (Cucurbita spp.) by reducing yield potential. Breeding squash with resistance to SSL disorder can be facilitated by using marker-assisted selection (MAS). Resistance to SSL disorder, in Cucurbita pepo, is conferred by a single recessive gene (sl). The objective of this study was to identify molecular markers associated with resistance. A zucchini squash, SSL disorder resistant breeding line, ‘Zuc76’ (sl/sl) and a SSL disorder susceptible zucchini cultivar ‘Black Beauty’ (Sl/Sl) were screened with 1,152 randomly amplified polymorphic DNA (RAPD) primers and 432 simple sequence repeat (SSR) markers to identify polymorphisms. Using F2 and BC1 progeny segregating for SSL disorder resistance, three RAPD (OPC07, OPL07 and OPBC16) primers and one SSR (M121) marker were found associated with sl. Fragments amplified by RAPD primer OPC07 was linked in coupling phase to sl, whereas RAPD primer OPL07 was linked in repulsion phase. RAPD primer OPBC16 and SSR marker M121 were co-dominant. The allelic order of these loci was found to be M121–sl–OPC07–OPL07–OPBC16. The closest marker to sl is M121 with an estimated genetic distance of 3.3 cM. The markers identified in this study will be useful for breeding summer squash (C. pepo) for SSL disorder resistance derived from zucchini squash breeding line ‘Zuc76’.  相似文献   

18.
The possibility to induce embryo development after pollination of F1 interspecific cotton hybrids (Gossypium barbadense × Gossypium. hirsutum) with pollen from Abelmoschus esculentus was investigated to determine if wide-cross hybrid, haploid or other types of progeny might result. Small numbers of progeny (Pa) were indeed recovered after numerous alien pollinations and in-planta development or in-vitro culture. The Pa plants were characterized phenotypically and studied cytogenetically and microscopically to help establish their origin documenting their reproductive basis. Root-tip chromosome counts and meiotic Metaphase-I analyses revealed that chromosome numbers among cells of the Pa plants ranged from 33 to 44 and that the differences in chromosome number among cells of the same plant ranged from 1 to 3, indicating somatic instability. Flow cytometric analysis also indicated the aneuploid nature of Pa plants. Although the reproductive mechanisms need to be characterized more extensively by cytological and molecular means, the observations suggest that alien pollinations may have resulted in parthenogenetic (Pa) egg cell development, or some other unusual reproductive events. The production of wide-crosses and high degrees of aneuploidy could be of use for several types of genomic studies, e.g., functional genomic characterization of genome shock, deletion mapping, and germplasm introgression.  相似文献   

19.
Breeding for host resistance to coffee berry disease (CBD) in arabica coffee (Coffea arabica) was initiated some 35–40 years ago in Kenya, Ethiopia and Tanzania in response to severe CBD epidemics. The release of CBD resistant cultivars to the coffee growers has been in progress since 1985. The resistance of cultivars like Ruiru 11 (Kenya) and Ababuna (and other cvs in Ethiopia) appears to be of a durable nature, since confirmed cases of a breakdown of host resistance under field conditions have not been reported over the past 20 years. Host resistance to the hemibiotrophic fungus Colletotrichum kahawae is of a quantitative nature, but nevertheless can be practically complete in some genotypes of arabica coffee. There is still no consensus on the genetics of CBD resistance, some claiming convincing evidence for oligogenes (1–3 major genes) and others for polygenes determining CBD resistance. Results from genetic studies with germplasm from the centre of genetic diversity for C. arabica in Ethiopia are presented here. These together with the recent identification of molecular markers associated with and the mapping of one major gene, provides additional evidence for oligogenic inheritance of CBD resistance. The development of cultivars combining yield and quality with durable host resistance to CBD has contributed greatly to increased sustainability of arabica coffee production in Africa. It has also considerable relevance to arabica coffee in Latin America and Asia, where CBD is still a quarantine disease but with a risk of becoming endemic one day, just as has happened earlier with coffee leaf rust (Hemileia vastatrix).  相似文献   

20.
Genetic resistance is an efficient and environmentally acceptable way of limiting the damaging effects of plant pathogens on yield and quality of crops. Tests of winter barley variety Venezia revealed an unknown resistance to all tested Blumeria graminis f. sp. hordei isolates. Response type arrays (RTAs) obtained here were created using common avirulent (RT 0) isolates and virulent (RT 4) isolates that first appeared in 2011. RTA of Venezia was identical to RTAs of six other varieties, but differed from RTAs of all other previously tested varieties. Venezia was the first variety to be registered with this resistance, and it is recommended that the resistance be designated Ve. Among 905 isolates randomly collected from the Czech aerial pathogen populations from 2009 to 2015, 13 contained Ve virulence. Each of the isolates differed from the others and thus belonged to different pathotypes. Seven of these 13 pathotypes were collected in the western region of the Czech Republic in an area close to Germany, where Venezia was grown. This finding could support the hypothesis that pathotypes virulent to Venezia have migrated from Germany into the Czech Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号