首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to determine whether yohimbine antagonizes the retrograde flow of spermatozoa into the urinary bladder of dogs caused by xylazine. Adult dogs were assigned to one of four groups of six dogs each and treated as follows: saline control, xylazine (2.2 mg/kg, i.m.), yohimbine (0.2 mg/kg, im.), yohimbine/xylazine (yohimbine, 0.2 mg/kg, i.m., followed 10 min later by xylazine. 2.2 mg/kg, i.m.). Pre- and post-treatment urine were collected by cystocentesis from all dogs. The mean (± SD) adjusted total number of spermatozoa in the post-treatment urine of xylazine-treated dogs (141.02 ± 136.75 × 106) was 15 times higher ( P < 0.05) than the number in the post-treatment urine of control dogs (9.16 ± 20.26 × 106), 1763 times higher ( P < 0.05) than the number in the urine of yohimbine-treated dogs (0.08 ± 0.20 × 106), and 56 times higher ( P < 0.05) than the total number in the post-treatment urine of yohimbine/xylazine-treated dogs (2.54 ± 4.54 × 106). These results confirm that xylazine induces a significant ( P = 0.007) displacement of spermatozoa into the urinary bladder of dogs and demonstrate that pre-treatment with yohimbine prevents this effect.  相似文献   

2.
The absorption, distribution and elimination characteristics of 14C homidium have been described in non-infected and Trypanosoma congolense -infected cattle treated with 14C homidium chloride by either intramuscular (i.m.) or intravenous (i.v.) injection at a dose level of 1 mg/kg body weight. Results show that the mean (± SD) elimination of the drug from plasma followed a biexponential process, with half-lives of 0.084 ± 0.006 h and 97.66 ± 16.28 h for the distribution and elimination phases after intravenous injection, respectively. Bioavailability of the intramuscular dose was 62.5% and 57.8% in non-infected and trypanosome-infected cattle, respectively. Absorption was rapid, with a t max of 15 min and a mean C max (± SD) of 268.4 ± 4.09 ng/mL following the intramuscular dose in non-infected cattle. The major route of excretion was via faeces. Approximately 90% of the total dose given to non-infected i.m.-treated cattle was excreted within 14 days. Following intramuscular administration of the drug, residues remained high in the major excretory organs, with the liver having concentrations of 1411 and 1199 ng/g after 14 and 28 days, respectively. Over the same period, the values in the kidneys were 649 and 448 ng/g. Concentrations in the liver 14 and 21 days following i.v. treatment were 2195 and 2454 ng/g, respectively. These results show that there was no significant difference in liver drug residues between 14 and 21 days, or 28 days depending on the treatment given, suggesting that once the drug is in this organ, it is released back into the circulation at an extremely slow rate.  相似文献   

3.
Pharmacokinetic parameters of fosfomycin were determined in horses after the administration of disodium fosfomycin at 10 mg/kg and 20 mg/kg intravenously (IV), intramuscularly (IM) and subcutaneously (SC) each. Serum concentration at time zero (CS0) was 112.21 ± 1.27 μg/mL and 201.43 ± 1.56 μg/mL for each dose level. Bioavailability after the SC administration was 84 and 86% for the 10 mg/kg and the 20 mg/kg dose respectively. Considering the documented minimum inhibitory concentration (MIC90) range of sensitive bacteria to fosfomycin, the maximum serum concentration (Cmax) obtained (56.14 ± 2.26 μg/mL with 10 mg/kg SC and 72.14 ± 3.04 μg/mL with 20 mg/kg SC) and that fosfomycin is considered a time-dependant antimicrobial, it can be concluded that clinically effective plasma concentrations might be obtained for up to 10 h administering 20 mg/kg SC. An additional predictor of efficacy for this latter dose and route, and considering a 12 h dosing interval, could be area under the curve AUC0-12/MIC90 ratio which in this case was calculated as 996 for the 10 mg/kg dose and 1260 for the 20 mg/kg dose if dealing with sensitive bacteria. If a more resistant strain is considered, the AUC0-12/MIC90 ratio was calculated as 15 for the 10 mg/kg dose and 19 for the 20 mg/kg dose.  相似文献   

4.
Tissue distribution and elimination kinetics of oxytetracycline in sixteen organs and body fluids were determined in young pigs following intravenous and oral administration. Seventeen non-fasted pigs, 8–10 weeks of age, weight range 16.4–34.5 kg were dosed intravenously at a dose rate of 11 mg/kg bodyweight. An additional seventeen weaning pigs, 12–14 weeks of age, weight range 27.2–36.3 kg were dosed orally at a dose rate of 48–65 mg/kg bodyweight. Oxytetracycline was rapidly distributed (half-life, 6.71 ± 1.13 min) in swine. The mean volume of distribution was 1.26 ± 0.18 l/kg and overall body clearance was 3.82 ± 0.59 ml/kg/min. The elimination half-life of oxytetracycline in pigs was 3.87 ± 0.62 h, which is shorter than has been observed in other domestic animal species. Oxytetracycline became rapidly and efficiently involved in enterohepatic cycling, with as much as 70% of a total intravenous dose being available for reabsorption from the gastrointestinal tract within 1 h after administration. This high degree of enterohepatic recycling prolonged the half-life, and the large amount of drug that entered the enteric tract contributed to the high volumes of distribution and high k 12/ k 21 ratios. The excellent tissue penetration of this drug further contributed to the high volume of distribution and high k 12/ k 21 ratios obtained. Relationships between plasma and tissue depletion for several major edible organs were found to be statistically significant. Blood plasma is proposed as a body fluid for monitoring oxytetracycline tissue residues.  相似文献   

5.
The pharmacokinetics of flunixin were determined after an intravenous dose of 1.1 mg/kg body weight in six camels and 2.2 mg/kg body weight in four camels. The data obtained (mean ±  SEM) for the low and high dose, respectively, were as follows:
  The elimination half-lives ( t ½β) were 3.76 ± 0.24 and 4.08 ± 0.49 h, the steady state volumes of distribution ( V dss) were 320.61 ± 38.53 and 348.84 ± 35.36 mL/kg body weight, total body clearances ( Cl T) were 88.96 ± 6.63 and 84.86 ± 4.95 mL/h/kg body weight and renal clearances ( Cl r) were 0.52 ± 0.09 and 0.62 ± 0.18 mL/h/kg body weight. A hydroxylated metabolite of flunixin was identified by gas chromatography/mass spectrometry (GC/MS) under electron and chemical ionization and its major fragmentation pattern was verified by tandem mass spectrometry (GC/MS/MS) using neutral loss, daughter and parent scan modes. The detection times for flunixin and its hydroxylated metabolite in urine after an intravenous (i.v.) dose of 2.2 mg/kg body weight were 96 and 48 h, respectively.  相似文献   

6.
Background: Retinol-binding protein (RBP) is suggested as a clinically useful marker of renal function in cats.
Hypothesis: Serum and urinary RBP concentrations in hyperthyroid (HT) cats differ from those in healthy (H) cats; radioiodine (131I) treatment influences serum and urinary RBP concentrations in HT cats.
Animals: Ten HT and 8 H cats.
Methods: RBP concentration was evaluated in feline serum and urine samples from a prospective study.
Results: There was a significant ( P = .003) difference in the urinary RBP/creatinine (uRBP/c) ratios of H (−) and untreated HT (1.4 ± 1.5 × 10−2 μg/mg) cats. Serum total thyroxine concentration (1.8 ± 1.9 μg/dL, 24 weeks) and uRBP/c (0.6 ± 1.0 × 10−2 μg/mg, 24 weeks) decreased significantly ( P < .001) in HT cats at all time points after treatment with 131I, and these variables were significantly correlated with one another ( r = 0.42, P = .007). Serum RBP concentrations from HT cats (199 ± 86 μg/L) did not differ significantly ( P = .98) from those of H cats (174 ± 60) and did not change after treatment with 131I (182 ± 124 μg/L, P = .80).
Conclusion and Clinical Importance: The presence of urinary RBP in HT cats is a potential marker of tubular dysfunction that is correlated to thyroid status, although it is independent of circulating RBP concentrations. The decreased uRBP/c combined with the absence of changes in serum RBP after treatment suggests that the suspected tubular dysfunction was partly reversible with treatment of 131I.  相似文献   

7.
Three once-daily oral doses of 0.2 mg/kg [14C]dirlotapide were administered to beagle dogs to study the absorption, distribution, metabolism, and excretion of dirlotapide. Mean 14C recovered at 2.5 and 4.5 h after the last dose was 90%. Mean 14C in urine, bile, and feces was <1%, 1.7%, and 56% of the dose, respectively. In tissues, 26% of the 14C dose was present in the gastrointestinal tract, 6.0% in liver, and <1% each in kidney, gall bladder, heart, and brain. To further characterize drug disposition, a single 2.5-mg/kg oral dose of [14C]dirlotapide was administered to beagle dogs. More than 84% of the dose had been eliminated by 72 h in feces, with 21% of the dose present in feces as parent dirlotapide. Less than 1% of the dose was excreted in urine. In bile collected during the first 24-h postdose from three dogs, 32% and 11% of the 14C dose was present in samples from male and female dogs, respectively. Based upon metabolite profiling of plasma, excreta, and bile samples, dirlotapide was extensively metabolized to more than 20 metabolites. Biliary/fecal excretion and the potential for enterohepatic recycling of metabolites are suggested.  相似文献   

8.
Nine male dogs (10.3–13.5 kg body weight) were randomly assigned to three groups of three dogs each and administered ceftiofur sodium subcutaneously as a single dose of 0.22, 2.2, or 4.4 mg ceftiofur free acid equivalents/kg body weight. Plasma and urine samples were collected serially for 72 h and assayed for ceftiofur and metabolites (derivatized to desfuroylceftiofur acetamide) using high-performance liquid chromatography. Urine concentrations remained above the MIC 90 for Escherichia coll (4.0 μg/mL) and Proteus mirabilis (1.0 μg/mL) for over 24 h after doses of 2.2 mg/kg (8.1 μg/mL) and 4.4 mg/kg (29.6 μg/mL), the interval between treatments for ceftiofur sodium in dogs, whereas urine concentrations 24 h after dosing at 0.22 mg/kg (0.1 mg/Ib) were below the MIC 90 for E.coli and P. mirabills (0.6 μg/mL). Plasma concentrations were dose-proportional, with peak concentrations of 1.66 ± 0.0990 μg/mL, 8.91 ± 6.42 μg/mL, and 26.7 ± 1.07 μg/mL after doses of 0.22, 2.2, and 4.4 mg/kg, respectively. The area under the plasma concentration versus time curve, when normalized to dose, was similar across all dosage groups.  相似文献   

9.
Concentrations of the non-steroidal anti-inflammatory drug (NSAID) alclofenac were determined by a sensitive high performance liquid chromatographic procedure in plasma and urine of horses following oral administration of a dose of 3 g. In plasma, alclofenac was present in detectable concentrations for 72 h. The plasma disposition in individual horses was best described by a bi-compartmental model with two successive rate constants ka1= 0.05 ± 0.06 h-1 and ka2= 0.06 ± 0.01 h-l. Alclofenac half-lives t ½ and t 1/2β were 1.0 ± 0.8 h and 6.9 ± 1.5 h, respectively. Maximal concentrations (38.9 ± 16.2 μg/ml) were obtained after 8.5 ± 2.4 h. Alclofenac was detected in urine for at least 48 h after dosing. The percentage of the dose excreted as unchanged alclofenac in 12 h was very low (0.68 ± 0.19%), total (free + conjugated) alclofenac accounted for 2.16 ± 0.55% of the dose.  相似文献   

10.
The pharmacokinetics of sulphadiazine (SDZ) (100 mg/kg, body weight) were investigated in six camels ( Camelus dromedarius ) after intravenous (i.v.) and oral (p.o.) administration. Following i.v. administration, the overall elimination rate constant (β) was 0.029±0.001/h and the half-life ( t ½β) was 23.14±1.06 h. The apparent volume of distribution ( V d(area)) was 0.790±0.075 L/kg and the total body clearance ( Cl B) was 23.29±2.50 mL/h/kg. After p.o. administration, SDZ reached a peak plasma concentration ( C max(cal.)) of 62.93±2.79 μg/mL at a post injection time of ( T max(cal.)) 22.98±0.83 h. The elimination half-life was 19.79±1.22 h, not significantly different from that obtained by the i.v. route. The mean absorption rate constant (Ka) was 0.056±0.002 h−1 and the mean absorption half-life ( t ½Ka) was 12.33±0.37 h. The mean availability ( F ) of sulphadiazine was 88.2±6.2%.
  To achieve and maintain therapeutically satisfactory plasma SDZ levels of 50 μg/mL, the priming and maintenance doses would be 80 mg/kg and 40 mg/kg intravenously and 90 mg/kg and 45 mg/kg orally, respectively, to be repeated at 24 h intervals.  相似文献   

11.
Pharmacokinetics of diminazene in female Boran (Bos indicus) cattle   总被引:1,自引:0,他引:1  
The disposition kinetics and bioavailability of diminazene in five healthy heifers were determined after single intravenous (i.v.) and intramuscular (i.m.) administration of the drug in sequence with a wash-out period between administrations of 6 weeks. Intact diminazene in plasma, whole blood and urine samples was analysed using high-performance liquid chromatography. Nonlinear regression analysis of the i.v. and i.m. data indicated that, for either route, the plasma disappearance curves of diminazene were best described by triexponential equations. The i.v. bolus was followed by rapid and biphasic distribution with half-life values of 0.04 h and 0.58 h, Vd(ss) was 1.91 ± 0.42 1/kg, elimination half-life was 31.71 h while CI averaged 1.74 ± 0.40 ml/min/kg. Within 30 min of the i.v. dose, the erythrocyte/plasma partition ratio of diminazene was 0.30 ± 0.15. Diminazene was rapidly absorbed following i.m. administration; t ½ka was 0.60 h. Cmax, 4.68 ± 1.12 μg/ml, was attained in 10–15 min and systemic availability was 102.42 ± 7.25%. The half-life of the terminal disappearance phase was 145.48 h. About 8.26% of the i.m. dose was excreted intact in the urine within the first 24 h of treatment. In vitro , diminazene was bound to bovine plasma albumin to the extent of 38.01–91.10%.  相似文献   

12.
Twenty-two young cross-bred swine were treated either intravenously or orally with potassium penicillin G. The pharmacokinetics of penicillin G were determined in plasma and tissues. The plasma half-life of penicillin G in swine was found to be 19.45±1.69 min, and the distribution and elimination kinetics were found to fit a classical two-compartment model. The volume of distribution was found to be 0.53±0.12 1/kg, and the body clearance was found to be 19.06±5.06 ml/min/kg which exceeded the effective renal plasma flow of 16.50±2.73 ml/min/kg, suggesting that the drug was eliminated both by tubular excretion and glomerular filtration. The elimination rate constants (Beta) for the major organs were as follows: muscle, 0.00343 min-1; lung, 0.0310 min-1; fat, 0.0394 min-1; and kidney, 0.0213 min-1, which compared favorably with the elimination rate constant found in plasma (0.0320 min-1). These values were found to be significantly similar at the level of P < 0.005 in muscle, spleen and fat, and at a level of P < 0.025 in lung tissue. The data indicates that blood plasma would be a satisfactory body fluid for estimating this drug in tissue.  相似文献   

13.
Pedersoli, W.M., Ravis, W.R., Jackson, J., Shaikh, B. Disposition and bioavailability of neomycin in Holstein calves. J. vet. Pharmacol. Therap. 17 , 5–11.
The disposition and absorption kinetics of neomycin were studied in healthy ruminating dairy calves ( n -6), approximately 3-months-old. The calves were treated with single intravenous (i.v.) (12 mg/kg), intramuscular (i.m.) (24mg/kg), oral (p.o.) (96 mg/kg) and repeated p.o. (96 mg/kg, b.i.d., 15½ days) doses of neomycin. A 3-week rest period was allowed between treatments A and B and B and C Baseline and serial venous blood samples were collected from each calf plasma concentrations of neomycin were determined by a high performance liquid chromatography procedure. The resulting data were evaluated by using compartmental pharmacokinetic models and nonlinear least squares regression analysis. The mean of some selected parameters were t ½λ3 7.48 ± 2.02 h, Clt= 0.25 ± 0.04 L/h/kg, V d(ss)= 1.17 ± 0.23 L/kg, and MRT = 4.63 ± 0.87 h for the i.v. data and t ½= 11.5 ± 3.8 h, MRT abs= 0.960 ± 1.001 h, F = 127 ± 35.2%, and Clt/F = 0.199 ± 0.047 L/h/kg for the i.m. data, respectively. Only one calf absorbed neomycin to any significant degree (F = 0.0042) after a single p.o. dose. Selected mean parameters determined after repeated oral dosing were: F = 0.45 ± 0.45%, Cmax= 0.26 ± 0.37 g/ml, and tmax= 2.6 ± 2.9 h. Terminal half-lives determined for the i.v. and i.m. treatments were considerably longer than those reported previously in the literature.  相似文献   

14.
Hens were given single intravenous or oral doses (30 mg/kg body weight) of metronidazole and the plasma concentrations of the drug were determined by high-performance liquid chromatography (HPLC) at intervals from 10 min to 24 h after drug administration. Pharmacokinetic variables were calculated by the Lagrange algorithm technique. The elimination half-life ( t 1/2β) after the intravenous injection was 4.2 ± 0.5 h, the volume of distribution ( V d(ss)) 1.1±0.2 L/kg and the total body clearance ( Cl B) 131.2 ± 20 mL/h.kg. Oral bioavailability of the metronidazole was 78 ± 16%. The plasma maximum concentration ( C max) 31.9 ± 2.3 μg/mL was reached 2 h after the oral administration and the oral elimination half-life ( t 1/2β) was 4.7 ± 0.2 h. The binding of metronidazole to proteins in hen plasma was very low (less than 3%). Whole body autoradiography of [3H] metronidazole in hens and quails showed an even distribution of labelled material in various tissues at short survival intervals (1-4 h) after oral or intravenous administration. A high labelling was seen in the contents of the small and large intestines. In the laying quails a labelling was also seen in the albumen and in a ring in the periphery of the yolk at long survival intervals. Our results show that a concentration twofold above the MIC is maintained in the plasma of hens for at least 12 h at an oral dose of 30 mg/kg metronidazole.  相似文献   

15.
The kinetic disposition of [14C]-oxfendaEole (OFZ) and its metabolites, fenben-dazole (FBZ) and fenbendazole sulphone (FBZ.SO2), in plasma and abomasal fluid were determined in Merino sheep and Angora goats before and during infection with Trichostrongylus colubriformis and Haemonchus contortus. The systemic availability (area under the plasma curve, AUC) of OFZ was significantly lower in goats (13.5 μg.h/ml) than in sheep (22.2 μg.h/ml) and was reduced with infection in goats (5.6 μg.h/ml) and sheep (15.1 μg.h/ml). The elimination of plasma [l4C] was faster in goats than in sheep. The responses observed for [14C] were a reflection of the behaviour of OFZ. The concentration of OFZ and metabolites in abomasal fluid were similar in both species in the absence or presence of infection. However, as the mean flow rate of abomasal fluid was slower in goats (240 ml/h) than in sheep (488 ml/h), only 7% of the dose passed the pylorus in abomasal fluid of goats compared with 14% in sheep. The presence of gastrointestinal nematodes generally increased abomasal fluid flow rate but neither species nor infection had any effect on the rate or extent of [14C] excretion in urine or faeces. It is suggested that goats possess a faster hepatic metabolism than sheep resulting in more rapid elimination of OFZ.  相似文献   

16.
Pharmacokinetic parameters which describe the distribution and elimination of sulphadimidine were determined in normal dogs and dogs in which fever was produced by an intravenous injection of escherichia and staphylococcal species of bacteria. Sulphadimidine was injected as a single intravenous bolus at the dose of 100 mg/kg and the kinetics of the drug were described in terms of the bi-exponential expression: Cp = Ae -α t + Be -β t . The distribution half-times of the drug were 1.52 h in the normal and 0.81 h in the febrile dogs. The drug distribution was significantly more rapid ( P < 0.05) in febrile than in normal dogs. Average ± SD values for the half-lives of the drug were 16.2 ± 5.7 h in normal and 16.7 ± 4.7 h in the febrile dogs. The apparent volume of distribution ( V ' d (area)) was 628 ± 251 ml/kg in the normal dogs, and was not statistically different from 495 ± 144 ml/kg in the febrile dogs. The volume of the central compartment ( V ' c ) was 445 ± 55 ml/kg in normal dogs and this was significantly higher ( P < 0.01) than the V ' c of 246 ± 72 ml/kg in the febrile dogs. The body clearance was 22.4 ± 4.8 and 20.2 ± 3.6 ml/hour. kg in the normal and febrile dogs, respectively. The investigation revealed that the dosage regimen of sulphadimidine did not differ significantly between normal and febrile dogs.  相似文献   

17.
The pharmacokinetics of imidocarb were studied in seven mongrel dogs and eight crossbred goats. An intravenous bolus dose (4 mg/kg) of 12% imidocarb dipropionate solution wasinjected into the cephalic vein in dogs and the jugular vein in goats. The plasma concentration of imidocarb was measured by spectro-photometry. The experimental data were analysed using a two-compartment open model. The apparent volume of the central compartment was significantly higher ( P <0.01) in dogs than in goats. The significantly larger ( P <0.05) apparent specific volume of distribution in goats than in dogs may be attributed to passive diffusion followed by ion trapping of the drug in rumen fluid. Neither the half-life nor body clearance differed significantly between dogs ( t 1/2, 207 ± 45 min; ClB , 1.47 ± 0.38 ml/min kg) and goats ( t 1/2, 251 ± 94 min; ClB , 1.62 ± 0.50 ml/min kg). While almost 80% of the dose had been eliminated at 8 h in. both species, the high ratio of the imidocarb level in the peripheral-to-central compartment in goats suggests that a prolonged period may be required for complete elimination of the drug.  相似文献   

18.
Technetium-99m hexamethylpropyleneamine oxine (99mTc-HMPAO) and Indium-111 oxine (111In-oxine) labeled canine gramulocytes were evaluated in vitro over a six hour period. Labeling efficiency for 99mTC-HMPAO and 111In-oxine labeled granulocytes was 39.6%± 8.0% and 60.6%± 17.6% (mean ± SD) respectively. The mean in vitro elution of the radiolabel ranged from 8.7-14.0% for the 99mTc-HMPAO grannulocytes and from 6.1-9.0% for the 111In-oxine granulocytes. Mean cell viability, for the 99mTc-HMPAO, 111In-oxine and non-radiolabeled control granulocytes ranged from 97.8-99.4%, 96.4-98.5% and 98.2-99.0%, respectively. The phagocytic ability of the 99mTc-HMPAO, 111In-oxine and control granulocytes ranged from 47.5-54.1%, 38.9-56.2% and 46.6-57.8% respectively over the six hour study period. Although labeling efficiency using 111In-oxine was significantly (P=0.05) better than 99mTc-HMPAO, there was no significant difference in label retention of the two radiolabels. There was no significant difference in viability or phagocytic function during the six hour study period. Considering the potential cost advantage and the superior imaging qualities of Technetium-99m relative to Indium-111, 99mTc-HMPAO appears to be a good alternative to 111In-oxine as a granulocyte label.  相似文献   

19.
Pharmacokinetics and urinary excretion of sulphadimidine in sheep and goats   总被引:1,自引:0,他引:1  
Pharmacokinetics and urinary excretion of sulphadimidine were determined in sheep and goats following a single intravenous injection (100 mg/kg). The disposition of the drug was described in terms of exponential expression: C p= Be -βt. Based on total (free and bound) sulphonamide level in plasma, pseudo-distribution equilibrium was rapidly attained and the half-life for elimination was 3.88 ± 0.64 h and 4.00 ± 0.34 h in sheep and goats, respectively. Body clearance, which is the sum of all clearance processes was 88 ± 19 and 55 ± 4 ml/kg/h in sheep and goats. Based on this study a satisfactory intravenous dosage regimen might consist of 100 and 60 mg sulphadimidine/kg body wt for sheep and goats and should be repeated at 12 h intervals. The influence of disease conditions on predicted plasma levels remain to be verified experimentally. Three-quarters of an intravenously injected dose of sulphadimidine was excreted in the urine of sheep and goats within 24 h of administration. The drug was mainly excreted as free amine while acetylated drug constituted 7 and 8% of total drug content in the urine of sheep and goats, respectively.  相似文献   

20.
Oxytetracycline (OTC) pharmacokinetics were studied in the red pacu ( Colossoma brachypomum ) following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 5 mg/kg body weight. OTC plasma concentrations were determined by high-performance-liquid-chromatography (HPLC). A non-compartmental model was used to describe plasma drug disposition after OTC administration. Following i.m. administration, the elimination half-life ( t ½) was 62.65 ± 1.25 h and the bioavailability was 49.80 ± 0.01%. After i.v. administration the t ½ was 50.97 ± 2.99 h, the V d was 534.11 ± 38.58 mL/kg, and CI b was 0.121 ± 0.003 mL/min.kg. The 5 mg/kg i.v. dose used in this experiment resulted in up to 48 h plasma concentrations of OTC above the reported MIC values for some strains of fish pathogens such as Aeromonas hydrophila , A. liquefaciens , A. salmonicida , Cytophaga columnaris , Edwardsiella ictaluri , Vibrio anguillarium , V. ordalii , V. salmonicida and Yeersinia ruckeri . These MIC values are below the susceptible range (4 μg/mL) listed by the National Committee for Clinical Laboratory Standards (NCCLS) as determined by the NCCLS susceptibility interpretive criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号