首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Five commercial nurseries were sampled in 2007 to evaluate the grapevine nursery propagation process as a source of Petri disease pathogens (Phaeoacremonium spp. and Phaeomoniella chlamydospora). Samples were taken at four stages of the propagation process: pre-grafting hydration tanks, scissors used for cutting buds, grafting machines and peat used to promote root development. All samples were analysed using two different techniques: nested PCR using specific primers for Phaeoacremonium spp. (Pm1/Pm2) and Pa. chlamydospora (Pch1/Pch2); and fungal isolation by culturing on semi-selective medium. Either Phaeoacremonium spp. or Pa. chlamydospora were detected at any of these stages, and more importantly they were viable since they were detected by isolating on culturing medium. Additionally, the importance of grapevine rootstock mother fields as sources of inoculum in the nurseries was studied. Fourteen grapevine rootstock mother fields were surveyed in 2006 and 2007 for the occurrence of fungal trunk pathogens. A total of 16.4% and 30% of the plants sampled in 2006 and 2007, respectively were infected. Petri disease pathogens (Pa. chlamydospora, Phaeoacremonium aleophilum, Pm. parasiticum) and several Botryosphaeriaceae species (Neofusicoccum parvum, Botryosphaeria dothidea, Lasiodiplodia theobromae, N. australe, N. mediterraneum and N. vitifusiforme) and Phomopsis viticola were isolated. This is the first time N. mediterraneum has been isolated from grapevines and the first report of N. australe, N. mediterraneum and N. vitifusiforme in Spain. This work shows that grapevine rootstock mother plants and the propagation process of grapevine plants should be considered as important sources of inoculum for fungal trunk pathogens, and especially of Petri disease pathogens.  相似文献   

2.
Decline of newly planted, grafted grapevines is a serious viticultural problem worldwide. In the Riverina (New South Wales, Australia), characteristic symptoms include low fruit yields, very short shoots and severely stunted roots with black, sunken, necrotic lesions. To determine the cause, roots and wood tissue from affected plants in 20 vineyards (Vitis vinifera cv. Chardonnay grafted to V. champini cv. Ramsey rootstock) were assayed for microbial pathogens. Ilyonectria spp. (I. macrodidyma or I. liriodendra, producers of phytotoxin brefeldin A, BFA, and cause of black foot disease of grapevines) and Botryosphaeriaceae spp. (predominantly Diplodia seriata) were isolated from rootstocks of 100 and 95% of the plants, respectively. Togninia minima and Phaeomoniella chlamydospora (cause of grapevine Petri disease) were isolated from 13 and 7% of affected plants, respectively. All Ramsey rootstock stems of grafted plants sampled from a supplier nursery were infected with Ilyonectria spp. and D. seriata. Diplodia seriata, but not Ilyonectria spp., was also isolated from 25% of canes sampled from the rootstock source block. Root inoculation of potted, disease‐free Chardonnay plants with Ilyonectria isolates from diseased vineyards caused typical disease symptoms, while co‐inoculation with Botryosphaeriaceae spp. increased disease severity. This is the first study to show that a major cause of young grapevine decline can be sequential infection by Botryosphaeriaceae from rootstock cuttings and Ilyonectria spp. from nursery soil. Although the Petri disease fungi were less common in young declining grafted grapevines in the Riverina, they are likely to contribute to the decline of surviving plants as they mature.  相似文献   

3.
Grapevine virus A (GVA, Vitivirus) was transmitted experimentally by first and second instars of the scale insect Parthenolecanium corni from grapevine to grapevine and to the herbaceous host Nicotiana benthamiana. This is the first report of GVA transmission by P. corni. Grapevine leafroll-associated virus-1 (Ampelovirus) was always present in the donor grapevines and, in every case, GVA was transmitted simultaneously with this ampelovirus from grapevine to grapevine, suggesting possible interactions between the two viruses for transmission.  相似文献   

4.
A wilt disease of the model legume Lotus japonicus was observed in a greenhouse in Tokyo, Japan in May 2004. Roots of diseased plants were rotted and dark brown with lesions spreading to lower stems and leaves, resulting in rapid plant death. The causal agent was identified as Fusarium solani based on the morphology. Sequence analysis of rDNA supported the identification. Inoculation of roots of healthy plants with conidia reproduced characteristic disease symptoms, and F. solani was reisolated from lesions, satisfying Koch’s postulates. The isolate also caused chlorotic to necrotic lesions on leaves of healthy plants after wound-inoculation. Infection by F. solani of leaves of L. japonicus was confirmed histologically. Mycelia were observed in the intercellular spaces of parenchymatous tissues in the lesion area and the surrounding tissues. This is the first report of fungal disease on L. japonicus satisfying Koch’s postulates. We named it “Fusarium root rot of L. japonicus” as a new disease. The compatibility of L. japonicus and F. solani is expected to form a novel pathosystem for studying interactions between legumes and fungal pathogens. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB258993 and AB258994.  相似文献   

5.
Petri disease of grapevine is primarily caused by Phaeomoniella chlamydospora. This pathogen affects mostly young grapevines, but is also implicated in esca disease of older grapevines. Little is known about the disease cycle of this fungus. Infected propagation material was identified as a major means of dissemination of the pathogen. Recently, the pathogen was also detected from soil in South Africa and airborne conidia have been found in vineyards. The aim of this study was to use a molecular detection technique to test different samples collected from nurseries in South Africa at different nursery stages for the presence of P. chlamydospora. A one-tube nested-PCR technique was optimised for detecting P. chlamydospora in DNA extracted from soil, water, callusing medium and grapevine wood. The one-tube nested-PCR was sensitive enough to detect as little as 1 fg of P. chlamydospora genomic DNA from water and 10 fg from wood, callusing medium and soil. PCR analyses of the different nursery samples revealed the presence of several putative 360 bp P. chlamydospora specific bands. Subsequent sequence analyses and/or restriction enzyme digestions of all 360 bp PCR bands confirmed that all bands were P. chlamydospora specific, except for five bands obtained from callusing media and one from water. Phaeomoniella chlamydospora was positively detected in 25% of rootstock cane sections collected from mother blocks, 42% of rootstock cuttings and 16% of scion cuttings collected during grafting, 40% of water samples collected after pre-storage hydration, 67% of water samples collected during grafting, 8% of callusing medium samples and 17% of soil samples collected from mother blocks. These media can therefore be considered as possible inoculum sources of the pathogen during the nursery stages.  相似文献   

6.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

7.
Phytophthora nicotianae and P. palmivora are the most important soil-borne pathogens of citrus in Florida. These two species were detected and identified in singly and doubly infected plants using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS) regions of ribosomal DNA. The sensitivity of the PCR-RFLP was analyzed and the usefulness of the method evaluated as an alternative or supplement to serological methods and recovery on semi-selective medium. In a semi-nested PCR with universal primers ITS4 and ITS6, the detection limit was 1 fg of fungal DNA, which made it 1000× more sensitive than a single-step PCR with primers ITS4 and DC6. The sensitivity of detection for P. nicotianae was shown to be ten-fold lower than for P. palmivora, limiting its detection with restriction profiles in plants infected by both fungal species. Phytophthora nicotianae was detected with species-specific primers in all samples inoculated with this species despite the absence of species-specific patterns in RFLP. In contrast, the incidence of detection of P. palmivora in the presence of P. nicotianae was considerably lower using plating and morphological detection methods. Due to its high sensitivity, PCR amplification of ribosomal ITS regions is a valuable tool for detecting and identifying Phytophthora spp. in citrus roots, provided a thorough knowledge of reaction conditions for the target species is established prior to the interpretation of data.  相似文献   

8.
Willows (Salix spp.) are beneficial as a potential source of renewable energy, riparian barriers and riverbank control, yet are considered invasive weeds when they clog watercourses and lead to erosion and flooding. Interactions between willow rustMelampsora epitea (Thüm.) (Uredinales: Melampsoraceae) and leaf beetlePhratora spp. (Coleoptera: Chrysomelidae) feeding damage have an impact on effective pest management and biological control. The present study investigated the effects of(a) prior mechanical leaf damage on rust development, and(b) rust infection on beetle feeding under laboratory conditions for different time intervals and levels of damage. Willow rust infection significantly reduced the amount of leaf area consumed by beetles. The result was similar when a compatible or an incompatible rust pathotype was sprayed ontoSalix viminalis (L.) ‘Mullatin’ plants. There were no overall significant effects of mechanical damage on rust development, although the lowest level of rust infection was found with the incremental damage treatment. There were, however, differences of significance for leaf position and damage status, with damaged leaves at all positions having fewer pustules and a smaller pustule area than the corresponding undamaged leaves. There was no detectable effect of possible volatile emissions from crushed willow leaves on rust infection and development, although the volatile compoundcis-3-hexenyl acetate significantly reduced pustule diameter and overall pustule area. The results are discussed in terms of the implications for pest management and biological control. Corresponding author http://www.phytoparasitica.org posting April 6, 2003.  相似文献   

9.
Trichoderma (T. asperellum-203, 44 and GH11; T. atroviride-IMI 206040 and T. harzianum-248) parasitism on Meloidogyne javanica life stages was examined in vitro. Conidium attachment and parasitism differed beween the fungi. Egg masses, their derived eggs and second-stage juveniles (J2) were parasitized by Trichoderma asperellum-203, 44, and T. atroviride following conidium attachment. Trichoderma asperellum-GH11 attached to the nematodes but exhibited reduced penetration, whereas growth of T. harzianum-248 attached to egg masses was inhibited. Only a few conidia of the different fungi were attached to eggs and J2s without gelatinous matrix; the eggs were penetrated and parasitized by few hyphae, while J2s were rarely parasitized by the fungi. The gelatinous matrix specifically induced J2 immobilization by T. asperellum-203, 44 and T. atroviride metabolites that immobilized the J2s. A constitutive-GFP-expressing T. asperellum-203 construct was used to visualize fungal penetration of the nematodes. Scanning electron microscopy revealed the formation of coiling and appressorium-like structures upon attachment and parasitism by T. asperellum-203 and T. atroviride. Gelatinous matrix agglutinated T. asperellum-203 and T. atroviride conidia, a process that was Ca2+-dependent. Conidium agglutination was inhibited by carbohydrates, including fucose, as was conidium attachment to the nematodes. All but T. harzianum could grow on the gelatinous matrix, which enhanced conidium germination. A biomimetic system based on gelatinous-matrix-coated nylon fibers demonstrated the role of the matrix in parasitism: T. asperellum-203 and T. atroviride conidia attached specifically to the gelatinous-matrix-coated fibers and parasitic growth patterns, such as coiling, branching and appressoria-like structures, were induced in both fungi, similarly to those observed during nematode parasitism. All Trichoderma isolates exhibited nematode biocontrol activity in pot experiments with tomato plants. Parasitic interactions were demonstrated in planta: females and egg masses dissected from tomato roots grown in T. asperellum-203-treated soil were examined and found to be parasitized by the fungus. This study demonstrates biocontrol activities of Trichoderma isolates and their parasitic capabilities on M. javanica, elucidating the importance of the gelatinous matrix in the fungal parasitism.  相似文献   

10.
Xiphinema diversicaudatum and X. index are vector nematode species of economic importance in viticulture regions as they can transmit Arabis Mosaic, Grapevine Fanleaf and Strawberry Latent Ringspot viruses to grapevine. Wang et al. (2003) designed species-specific diagnostic primers from ribosomal genes for both these vector species as well as a vector and a non-vector species X. italiae and X. vuittenezi, respectively. Our study aimed to confirm the specificity and determine the sensitivity and reliability of the primers for the two vector species, X. diversicaudatumand X. indexwhen challenged with closely related longidorid species and general nematode communities typical of vineyard soil. With one exception, no PCR product was observed when the primers were tested against six Longidorus, one Paralongidorus and one Xiphinema non-target species. Occasionally (three out of eight replicate PCR reactions) a weak PCR product was noted when primers for X. index were tested with L. elongatus. Furthermore, when challenged with a range of non-target nematode species comprising the nematode community typical of viticulture soil, no PCR product was amplified. An experimental dilution series of extracted DNA rigorously demonstrated that DNA from an equivalent single specimen of the target virus-vector species, X. diversicaudatum and/or X. index, could be detected amongst 1000 equivalent non-targetX. vuittenezi. Also, extracted DNA from an equivalent single target specimen was detected when added to DNA extracted from the overall soil nematode community. The primers were assessed further by using serial mixtures of actual nematodes rather than extracted DNA to simulate field soil. Using this method, a single target nematode could be detected amongst 200 non-target specimens. Given their specificity, sensitivity and reliability, it appears that these diagnostic primers will be of great benefit to phytosanitary/quarantine services related to the viticulture industry.  相似文献   

11.
The causative virus (isolate No. 4) of gentian (Gentiana spp.) mosaic, which had been identified previously as Clover yellow vein virus (C1YVV) on the basis of host range and serological reactions, was re-identified as Bean yellow mosaic virus (BYMV) on the basis of the nucleotide sequences of the gene for the coat protein (CP) and the 3′-noncoding region, as well as the predicted amino acid sequence of CP. Received 16 April 2002/ Accepted in revised form 19 June 2002  相似文献   

12.
Wound protection during all stages of grapevine propagation is of utmost importance to prevent infection of propagation material by decline and dieback pathogens. In semi-commercial nursery trials, grapevine rootstock and scion cuttings were soaked in water (control), chemical or biological sanitation products prior to cold storage, prior to grafting (machine- or hand-grafting) and prior to planting in field nurseries. Natural infection levels in basal ends and graft unions of uprooted nursery grapevines were evaluated 8 months after planting. Total pathogen incidences in the water-treated control plants ranged from 30% in basal ends to 13.5% in graft unions. Phaeomoniella chlamydospora was the most commonly isolated pathogen, followed by Phaeoacremonium, Cylindrocarpon + Campylocarpon, Botryosphaeria and Phomopsis spp. Machine-grafted unions generally had lower pathogen incidences compared with hand-grafted graft unions. In general, repeated soak-treatments of propagation material in the tested products resulted in reduced pathogen incidences in nursery grapevines. However, products containing T. harzianum (Trichoflow-T), hydrogen peroxide (Bio-sterilizer) and 8-hydroxyquinoline sulphate (Chinosol) gave inconsistent results, whereas Bronocide (a blend of halogenated alcohols and water) proved to be a good sterilising agent, but reduced certifiable plant yield significantly. Benomyl (at 100 g/100 l), Sporekill (a patented didecyldimethylammonium chloride formulation at 150 ml/100 l) and captan (at 1000 ml/100 l) were consistently the best treatments as growth parameters were not negatively influenced and pathogen incidences in basal ends and graft unions of uprooted plants were reduced.  相似文献   

13.
14.
Tomato chlorosis virus causes yellow leaf disorder epidemics in many countries worldwide. Plants of Physalis ixocarpa showing abnormal interveinal yellowing and plants of Physalis peruviana showing mild yellowing collected in the vicinity of tomato crops in Portugal were found naturally infected with ToCV. Physalis ixocarpa and P. peruviana were tested for susceptibility to ToCV by inoculation with Bemisia tabaci, Q biotype. Results confirmed that ToCV is readily transmissible to both species. The infection was expressed in P. ixocarpa by conspicuous interveinal yellow areas on leaves that developed into red or brown necrotic flecks, while P. peruviana test plants remained asymptomatic. Infected plants of both P. ixocarpa and P. peruviana served as ToCV sources for tomato infection via B. tabaci transmission. This is the first report of P. ixocarpa and P. peruviana as natural hosts of ToCV.  相似文献   

15.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

16.
In 2002, a severe fruit spot of sweet lime (Citrus limetta) was observed in Piura and Lambayeque provinces in northern Peru. Affected fruits showed large oval and sunken lesions, often surrounded by chlorotic haloes. Septoria sp. was isolated from affected fruits. Sweet lime isolates showed larger pycnidia and pycnidiospores than those of Septoria spp. previously described on citrus. In addition, phylogenetic analysis of the ITS sequences clearly separated the sweet lime isolates from S. citri and S. citricola. Isolates were pathogenic to detached sweet lime fruits and the fungus was isolated from lesions on inoculated fruits.  相似文献   

17.
The pathogenic fungus Verticillium fungicola, responsible for dry bubble disease of the common mushroom Agaricus bisporus, causes various symptoms on its host, bubbles (undifferentiated spherical masses), bent and/or split stipes (blowout) and spotty caps. Host DNA quantification by real-time PCR was used to observed relationships between the type of symptom and the relative amount of A. bisporus and V. fungicola in diseased mushrooms. Verticillium fungicola is involved in bubble formation but does not appear to regulate its growth. Quantifications in bubbles and stipe-bubbles (morphology between bubble and sporophore with stipe blowout) showed that the pathogen has no effect on the growth of undifferentiated host hyphae but prevents morphological differentiation if not initiated and stops it when initiated hyphae are affected. Mushrooms with stipe blowout exhibiting both mature and abortive lamellae reveal that V. fungicola has a restricted area of action in host tissues. Despite their visual aspect, healthy looking parts of mushrooms showing spots or stipe blowout were actually contaminated. Discolouration and symptom development are two distinct events. The colour of the tissues was correlated to the percentage of A. bisporus DNA, suggesting that discolouration is not an efficient defensive mechanism, and occurs at the time V. fungicola developed enough to induce tissues necrosis.  相似文献   

18.
Acremonium cucurbitacearum is a soil-borne pathogen that causes collapse of muskmelon and watermelon plants. Cluster analysis based on RAPD patterns, obtained from use of 25 primers, divided isolates of A. cucurbitacearum from Spain and USA into two major groups. Most isolates from the USA fell into group 1, however, genetic similarity was not highly correlated with geographical origins or with previously established VCG groups. Analysis of 5.8S-ITS sequences showed very little sequence variation among isolates of A. cucurbitacearum, most had identical 5.8S-ITS sequence. Nodulisporium melonis, previously reported to cause a similar disease in Japan, had a 5.8S-ITS sequence that was identical to that of isolate A-419 proposed as the type strain of A cremonium cucurbitacearum suggesting that the two fungal pathogens should be considered a single species. Phylogenetic analysis, based on the 5.8S-ITS region, indicated that A cremonium cucurbitacearum is a monophyletic taxon more closely related to Plectosphaerella cucumerina than to other species of the genus Acremonium. Based on the 5.8S-ITS nucleotide sequence, a polymerase chain reaction was designed and used for specific detection of A. cucurbitacearum in diseased plants.  相似文献   

19.
The differential interactions of V. longisporum (VL) and V. dahliae (VD) on the root surface and in the root and shoot vascular system of Brassica napus were studied by confocal laser scanning microscopy (CLSM), using GFP tagging and conventional fluorescence dyes, acid fuchsin and acridin orange. VL and VD transformants expressing sGFP were generated by Agrobacterium-mediated transformation. GFP signals were less homogenous and GFP tagging performed less satisfactory than the conventional fluorescence staining when both were studied with CLSM. Interactions of both pathogens were largely restricted to the root hair zone. At 24 h post-inoculation (hpi), hyphae of VL and VD were found intensely interwoven with the root hairs. Hyphae of VL followed the root hairs towards the root surface. At 36 hpi, VL hyphae started to cover the roots with a hyphal net strictly following the grooves of the junctions of the epidermal cells. VL started to penetrate the root epidermal cells without any conspicuous infection structures. Subsequently, hyphae grew intracellularly and intercellularly through the root cortex towards the central cylinder, without inducing any visible plant responses. Colonisation of the xylem vessels in the shoot with VL was restricted to individual vessels entirely filled with mycelium and conidia, while adjacent vessels remained completely unaffected. This may explain why no wilt symptoms occur in B. napus infected with VL. Elevated amounts of fungal DNA were detectable in the hypocotyls 14 days post-inoculation (dpi) and in the leaves 35 dpi. Root penetration was also observed for VD, however, with no directed root surface growth and mainly an intercellular invasion of the root tissue. In contrast to VL, VD started ample formation of conidia on the roots, and was unable to spread systemically into the shoots. VD did not form microsclerotia in the root tissue as widely observed for VL. This study confirms that VD is non-pathogenic on B. napus and demonstrates that non-host resistance against this fungus materializes in restriction of systemic spread rather than inhibition of penetration.  相似文献   

20.
In the present study, four Greek (Agiorgitiko, Asyrtiko, Roditis and Xinomavro) and one international (Soultanina) grapevine cultivars (Vitis vinifera L.) were screened for their resistance to Phaeomoniella chlamydospora. Artificial inoculation was carried out by drilling a hole into the trunk and injecting a concentrated conidial suspension into the vessels. Disease reactions were evaluated in an 87-day assessment period, on the basis of external symptoms (disease incidence, disease severity and mortality) and by calculating the relative areas under disease progress curves (relative AUDPC). The extension of vascular browning as well as the isolation ratio along the inoculated vine trunks were also taken into account as additional parameters for evaluating resistance. The results indicated that the resistance of grapevine cultivars to P. chlamydospora varied significantly. ‘Agiorgitiko’ and ‘Soultanina’ were susceptible, whereas ‘Asyrtiko’ and ‘Xinomavro’ were resistant; ‘Roditis’ showed an intermediate level of resistance. Cultivars’ resistance was mostly distinguished in terms of the extension of vascular browning and pathogen isolation ratio. On the contrary, the disease incidence, final disease severity, mortality and relative AUDPC provided less distinctive efficiency in resistance evaluation. The robust methodology presented here could be useful in rapid evaluation experiments for future screening programs to search and recognize natural resistant sources within grapevine genotypes against P. chlamydospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号