首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visible (Vis)/near infrared (NIR) spectroscopy is an excellent technique for non-destructive fruit quality assessment. This research was focused on evaluating the use of Vis/NIR spectroscopy for measuring soluble solids content (SSC) of intact ‘Cuiguan’ pears (Pomaceae pyrifolia Nakai cv. Cuiguan) on-line. Also, the effect of fruit moving speed on SSC measurements was investigated. Diffuse transmission spectra were collected using a fiber spectrometer equipped with a 3648-element linear silicon CCD array detector in the wavelength range of 345–1040 nm, and all sample spectra were collected three times at different fruit moving speeds of 0.3 m s?1, 0.5 m s?1 and 0.7 m s?1. Spectral pre-processing such as derivative, standard normal variate transformation (SNV) and multiplicative scatter correction (MSC) was used before calibration. Partial least squares (PLS) and least squares support vector machines (LS-SVM) were used to develop calibration models for SSC. The results show that fruit moving speed has few effects on spectra and model performance at a fruit moving speed of 0.3–0.7 m s?1. At 0.5 m s?1, the best model for SSC was PLS regression coupled with original spectra, its coefficient of determination (R2) and root mean square error of prediction (RMSEP) being 0.916% and 0.530%, respectively.  相似文献   

2.
A combination of near infrared spectroscopy (NIR) instrumental measurements and sensory analysis was investigated to predict solids soluble content (SSC, assessed as Brix) and to classify preference in table grape cv Italia. SSC was monitored in each berry of whole bunches in order to evaluate intra-bunch distribution and variability. NIR spectra were recorded in the spectral region 12,000–4000 cm−1 (833–2500 nm) using a set of 682 berries. The Partial Least Square (PLS) model based on cross-validation provided acceptable value for the main statistical parameters (coefficient of determination of cross-validation, r2: 0.85; standard error of cross-validation, SECV: 1.08; residual predictive deviation, RPD: 2.6) and was confirmed by external validation performed with 115 independent berries (coefficient of determination of prediction, rp2: 0.82; standard error of prediction, SEP: 0.83). For consumer testing, the selected PLS model was used to predict the Brix value in 400 berries and Discriminant Analysis (DA) was then carried out to classify berries in terms of preference by relating NIR data to consumer judgment. The three defined preference clusters of berries were fully classified obtaining 100% membership. In cross-validation the value decreased especially for class 1 (78.5%) and 3 (75%) whereas class 2 obtained comparable values (98.7%). According to our results, NIR technology appears to be a promising technique for predicting SSC and obtaining information with regard to consumer preference in ‘Italia’ table grape for application of efficient and low cost on-line instruments in the fruit industry.  相似文献   

3.
The effect of cultivar, season, shelf-life and origin on the accuracy of near infrared (NIR) calibration models for the soluble solids content (SSC) and firmness of apple was studied based on a large spectral data set based on approximately 6000 apple fruit from different cultivars, origins, shelf-life exposure time and seasons. To interpret the variance in the spectra with respect to biological variability, functional analysis of variance (FANOVA) was used. From the FANOVA analysis it was concluded that the effects of cultivar, origin and shelf-life exposure time on the NIR spectra were all significant. The largest differences in the spectra were found around the water absorption peaks (970, 1170 and 1450 nm). External validations using independent data sets showed that the accuracy of the models increased considerably when more variability was included in the calibration data set. In general the RMSEP for predictions of the SSC were in the range 0.6–0.8 °Brix, while for Magness Taylor firmness it was 5.9–8.8 N, depending on the cultivar. It was shown that atypical data can lead to large validation errors. It is, therefore, important to collect a calibration data set which is sufficiently representative for future samples to be analyzed with the developed calibration models and to develop simple procedures for model adaptation during practical use.  相似文献   

4.
Red fleshed watermelons are an excellent source of the phytochemical lycopene. However, little is known about the stability of lycopene in cut watermelon. In this study, lycopene stability and other quality factors were evaluated in fresh-cut watermelon. Twenty melons each of a seeded (Summer Flavor 800) and a seedless (Sugar Shack) variety were cut into 5 cm cubes and placed in unvented polystyrene containers, sealed, and stored at 2 °C for 2, 7, or 10 days. At each storage interval, melons were evaluated for juice leakage, changes in carotenoid composition, color, soluble solids content (SSC), and titratable acidity. Headspace carbon dioxide and ethylene were monitored during storage intervals. Juice leakage after 10 days of storage averaged 13 and 11% for the seeded and seedless melons, respectively. Lycopene content decreased 6 and 11% after 7 days of storage for Summer Flavor 800 and Sugar Shack melons, respectively. β-Carotene and cis lycopene contents were 2 and 6 mg kg−1 for Summer Flavor 800 and Sugar Shack, respectively, and did not change with storage. After 10 days of storage, CIE L1 values increased while chroma values decreased, indicating a lightening in color and loss of color saturation in melon pieces. Symptoms of chilling injury, such as greatly increased juice leakage, or lesions on cubes, were not seen on the fresh-cut cut watermelon after 10 days storage at 2 °C. Puree pH increased and SSC decreased slightly after storage. Carbon dioxide levels increased and oxygen levels decreased linearly during storage, creating a modified atmosphere of 10 kPa each of CO2 and O2 after 10 days. Fresh-cut cut watermelon held for 7 or more days at 2 °C had a slight loss of SSC, color saturation, and lycopene, most likely caused by senescence.  相似文献   

5.
6.
We present a segmented partial least squares (PLS) prediction model for firmness of ‘Rocha’ pear (Pyrus communis L.) during fruit ripening under shelf-life conditions. Pears were collected from three different orchards. Orchard I provided the pears for model calibration and internal validation (set 1). These were transferred to shelf-life in the dark at 20 ± 2 °C and 70% RH, immediately after harvest. External validation was performed on the pears from the other two orchards (sets 2 and 3), which were stored under different conditions before shelf-life. Fruit was followed in the shelf-life period by visible/near infrared reflectance spectroscopy (Vis/NIRS) in the range 400–950 nm. The correlation between firmness and the reflectance at some wavelength bands was markedly different depending on ripening stage. A segmented partial least squares model was then constructed to predict firmness. This PLS model has two segments: (1) unripe and ripening/ripe pears (high firmness); (2) over-ripe pears (low firmness). The prediction is done in two steps. First, a full range model (full model) is applied. When the full model prediction gives a low firmness value, then the over-ripe model is applied to refine the prediction. The full model is reasonably significant in regression terms, robust, but allows only a coarse quantitative prediction (standard deviation ratio, SDR = 2.48, 1.50 and 2.40 for sets 1, 2 and 3, respectively). Also, RMSEP% = 139%, 91% and 56%, indicating large relative errors at low firmness values. The segmented model improved moderately the correlation, and the values of RMSEC, RMSEP and SDR; it improved significantly the RMSEP% (29%, 55% and 31%), providing an improvement of the relative prediction errors at low firmness values. This method improves the ordinary PLS models. Finally, we tested whether chlorophyll alone was enough for a predictive model for firmness, but the results showed that the absorption of chlorophyll alone does not explain the performance of the PLS models.  相似文献   

7.
The effects of four pre-packaging UV-C illumination doses (1.6, 2.8, 4.8 and 7.2 kJ m?2) on quality changes of watermelon cubes stored up to 11 days at 5 °C were studied. Non-treated cubes were used as a control. Higher UV-C doses induced slightly higher CO2 production throughout the storage period, while no changes in C2H4 production were monitored. However, UV-C did not significantly affect the final gas partial pressures within modified atmosphere packages where levels of 3–6 kPa O2 and 13–17 kPa CO2 were reached for all treatments. UV-C decreased microbial counts just after illumination. After 11 days at 5 °C, mesophilic, psycrophilic and enterobacteria populations were significantly lower in UV-C treated watermelon. Slight changes in CIE colour parameters were observed. According to sensory quality attributes, control and low UV-C treated cubes (1.6 and 2.8 kJ m?2) can be stored for up to 11 days at 5 °C while the maximum shelf-life of moderate to high UV-C treated fruit was 8 days at 5 °C. Control cubes showed a 16% decrease in lycopene content after 11 days at 5 °C similar to that found for the high UV-C treatment. However low UV-C treated watermelon cubes preserved their initial lycopene content (2.8 kJ m?2) or it was slightly decreased (1.6 kJ m?2). UV-C radiation did not significantly affect the vitamin C content while catalase activity and total polyphenols content considerably declined throughout the storage period. However, total antioxidant capacity markedly increased, independently of UV-C doses. As a main conclusion, UV-C radiation can be considered a promising tool for keeping overall quality of fresh-cut watermelon.  相似文献   

8.
Postharvest temperature and relative humidity (RH) treatments were tested for their capacity to increase the soluble solids content:titratable acidity ratio (SSC:TA ratio) and/or reduce skin puffiness of New Zealand grown ‘Miho’ Satsuma mandarin. Fruit of low SSC:TA (approximately 6.8:1) harvested in 2001 and 2002 were held at 18 or 30 °C at low (approximately 65%) or high (>95%) RH for 3 or 5 days, followed by 2 days at 10 °C (88–92% RH). In 2002, an additional treatment of high and low RH at 10 °C was examined. Treatments at 30 °C, irrespective of RH, resulted in increased SSC:TA ratios in the fruit as a result of a decrease in titratable acidity, largely a decrease in citric acid. There was little effect of temperature on SSC and the levels of individual sugars. There was no significant effect of RH on either TA or SSC. The altered metabolism was also seen in an elevated respiratory CO2 output at 30 °C, but a decreased CO2 output once these fruit were transferred to 10 °C, in comparison with fruit treated at lower temperatures.At 30 °C, weight loss was up to 8.5% after 5 days under low RH, but <4% under high RH. Fruit with >4% weight loss tended to have an unacceptable level of dehydration of the skin. After 5 days at 30 °C and low RH, skin puffiness, quantified from magnetic resonance images taken before and after treatment, was reduced, although fruit tended to have soft skin that could be more prone to damage.It is concluded that short high temperature treatments such as 3–5 days at 30 °C can significantly raise the SSC:TA ratio in Satsuma mandarin through a reduction in TA, and conducting these treatments under a RH >90% minimises the risk of excessive weight loss and softening of the skin.  相似文献   

9.
Sunflower (Helianthus annuus L.) raises as a competitive oilseed crop in the current environmentally friendly context. To help targeting adequate management strategies, we explored statistical models as tools to understand and predict sunflower oil concentration. A trials database was built upon experiments carried out on a total of 61 varieties over the 2000–2011 period, grown in different locations in France under contrasting management conditions (nitrogen fertilization, water regime, plant density). 25 literature-based predictors of seed oil concentration were used to build 3 statistical models (multiple linear regression, generalized additive model (GAM), regression tree (RT)) and compared to the reference simple one of Pereyra-Irujo and Aguirrezábal (2007) based on 3 variables. Performance of models was assessed by means of statistical indicators, including root mean squared error of prediction (RMSEP) and model efficiency (EF). GAM-based model performed best (RMSEP = 1.95%; EF = 0.71) while the simple model led to poor results in our database (RMSEP = 3.33%; EF = 0.09). We computed hierarchical contribution of predictors in each model by means of R2 and concluded to the leading determination of potential oil concentration (OC), followed by post-flowering canopy functioning indicators (LAD2 and MRUE2), plant nitrogen and water status and high temperatures effect. Diagnosis of error in the 4 statistical models and their domains of applicability are discussed. An improved statistical model (GAM-based) was proposed for sunflower oil prediction on a large panel of genotypes grown in contrasting environments.  相似文献   

10.
Chicory (witloof) is a typically Belgian vegetable appreciated for its slightly bitter taste. Up until now no measurements exist to objectively quantify the sensory characteristics of chicory. Taste and texture of nine different chicory hybrids were analyzed by sensory and instrumental analysis (three-point bending test, high performance anion exchange with pulsed amperometric detection, high performance liquid chromatography and visible/near infrared spectroscopy). The main objective of the study was to correlate and predict the sensory attributes and consumer acceptance of chicory with destructive physico-chemical measurements and non-destructive Vis/NIR data, to avoid time- and money-consuming sensory profiling in the future. A univariate analysis showed that glucose and sucrose concentrations in chicory leaves were highly correlated with the attributes crunchiness and bitterness. The fructose concentrations however were correlated with the sweetness score of the panel. When performing partial least squares on all destructive instrumental parameters and Vis/NIR data for the major sensory attributes of chicory, satisfactory prediction models (ratio of standard deviation to root mean square error of cross-validation (RPD) > 2) could be established for all attributes but sweetness using all physico-chemical parameters. Using Vis/NIR data improved the prediction capacity of the sweetness model, and this technique proved to be useful in predicting the sensory quality of chicory.  相似文献   

11.
NIR spectroscopy was used to assess textural parameters (maximum shear force and cutting energy) in intact green asparagus. At the same time, two commercially available spectrophotometers, which differ primarily in terms of measurement principles, were evaluated: a scanning monochromator (SM) of 400–2500 nm and a combination of diode array and scanning monochromator (DASM) of 350–2500 nm. A total of 468 green asparagus spears cv. ‘UC-157’ were used to obtain calibration models based on reference data and NIR spectral data. Both instruments provided good precision for maximum shear force, with r2 values between 0.55 and 0.67 and standard error of cross-validation (SECV) ranging from 7.81 to 8.43 N, and also for cutting energy (r2 = 0.60–0.74; SECV = 0.06–0.07 J). The results obtained suggest that NIR spectroscopy is a promising technology for predicting intact green asparagus quality in terms of texture. They also show that the two spectrophotometers tested provided a similar degree of accuracy for texture measurements in intact green asparagus.  相似文献   

12.
Apples can be stored for long time under controlled temperature and atmosphere conditions, and therefore, non-destructive and rapid tools are required to assess fruit quality and to monitor changes during the postharvest period. The aim of this study was to evaluate the feasibility of NIR spectroscopy to optimize postharvest apple management and to follow changes in fruit quality during storage. An FT-NIR system operating in diffuse reflectance in the range 12,500–3600 cm−1 was used to evaluate the physico-chemical (dry matter, soluble solids, colour and firmness) and some nutraceutical characteristics (total phenolics, total flavonoids and antioxidant activity) of ‘Golden Delicious’ apples, which were stored for about six months at 1 °C in controlled atmosphere, over two subsequent years. Spectral data were elaborated by PLS regression and LDA classification techniques. Good correlation models between spectral data and chemical and physical parameters were obtained for soluble solids, a* colour coordinate and firmness (0.81 < R2 < 0.90 in calibration and 0.79 < R2 < 0.89 in cross validation). Even higher correlation values (0.89 < R2 < 0.95 in calibration and 0.86 < R2 < 0.92 in cross validation) were obtained for indexes correlated to the antioxidant capacity of apples. The classification technique Linear Discriminant Analysis was applied to spectral data, in order to discriminate apples on the basis of storage time. Average correct classification was higher than 93% in validation and close to 100% in calibration, indicating high potential of NIR spectroscopy for the estimation of storage time of apple lots.  相似文献   

13.
The objectives of this study were to estimate the plastochron in pigeonpea (Cajanus cajan (L.) Millsp.) during the period between emergence and flowering using three methods of calculating the average daily air temperature and to determine the sample size (number of plants) needed to estimate the plastochron. A uniformity test (blank experiment) was conducted in an area of 1440 m2 containing a pigeonpea crop. The area was divided into 360 plots of 2 m × 2 m, and 1 plant per plot was marked at random. In each of these 360 plants, the number of nodes on the main stem was counted at 37, 43, 50, 57, 64, 71, 78, 85, 93, 99, 106, 114 and 120 days after emergence (DAE). The average daily air temperature (Taverage) was calculated using three methods: method 1: Taverage = (Tminimum + Tmaximum)/2; method 2: Taverage = (T0 h + T1 h + T2 h +  + T23 h)/24; and method 3: Taverage = (Tminimum + Tmaximum + T9 h + 2T21 h)/5. For the three methods, the daily and cumulative thermal times were calculated from the date of emergence to early flowering and fitted to a linear regression of the average number of nodes on the main stem as a function of the accumulated thermal time. The plastochron was then calculated under each method as the inverse of the slope of the linear regression, and the required sample size (number of plants) to estimate the plastochron was determined by resampling with replacement. Plastochron values determined from the average daily air temperature calculated based on the three methods are different, and the use of the arithmetic mean of the hourly temperatures (method 2) should be favoured. Under method 2, the plastochron for pigeonpea was determined to be 21.34 °C day node−1. To estimate the plastochron with 95% confidence interval amplitudes equal to 1, 2 and 3 °C day node−1, it was necessary to count the number of nodes in 194, 50 and 24 pigeonpea plants, respectively.  相似文献   

14.
The level of N fertilization and the content of leaf N in Cynodon dactylon × C. transvaalensis Burtt Davy cv. ‘Tifway 419’ bermudagrass were evaluated non-destructively with a fluorescence-based method. It was applied directly into the field by using the Multiplex portable fluorimeter during two consecutive seasons (2010 and 2011). In the 2010 experiment, the nitrogen balance index (NBI1) provided by the sensor was able to discriminate (at P < 0.05) six different N levels applied, up to 250 kg ha−1, with a precision (root mean square error, RMSE) in the rate estimate of 3.29 kg ha−1. In 2011, the index was insensitive to the N treatment between 150 kg ha−1 and 250 kg ha−1 N rates, and its precision was 39.98 kg ha−1. Calibration of the sensor by using the destructive analysis of turf samplings showed a good linear regression between NBI1 and the leaf N content for both 2010 (R2 = 0.81) and 2011 (R2 = 0.93) experiments. This allowed mapping of the leaf N spatial distribution acquired by the sensor in the field with a prediction error of 0.21%. Averaging the overall estimates of leaf N content per N treatment provided an upper limit of 200 kg ha−1 for the required fertilization, corresponding to a critical level of leaf N of about 2.3%. Our results confirm the usefulness of the new fluorescence-based method and sensor for a precise management of fertilization in turfgrass.  相似文献   

15.
Common food additives (sodium bicarbonate (SB), sodium carbonate (SC), and potassium sorbate (PS)) were compared to the fungicide fludioxonil for the control of gray mold on California-grown ‘Wonderful’ pomegranates artificially inoculated with Botrytis cinerea and stored at 7.2 °C in either air or controlled atmosphere (CA, 5 kPa O2 + 15 kPa CO2) conditions. Fludioxonil was superior to other treatments. PS was the most effective additive. Synergistic effects between antifungal treatments and CA storage were observed. After 15 weeks of storage at 7.2 °C, the combination of PS treatment (3 min dip in 3% solution at 21 °C) and CA storage was as effective as the combination of heated fludioxonil (30 s dip in 0.6 g L−1 of active ingredient at 49 °C) and air storage. Mixtures of PS with SB or SC did not improve the efficacy of either treatment alone. In tests conducted in commercial facilities, decay development and external and internal fruit quality were assessed on naturally infected pomegranates stored in either air or CA after application of a selected postharvest antifungal combined treatment (CTrt) integrating PS, SB + chlorine, and fludioxonil. CTrt was effective in controlling natural gray mold after 6 weeks of storage at 8.9 °C, but lacked persistence and it was not effective after 14 weeks. CA storage greatly enhanced decay control ability of CTrt. Skin red color was better maintained in CA-stored than in air-stored fruit. Juice color and properties (SSC, TA, and pH) were not practically affected by either postharvest treatment or storage condition. The integration of PS treatments with CA storage could provide an alternative to synthetic fungicides for the management of pomegranate postharvest decay.  相似文献   

16.
Kenaf is a warm-season species that recently has been proved to be a good source of biomass for cellulose pulp for the paper industry in Mediterranean countries, where the use of hemp is problematic for legal reasons. A two-year research program aiming at studying the effects of different water regimes and nitrogen fertilization levels, upon plant growth, leaf area index, biomass accumulation, water and radiation use efficiency, was carried out on kenaf under a typically semi-arid Mediterranean climate of South Italy. In cv. Tainung 2, four different water regimes (I0 = no irrigation, I25, I50 and I100 = 25, 50 and 100% ETc restoration, respectively) and three nitrogen levels (N0 = no nitrogen, N75 and N150 = 75 and 150 kg ha−1 of N, respectively) were studied. The amount of water applied strongly affected plant growth (in terms of LAI, plant height and biomass) and final total and stem dry yield, which significantly increased from I0 to I100. Nitrogen did not exert any beneficial effect upon dry yield. Radiation Use Efficiency (RUE), calculated in the second year only, was the highest (1.95 g DM MJ−1) in fully irrigated treatment (I100) and the lowest (0.86 g DM MJ−1) in the dry control.Water use efficiency (WUE) was rather similar among water regimes, whilst irrigation water use efficiency (IWUE) progressively increased with the decrease of total volume of water distributed to the crop by irrigation, from 3.47 to 12.45 kg m−3 in 2004 and from 4.27 to 7.72 kg m−3 in 2005. The results obtained from this research demonstrate that in semi-arid areas of South Italy, irrigation at a reduced rate (50% ETc restoration) may be advantageous, since it allowed a 42–45% irrigation water saving, when compared to the fully irrigation treatment, against a 23% (in 2004) and 36% (in 2005) yield reduction, and a still good efficiency (near that potential) in transforming the solar radiation in dry biomass was maintained (RUE = 1.76 g DM MJ−1, against 1.95 g DM MJ−1 in fully irrigated treatment).  相似文献   

17.
Yield modelling based on visible and near infrared spectral information is extensively used in proximal and remote sensing for yield prediction of crops. Distance and thermal information contain independent information on canopy growth, plant structure and the physiological status. In a four-years′ study hyperspectral, distance and thermal high-throughput measurements were obtained from different sets of drought stressed spring barley cultivars. All possible binary, normalized spectral indices as well as thirteen spectral indices found by others to be related to biomass, tissue chlorophyll content, water status or chlorophyll fluorescence were calculated from hyperspectral data and tested for their correlation with grain yield. Data were analysed by multiple linear regression and partial least square regression models, that were calibrated and cross-validated for yield prediction. Overall partial least square models improved yield prediction (R2 = 0.57; RMSEC = 0.63) compared to multiple linear regression models (R2 = 0.46; RMSEC = 0.74) in the model calibration. In cross-validation, both methods yielded similar results (PLSR: R2 = 0.41, RMSEV = 0.74; MLR: R2 = 0.40, RMSEV = 0.78). The spectral indices R780/R550, R760/R730, R780/R700, the spectral water index R900/R970 and laser and ultrasonic distance parameters contributed favourably to grain yield prediction, whereas the thermal based crop water stress index and the red edge inflection point contributed little to the improvement of yield models. Using only more uniform modern cultivars decreased the model performance compared to calibrations done with a set of more diverse cultivars. The partial least square models based on data fusion improved yield prediction (R2 = 0.62; RMSEC = 0.59) compared to the partial least square models based only on hyperspectral data (R2 = 0.48; RMSEC = 0.69) in the model calibration. This improvement was confirmed by cross-validation (data fusion: R2 = 0.39, RMSEV = 0.76; hyperspectral data only: R2 = 0.32, RMSEV = 0.79). Thus, a combination of spectral multiband and distance sensing improved the performance in yield prediction compared to using only hyperspectral sensing.  相似文献   

18.
The aim of this research was to study the effects of two hurdle technologies, citric acid application (CA) at 0.3%, 0.6% and 0.9% and thermal treatments (IT) for 1, 2 and 3 min at 50 °C, on the color of radish slices over 10 d of refrigerated storage. Contribution of the hurdles and their interactions were evaluated by examining the treatment effects on the following parameters: chromatic coordinates (L*, a* and b*) and the indices: chroma (ΔC*), total color difference (ΔE) and Color Index (CI*).The chromatic parameters for fresh radish (control samples) were L0 = 69.43 ± 0.62, a0 = −0.46 ± 0.05 and b0 = 5.37 ± 0.37, while the calculated color indices were chroma = 5.39 ± 0.36, ΔE = 0 and CI* = −1.19 ± 0.17. Regarding control samples, the b* values showed an increasing trend during storage, which was associated with browning of the slices. Both ΔE and ΔC* values presented similar trends as reported for b*. Based on statistical analysis of the parameters and indices tested, the single hurdle application of low citric acid concentration (0.3%) or intermediate immersion time (2 min) at 50 °C minimized the radish slices color changes during storage. However, better results were obtained when two hurdles in series were applied. According to analysis, the treatment T7 (1 min IT, 0.3% CA) was selected as the best treatment to improve the retention of typical natural color of the minimally processed sliced radishes.  相似文献   

19.
Fumigation by plant volatile compounds and hot water treatment were tested in vitro and in vivo for their activity against Neofabraea alba (anamorph Phlyctema vagabunda), the cause of lenticel rot in apple fruit. In vitro trials with volatile compounds showed a consistent inhibition of pathogen growth by carvacrol, trans-cinnamaldehyde, citral and trans-2-hexenal, while (?)-carvone, hexanal, p-anisaldehyde, 2-nonanone and eugenol showed progressively lower inhibition. The greatest inhibition of mycelial growth was demonstrated by carvacrol (effective doses for 50 and 95 inhibition [ED50 and ED95] = 5.9 and 17.0 μL L?1, respectively; minimum inhibitory concentration [MIC] = 36.9 μL L?1) and of conidial germination by trans-2-hexenal (ED50 and ED95 = 4.1 and 6.9 μL L?1, respectively; MIC = 9.2 μL L?1). Hot water showed a complete inhibition of conidial germination in vitro after 10, 2 and 1 min of exposure at 40, 45 and 50 °C, respectively, and a complete inhibition of mycelial growth after 20 min of exposure at 75 °C. Among the volatile compounds tested, only 25 μL L?1 of carvacrol slightly reduced fungal infection on artificially infected apples (11.4% efficacy). Hot water treatment at 45 °C for 10 min showed high efficacy in the control of lenticel rot on apples. Reduction of infection was 80% in artificially inoculated fruit (cv Golden Delicious) and 90% in naturally infected fruit (cv Pink Lady) after 90 and 135 d of storage, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号