首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
基于太阳能的柑桔园自动灌溉与土壤含水率监测系统研制   总被引:6,自引:5,他引:1  
为实现柑桔园的节水节能自动灌溉与土壤含水率的监测,以太阳能为主要能源,用土壤水分传感器实时监测土壤含水率,利用CAN(controller area network)总线与GSM(global system for mobile communications)网络实现土壤含水率的远程监测。利用太阳能电池对锂电池充电,采用双锂电池结构,提高了系统供电稳定性,且将充电与放电过程完全分离,延长了锂电池寿命。土壤水分传感器每12h测量一次土壤含水率,当其低于设定的阈值时,自动打开电磁阀进行灌溉,当高于设定值时停止灌溉。在666.7m2内的土壤含水率数据利用CAN总线传输至主节点,各主节点通过短消息将数据发送至终端计算机。将桔园土壤含水率低于10%,高于20%作为系统开始自动灌溉和停止灌溉指标,且传感器距滴管外50mm时,则水分输运到柑桔根系集中区域所需滴灌时间约为6.7h。试验表明,系统运行稳定可靠,能实现柑桔园区的自动灌溉与土壤含水率的自动监测,对实现节水节能灌溉有较大的现实意义。  相似文献   

2.
基于zigbee无线网络的土壤墒情监控系统   总被引:8,自引:5,他引:3  
为了提高农业灌溉用水利用率,针对传统有线网络采集布线复杂和成本高的缺点,该文设计了一套基于Zigbee无线网络和CC2430 MCU的土壤墒情监测系统。该系统综合了Zigbee无线网络自行组网、自行愈合和超低功耗的优点,采用太阳能电池供电,能实时监测和记录土壤墒情信息,为进一步制定节水灌溉策略提供有力的数据支持。初步试验结果表明,该系统运行稳定,丢包率低,能及时准确的监控土壤墒情信息,并将土壤含水率维持在适合植物生长的最佳含水量的范围之内。研究结果可为进一步开发更精准的自动灌溉系统提供数据支持。  相似文献   

3.
基于GPRS/SMS和μC/OS的都市绿地精准灌溉控制系统   总被引:8,自引:3,他引:5  
为了节约都市绿地灌溉用水,提高水资源利用率,该文设计了一套基于ATmega128 MCU、嵌入式操作系统、全球移动通讯系统GSM、通用分组无线业务GPRS(General Packet Radio Service)的都市绿地远程精准灌溉控制系统。该系统实现了网络化、智能化的土壤墒情的实时检测,以及历史数据查询、土壤信息及灌溉信息的图表显示,用水报表生成,根据地势、植被不同,生成不同灌溉策略等功能。采用GSM/GPRS自主切换技术,结合现代嵌入式实时操作系统μC/OS,进一步提高了系统的可靠性。该系统能根据植物的土壤含水率阈值和生物需水量实现精准节水灌溉。初步试验证明,该系统数据传输可靠性高,节水效果显著。  相似文献   

4.
为提高水资源利用率和灌溉智能化管理的需要,设计了以无线传感器网络技术为核心的荔枝园节水灌溉控制系统,该系统的无线通信模块选择CC2530模块,传感器模块包括空气温湿度传感器DHT22,光照强度传感器GY-30,土壤水分含量传感器TDR-3以及一些外围电路,精确采集荔枝园温度、湿度、光照度和土壤含水率等多项环境信息,通过无线传感器网络、通用分组无线服务技术(General Packet Radio Service,GPRS)和互联网进行数据的传输,保证了传输的实时性和远程性,实现了对荔枝园环境的实时监控;同时,远程服务器和网站上都对荔枝园的土壤含水率的阈值进行了设定,当土壤含水率的值超过了阈值,服务器或者网站就会自动发送相关命令对相应的电磁阀进行控制,实现双向控制。分析、测试了系统的功耗和通信距离,在空旷地带,节点的双向有效通信距离达1 205 m,在荔枝园中双向有效通信距离达81.5 m。在传感器节点系统工作周期为30 min情况下,根据试验结果估算出,两节额定容量为3 000 m A·h的3.7 V锂电池串联可使传感器节点持续工作时间最大为500 d,可使电磁阀控制节点工作5 a以上。试验结果表明,该系统运行稳定,网络平均丢包率为3.87%,能够准确监测荔枝园信息采集和控制电磁阀工作,实现和控制荔枝园智能节水灌溉双向通信。  相似文献   

5.
基于ZigBee技术的粮库监测系统设计   总被引:11,自引:4,他引:7  
针对大型粮库设施粮食存储环境相关参数监测点分散的现状,设计出了一种层次型网络拓扑结构的无线传感器网络中央监测系统。以承载ZigBee技术的CC2430芯片为无线节点的检测与信息处理核心,结合温度、湿度传感器模块,构成无线传感器网络终端检测子节点,对现场环境实时检测,并通过路由节点将数据上传;路由节点模块设计,采用无线或RS-485标准的方式与中心节点进行信息通讯,使现场循环检测数据能实时传送给中央监控计算机,实现深入粮仓内部的多点检测、实时监测。结果表明,系统功能扩展方便、布网灵活、施工成本低,为大型粮库设施现代化管理奠定了基础。  相似文献   

6.
基于物联网的荔枝园信息获取与智能灌溉专家决策系统   总被引:2,自引:8,他引:2  
为实现荔枝园环境的实时远程监控和精准管理,设计基于农业物联网的荔枝园信息获取与智能灌溉专家决策系统,该系统通过信息采集终端模块实时采集荔枝园的土壤含水率、空气温湿度、光照强度、风速和降雨量等环境信息,通过无线传感网将数据包发送到网关上,网关通过通用无线分组网(general packet radio service,GPRS)将处理后的数据包传输到云服务器,专家系统根据采集到的环境数据,结合专家知识,建立多个决策数学模型,实现计算作物需水量、预报灌溉时间、灌溉最佳定量决策、根据灌溉制度决策等决策功能,将决策结果反馈到控制终端模块进行智能监控。经试验,对比系统多参数决策和一般的单参数决策得出的结论,多参数决策的准确性更高;灌溉区域的土壤含水率平均值为17.4%,满足荔枝树生长所需的土壤含水率条件,说明系统的灌溉决策具有比较强的实时性。且系统预测能达到75%的准确率,说明系统的预测实时性比较好。该系统实现了荔枝园的环境信息获取与智能灌溉,能指导用户更好地管理荔枝园。  相似文献   

7.
太阳能供电的土壤剖面水分动态原位自动监测系统的研制   总被引:2,自引:2,他引:0  
目前,商业化的土壤水分传感器在野外观测土壤剖面含水率时仍然存在测量深度不可调节、多传感器探头之间的互换误差、野外长期监测供电困难、成本较高等问题。为此,该研究设计并研制了一种太阳能供电的可实现野外长期工作的介电管式土壤剖面水分原位自动监测系统。该系统组成包括:传感器模块、主控模块、太阳能供电模块和参数设置软件。测量时,先将PVC管垂直安装至待测土壤中,安装过程不扰动土壤结构,主控与存储模块控制土壤含水率传感器在PVC管中上下移动测量土壤含水率,并同步记录土壤深度。此外,该系统可以根据实际需求通过PC机参数设置软件进行灵活设定测量参数(传感器测量深度、测量深度间隔和测量周期)。针对该系统的性能与测量精度开展了相关测试与观测试验,功耗测试结果表明该系统待机功率为0.35 W,工作功率为1.4 W,太阳能电池板最大输出功率为5W,太阳能电池板和锂电池配合供电的情况下能实现长时间续航;土壤含水率传感器在砂土和粉壤土中的标定试验表明:该系统测量结果与实际土壤体积含水率高度吻合,标定曲线决定系数R~2均大于0.99;经过校正后,该系统探头深度定位的标准偏差在0.2 cm以内。在两种质地土壤的滴灌试验结果表明:该系统分别在6和15 mL/min两种滴水速率下均能准确获取土壤剖面含水率的动态变化过程,为观测作物生长状态和根区水分变化、制定合理的灌溉策略以及研究并检验土壤入渗水动态模型提供了可靠的技术支持和保障。  相似文献   

8.
为提高日光温室的灌溉水利用效率,充分发挥现有灌溉决策理论的指导作用,该文构建了基于ET和水量平衡方法的实时精准灌溉决策及控制系统。以句容布戴庄村樱桃番茄温室为试验对象,给出了利用ET和水量平衡方法的灌溉决策实施过程,即当田间蒸发蒸腾总量大于土壤中可供作物利用水分时触发灌溉,灌水量等于自上一次灌溉起蒸散量的总和。采用Java语言开发了灌溉决策软件ETSch,可实现以温室内气象数据为基础对不同地点的灌溉决策项目进行管理;设计了温室精准滴灌系统并研制了基于单片机的灌溉控制器软硬件,通过ETSch软件与控制器的连接,建立了从田间气象信息获取到灌溉决策软件运行,再到灌溉及控制系统的集成化自动精准灌溉模式。试验结果表明,该实时精准灌溉决策及控制系统的平均灌水总量控制平均误差为1.1%,系统运行稳定,节约人工;尽管采用ET和水量平衡方法低估了实际土壤含水率,但总体趋势一致,能实现合理有效的灌溉决策。该研究可为实现灌溉决策和控制系统的集成提供参考,为进一步提高灌溉效果和用水效率提供借鉴。  相似文献   

9.
土壤水分是影响作物生长的关键因子,在精准灌溉中估算土壤含水率有重要意义,结合作物生理参数与叶片光谱特性,能够在一定程度上增强土壤含水率遥感监测模型的稳定性。为了提高土壤含水率遥感监测模型在冬小麦多种物候期的适用性以及迁移能力,该研究通过连续小波变换增强光谱对叶片不同生化生理指标的响应后,通过变量投影重要性分析方法对冬小麦叶片含水率、叶绿素、叶面积指数敏感的光谱特征进行特征筛选,结合偏最小二乘回归构建土壤含水率模型,并与土壤含水率所选特征建立的监测模型在独立年份数据与不同传感器之间进行比较。结果表明,土壤含水率变化显著改变了冬小麦叶绿素以及叶面积,进而影响了小麦冠层光谱,小尺度小波变换可以增强冬小麦冠层光谱和土壤含水率的相关性(相关系数由0.46提升至0.61)。综合基于地面非成像数据集和机载成像数据集进行的模型验证结果,基于叶绿素所选小波特征在2021年高光谱非成像数据集和2022年机载成像数据集构建的土壤含水率监测模型表现最优,其中基于1尺度叶绿素小波特征构建的模型效果最好,其在独立非成像数据集验证中决定系数为0.541,均方根误差为2.42%,在成像数据集验证中决定系数为0.687,均方根误差为1.92%。因此,通过冬小麦叶片叶绿素与连续小波变换选取的光谱特征进行土壤含水率监测的适用性更强,可以进一步提高土壤含水率监测模型的准确性及稳定性。  相似文献   

10.
基于差分信号控制的土壤含水率传感器设计   总被引:1,自引:1,他引:1  
研究土壤含水率的测定对于农作物生长,灌溉及农业自动化发展具有重要意义。该文针对传统含水率传感器电极输出信号谐波失真较大的问题,设计了一种差分信号控制的土壤含水率传感器。鉴于传感器电极输出的信号失真是由于土壤非线性因素引起的,该文利用集成时基计时器设计差分输入信号控制电路,减少输出信号的总谐波失真度。此外,建立相应的数学模型,得到土壤阻抗与信号周期变化关系。构建传感器硬件结构,通过微处理控制器测量信号周期得出土壤含水率变化数值。试验表明,传感器输出端的信号总谐波失真较传统结构减少12.56%。土壤质量含水率在5%~30%时,土壤含水率测试最大误差不超过4.89%,土壤阻抗测试误差不超过2%。  相似文献   

11.
基于ARM和GPRS的远程土壤墒情监测预报系统   总被引:8,自引:5,他引:3  
为提高农业灌溉用水利用率、实现节水灌溉,设计了基于GPRS的无线土壤墒情监测预报系统。提出了一种土壤墒情监测预报模型,开发了以ARM9系列S3C2410处理器、GPRS模块和CS8900a网卡等组成数据采集系统,实现了对土壤墒情信息的自动采集、存储和墒情信息的无线网络传输,并可以根据墒情信息实施定时、定量的灌溉控制。该系统已投入国家农业示范基地使用15个月的时间,试验表明,该系统对土壤墒情的预报值与实际测试数据误差为3.39%,实现了对土壤墒情的有效监测和准确预报。  相似文献   

12.
廖敏  粟超  张宇  杨亚军  张强 《农业工程学报》2021,37(16):108-116
名贵中药材川贝母喜湿、怕高湿特性成为人工灌溉的难点,智能化精准灌溉系统可实现川贝母按需节水灌溉。该研究开发了基于无线传感器网络的川贝母分区变量灌溉系统。在人工种植试验过程中,采用电容法和土壤水分测定仪获得了川贝母生长需水及灌溉用水数据,建立了川贝母生长含水率模型和灌溉含水率模型。为了实现川贝母分区变量灌溉,建立了灌溉模糊控制决策模型,该模糊控制器为双输入单输出结构,利用遗传算法优化模糊控制量化因子、比例因子、模糊控制规则和隶属函数,实现遗传算法优化的模糊控制对川贝母灌用水进行精确决策和川贝母分区变量灌溉。在川贝母种植大棚内应用了该分区变量灌溉技术和系统,结果表明,模糊控制决策的灌溉有一定节水效果,遗传算法优化后的模糊控制每次灌溉用水主要分布在5%~7%,灌溉用水有明显下降。特定种植密度下灌溉用水结果表明,优化后川贝母变量灌溉误差能控制在±5%附近,满足川贝母按需灌溉需求,分区变量灌溉效果明显;随川贝母种植密度增加,所需灌溉用水也增大,基本呈线性关系(R2=0.975);川贝母分区变量灌溉节水率与种植密度比之间呈抛物线关系,最佳节水在标准种植密度附近,年节水率大于27.6%。该研究可为川贝母种植密度和灌溉节水提供参考和技术支持。  相似文献   

13.
基于频域法的便携式无线土壤水分测量装置设计与试验   总被引:4,自引:4,他引:0  
针对农田土壤水分测量的实际需要,研制了一种便携式无线土壤水分测量装置。该装置结构一体化设计采用"T"型结构,将土壤水分传感器和信息采集与发送单元融合,可在0~300 mm的不同深度下测量土壤水分,并采用蓝牙传输技术,将测量数据实时发送给Android手机,手机可通过App软件对数据进行分析处理,实现了农田数据的大容量存储和智能化处理。在实验室环境下,使用砂土和壤土2种土样对测量装置进行了标定试验,土壤容积含水率与传感器输出电压服从二次曲线关系,决定系数均达到0.99以上;将测量装置与波兰Easy Test TDR土壤测试仪进行对比试验,二者测量结果呈线性相关关系,决定系数为0.987。试验结果表明该装置可准确测量土壤水分含量。  相似文献   

14.
节水灌溉联动控制系统   总被引:8,自引:3,他引:5  
为了节约农田灌溉用水,提高水资源利用效率,实现自动灌溉控制,该文采用自主设计的灌溉控制设备和墒情监测设备,通过GSM网络传输数据,设计了一套集墒情监测、灌溉控制和专家决策支持的节水灌溉联动控制系统。该系统由就地控制柜、数据采集系统和自动控制软件三部分组成,实现了土壤墒情实时监测、专家知识管理及根据不同作物、不同生育期需水参数等进行自动灌溉控制等功能。在示范区的应用证明,该系统稳定可靠、操作方便、可广泛应用于规模化种植、温室大棚、精细农业等领域,对节水农业的实施具有重要的现实意义。  相似文献   

15.
为优化土壤水分传感器的埋设位置,该文针对宁夏日光温室滴灌黄瓜田间的土壤水分传感器埋设位置进行优化试验,确定出最佳埋设深度和宽度。利用最小二乘法对澳大利亚生产的MP406土壤水分传感器进行标定,得到水分利用效率的拟合值与实测值的相关性系数为0.9906。设计了多路数据自动采集监测与灌溉系统,可同时获取不同处理的18个水分传感器数据,通过远程客户端实时下载和监控水分数据并实现自动灌溉,通过远程手机短信监控功能,进行手机短信命令控制一个或多个处理的实时灌溉,系统可同时测量不同处理的灌水量。计算水分利用效率和产量,分析传感器水分数据的差异和相关系数,确定出土壤水分传感器在宁夏日光温室滴灌黄瓜田间的最佳埋设深度和宽度位置,该研究方法为确定土壤水分传感器的埋设深度及宽度提供可行的参考方案。  相似文献   

16.
便携式土壤湿度检测装置用于精准灌溉决策系统   总被引:1,自引:1,他引:0  
采用最先进的技术进行精准灌溉是现代农业发展的必然趋势,但在准确预测被监测区域的土壤湿度时,面临一个两难的处境:少量土壤湿度固定检测点不能良好地反映作物区域土壤墒情信息,而大量布置传感器检测点又使得投资成本较大。因此该文设计了一种便携式土壤检测装置,同时基于该装置构建了一个精准灌溉决策系统,并把该系统应用于田间的精准灌溉决策。该系统由便携式土壤湿度检测装置和上位机决策软件2部分组成,其中便携式土壤湿度检测装置由FDR原理土壤水分传感器MS-10、低功耗单片机C8051F410、蓝牙无线传输模块、数据显示模块以及部分外围电路组成,可以独立实现时间记录、数据存储和实时显示。经过试验标定,装置的允许最大误差为2.2%,设计精度为95%;上位机决策软件分为数据接收模块、分布式二进制一致性算法模块和系统操作界面3个子模块,分别采用Visual Basic、Matlab和Matlab GUI设计而成,实现对便携式装置所采集数据的无线传输、归一化处理和数据融合处理,能够根据不同区域划分和不同作物灌水下限进行相应的运算,从而得到估计精度较高、区域大小可调的多尺度精准灌溉决策信息。最后通过30 m×30 m草坪的土壤湿度为检测参数的田间验证,该系统的平均决策准确率大于90%,且可以根据需要增减检测点个数。因此既可以独立应用,也可以作为固定检测方式的有效补充,实现作物区域土壤湿度信息的精确采集,有效提高水资源利用率。  相似文献   

17.
基于沙生植物微需水量的特点,利用聚丙烯酰胺(Polyacrylamide,PAM)和蒙脱土(Montmorillonite,MMT)复合制备了一种渗灌复合材料,研究了材料的成膜性能和吸释水性能,并对渗灌系统的自调节导水性能进行了研究,然后在乌兰布和沙漠进行了渗灌系统的沙漠野外试验,最后利用X射线衍射仪、红外光谱分析仪和扫描电子显微镜对复合材料自调节导水机理进行分析。结果表明:PAM与MMT的最佳质量比为0.25,PAM和MMT制备的复合导水材料可在纤维表面形成均匀连续的膜,且导水材料的吸水和释水性能较为均衡,干湿交替试验显示其可根据土壤湿度自调节导水速率。沙漠野外试验表明,肉苁蓉接种率从对照组的23%提高到86%。材料微观分析表明:PAM通过插层作用进入MMT片层间形成复合导水材料,导水材料主要依靠PAM和MMT的相互作用传导水分,PAM的干燥收缩和吸水溶胀会引起MMT的连接和分开,从而引起水分传导速率的变化。研究结果可为渗灌材料的应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号