首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

2.
Bacteria are regarded as the most effective in the detoxification of heavy metals, being environmental compatible. Metalloresistant bacteria are usually found in nature in highly contaminated environment where they interact with a combination of several toxic metals. For the present research, Arthrobacter oxydans and Arthrobacter globiformis have been isolated from the soil samples of the most polluted regions of Georgia, rich with manganese and iron, and contain co-produced toxic metals such as Cr, V, Zn, Ni, Pb, and Mo. We have studied the effects of the metals with different valence/charge on the metalloresistant Arthrobacter spp., the divalent cation—Zn(II) and the hexavalent anion—Cr(VI). The permanent presence of a nontoxic concentration of zinc alone or zinc together with the subtoxic concentration of chromium at the growth of A. oxydans and A. globiformis as batch culture causes the activation of the zinc primary uptake system transporters from the ZIP family (Zrt1). Chromium does not affect the process. The studied Arthrobacter spp. differ by the character of the activation of the antioxidant defense system. Chromium and zinc concomitant action causes the strongest oxidative stress in the case of A. globiformis that is demonstrated by the increased activity of superoxide dismutase (SOD) and catalase. In the case of A. oxydans, the zinc separate action, and the joint action of zinc and chromium decreases the activity of SOD and catalase. The antioxidant system is active in A. globiformis at the prolonged action of metals (96 h), whereas the cells of A. oxyidans activate the other defense mechanisms to survive.  相似文献   

3.
The short term acute toxicity of potassium chromate, potassium dichromate and chromium sulphate has been compared in a simple microbial bioassay. The test parameters were, decrease in viability, genotoxicity and metal uptake. The LC50 values of Cr(III), dichromate Cr(VI) and chromate Cr(VI) for Escherichia coli were 16, 10 and 1.2 μg mL?1, respectively. Among the test substances potassium chromate was most toxic and showed no bioaccumulation while potassium dichromate was less toxic but resulted in significant bioaccumulation. Chromium sulphate was least toxic. As evident from loss of plasmid, genotoxicity was exhibited only by Cr (VI).  相似文献   

4.
The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.  相似文献   

5.
The population density of actinomycetes in the samples of light sierozem from the Kopet Dag piedmont plain (75 km from Ashkhabad, Turkmenistan) reaches hundreds of thousand CFU/g soil. The actinomycetal complex is represented by two genera: Streptomyces and Micromonospora. Representatives of the Streptomyces genus predominate and comprise 73 to 87% of the actinomycetal complex. In one sample, representatives of the Micromonospora genus predominated in the complex (75%). The Streptomyces genus in the studied soil samples is represented by the species from several sections and series: the species of section Helvolo-Flavus series Helvolus represent the dominant component of the streptomycetal complex; their portion is up to 77% of all isolated actinomycetes. The species of other sections and series are much less abundant. Thus, the percentage of the Cinereus Achromogenes section in the actinomycetal complex does not exceed 28%; representatives of the Albus section Albus series, Roseus section Lavendulae-Roseus series, and Imperfectus section belong to rare species; they have been isolated not from all the studied samples of light sierozem, and their portion does not exceed 10% of the actinomycetal complex.  相似文献   

6.
Eleven indigenous arsenic-tolerant fungi were isolated from arsenic-contaminated mine tailing and identified by molecular biology methods. Among them, Aspergillus oryzae (denoted as A. oryzae TLWK-09) had high tolerance and bioaccumulation of As(V). The maximum tolerance to As(V) concentration of A. oryzae TLWK-09 reached 5000 mg/L. As(V) bioaccumulation on A. oryzae TLWK-09 in the aqueous system was investigated under different environmental conditions such as mycelia dosage, contact time, pH, and ionic strength. Bioaccumulation data of As(V) were fitted to Langmuir model, and the maximum uptake capacity of A. oryzae TLWK-09 for As(V) was 54.12 mg/g at 301 K. The morphological structures of mycelia changed obviously under As(V) stress by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The analysis of Fourier transform infrared spectroscopy (FTIR) indicated the presence of carboxyl, hydroxyl, and amino groups on the fungal mycelia, which showed that these groups accounted for As(V) bioaccumulation. These results suggested that A. oryzae TLWK-09 could be an efficient and promising bioremediation material for As(V) pollution.  相似文献   

7.
Tomato wild relatives are important sources of resistance to many pests of cultivated tomato [Solanum lycopersicum L. (syn. Lycopersicon esculentum Mill.)]. Eleven wild tomato accessions previously identified at AVRDC—The World Vegetable Center as resistant to Bemisia tabaci were evaluated for resistance to the two-spotted spider mite [Tetranychus urticae (Koch.)] based on egg numbers using the leaf disc and Tanglefoot no-choice bioassays, and damage scores in choice bioassays. Highest resistance based on choice and no-choice bioassays was identified in AVRDC S. galapagense accessions VI057400, VI045262, VI037869 and VI037239, and S. cheesmaniae accession VI037240, all of which are new sources of T. urticae resistance. In addition, S. pimpinellifolium accession VI030462 exhibited resistance only in the no-choice bioassay based on egg numbers. Resistance to T. urticae based on the number of eggs from the no-choice bioassays was positively correlated with density of type IV glandular trichomes and negatively correlated with densities of type V trichomes. All resistant accessions accumulated high levels of total acylsugars, which were positively associated with type IV trichomes. There was a significant negative relationship between acylsugar content and T. urticae egg numbers from the no-choice bioassays. There was high correlation between the results from the leaf disc test and the Tanglefoot no-choice bioassay. These findings support the possible presence of broad-based insect and mite resistance in accessions closely related to cultivated tomato.  相似文献   

8.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

9.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

10.
The population and taxonomy of actinomycetes in chestnut soils of Mongolian plains were studied. The actinomycetes identified belong to the genera Streptomyces, Micromonospora, Saccharopolyspotra, Streptosporangium, and Microbiospora. In the composition of Streptomyces, the species of sections Cinereus, Helvo-Flavus, Albus, and Imperfectus were present. The species of Imperfectus section predominated in the Streptomyces complex and amounted to 88.2%.  相似文献   

11.
The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L?1, 30 mg L?1, and 100 mg L?1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L?1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.  相似文献   

12.
This aim of the study is to investigate a halophilic bacterium Hortaea sp. B15, isolated from petroleum-contaminated soil for biodegradation of phenanthrene. Hortaea sp. B15 has the ability to completely degrade phenanthrene (100 mg/L) under salinity 10% within 1-week incubation. The metabolitic product of phenanthrene was identified and assayed by using ultraviolet-visible spectrophotometer and mass spectral analysis. Result revealed that Hortaea sp. B15 metabolized phenanthrene to form 9,10-phenanthrene quinone, salicylic acid, and gentisic acid. Hortaea sp. B15 has an efficient utilization of phenanthrene in high-saline liquid medium. All the results indicated that the fungus has a promising application for the study of high-molecular-weight PAH biodegradation and contaminated saline-alkali soil bioremediation.  相似文献   

13.
The sweetpotato whitefly, Bemisia tabaci Genn., is a major pest of tomato (Solanum lycopersicum) and other crops throughout the tropics and subtropics. The objectives of this study were to characterize 255 accessions of S. galapagense, S. cheesmaniae and S. pimpinellifolium for trichome types, and to evaluate selected accessions with high densities of glandular trichomes for resistance to whitefly. Twenty-two accessions classified as either sparse or abundant for type IV trichomes were selected and evaluated for numbers of adults, eggs, nymphs, and puparium of whitefly in choice bioassays, for adult mortality and egg numbers in no-choice bioassays, and for densities of type I, IV, V, and VI trichomes. The highest whitefly resistance was detected in S. galapagense accessions VI063177 and VI037239 based on choice and no-choice bioassays. In addition, we found high levels of whitefly resistance in S. cheesmaniae accession VI037240 based on the choice bioassay and in S. pimpinellifolium accession VI030462 based on the no-choice bioassay. Whitefly resistance in VI037240 and VI030462 is noteworthy because these species are closely related to cultivated tomato and introgression of whitefly resistance should be relatively straightforward. High densities of type IV trichomes and low densities of type V trichomes were associated with reduced numbers of whitefly adults, nymphs, puparium, and eggs in the choice bioassay and with high adult whitefly mortality in the no-choice bioassay. Preliminary trichome analysis followed by choice and no-choice assays facilitated rapid identification of whitefly-resistant accessions from a large pool of candidates of different species.  相似文献   

14.

Purpose

The present study was carried out in Roro region, Chaibasa, Jharkhand, India, to assess the impact of chromite–asbestos mine waste (CMW) on a nearby agroecosystem. The role of metal-accumulating grass–legume association in facilitating phytoremediation was investigated.

Materials and methods

Soil and plant samples were collected from (i) chromite–asbestos mine waste (CMW) with Cynodon dactylon, Sorghastrum nutans, and Acacia concinna; (ii) contaminated agricultural soil-1 (CAS1) from a foothill with Cajanus cajan; (iii) contaminated agricultural soil-2 (CAS2) distantly located from the hill, cultivated with Oryza sativa and Zea mays; and (iv) unpolluted control soil (CS). Total metal concentrations were quantified in both soils and plants by digesting the samples using HNO3, HF, HClO4 (5:1:1; v/v/v), and HNO3 and HClO4 (5:1; v/v), respectively, and analyzed under flame atomic absorption spectrophotometry. Metal grouping and site grouping cluster analysis was executed to group the metals and sampling sites. Translocation factor (TF) and bioconcentration factor (BCF) were calculated to determine the phytoremediation efficiency of grasses and legumes.

Results and discussion

Results indicate that total metal concentrations in the CMW were in the order of Cr?>?Ni?>?Mn?>?Cu?>?Pb?>?Co?>?Zn?>?Cd. High concentrations of Cr (1983 mg kg?1) and Ni (1293 mg kg?1) with a very strong contamination factor were found in the CAS, which exceeds the soil threshold limits. Further, metal and site grouping cluster analysis also revealed that Cr and Ni were closely linked with each other and the CMW was the main source of contamination. Among all the metals, Cr and Ni were mainly accumulated in grasses (C. dactylon and S. nutans) and legumes (A. concinna and C. cajan) as compared to cereals (Z. mays and O. sativa). The TF of Cr was >1 for grasses. Except for Zn, the BCF for all the metals were <1 in roots and shoots of all the plants and cereals.

Conclusions

The present study revealed that abandoned CMW is the source of contamination for agriculture lands. Phytoremediation relies on suitable plants with metal-scavenging properties. Grass–legume cover (C. dactylon, S. nutans, A. concinna, and C. cajan) has the ability to accumulate metals and act as a potential barrier for metal transport, which facilitate the phytoremediation of the CMW. Possibilities for enhancing the barrier function of the grass–legume cover need to be explored with other low-cost agronomic amendments and the role of rhizospheric organisms.
  相似文献   

15.
Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g?1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe?=?5.4 mg g?1). The maximum values of distribution coefficients (Kd) were 23?±?7 L kg?1, 545?±?64 L kg?1, and 1178?±?229 L kg?1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.  相似文献   

16.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

17.

Purpose

Paulownia, one of the fastest growing broad-leaved tree species in the world, is widely distributed in the warm temperate regions of China. However, there are few commercial-scale Paulownia plantations, and there is only limited information available about the most suitable soil quality for Paulownia fortunei growth in mid-subtropical, Hunan Province, China.

Materials and methods

To understand the effect of the growth of P. fortunei on soil conditions, 25 soil property parameters under Paulownia plantations were studied in Hunan Province, China. Seventy-two standard plots of eight different stand types were analyzed by three statistical approaches to assess soil quality (SQ) in the different P. fortunei plantations.

Results and discussion

The results revealed that a majority of the soil characteristics when intercropping with oilseed rape and the pure P. fortunei (plantation III) were better than intercropping with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.). Available calcium, available magnesium, available potassium, available phosphorus, soil thickness, slope, soil organic matter, available sulfur, available copper, dehydrogenase, and available zinc were selected as the minimum data set (MDS). The SQ index (SQI) showed that three classes for soil quality among the eight P. fortunei plantations ranged from 0.48 to 0.88 and these were correlated with standing volume (p?<?0.05).

Conclusions

From the results, we concluded that selected MDS indicators can describe the soil fertility quality of P. fortunei plantations, and that the relationship between SQI and standing volume has a biological significance. P. fortunei plantations intercropped with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.) caused a deterioration in SQ, but intercropping oilseed rape and pure P. fortunei plantations produced an improvement in SQ.
  相似文献   

18.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

19.
The genus Crataegus known as hawthorns, is the largest genus among the Maloideae, which comprises 265 species. Turkey is one of the genetic centers of Crataegus and there are more than 20 species found in Turkey. The fruits of Crataegus are used as food and have high flavonoid, vitamin C, glycoside, anthocyanidin, saponin, tannin, and antioxidant levels. In this study, we attempted to characterize 15 Crataegus accessions sampled from Hatay, located in Eastern Mediterranean region of Turkey. The accessions belonged to several species; C. aronia (L.) DC. var. aronia, C. aronia var. dentata Browicz, C. aronia var. minuta Browicz, C. monogyna Jacq. subsp. azarella (Griseb.) Franco, and C. orientalis Pall. ex M. Bieb. var. orientalis. Fruit characteristics of the accessions exhibited considerable variation. The multivariate, principle component and cluster analyses indicated that the accessions belonged to three groups: (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accessions; and, (3) C. monogyna subsp. azarella and C. orientalis var. orientalis accessions. The principle component analysis results also revealed that the first three components explained 46, 21, and 14% of the variation, comprising a total of 81%. The fruit length and width, leaf area, and soluble solids contents were highly correlated characteristics for the first three components. The 19 RAPD primers generated a total of 107 bands, where 76 of these were polymorphic. The molecular data analyses by principle coordinate and clustering showed similar results to those of pomological characteristics. There were three groups, (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accession; and, (3) C. monogyna subsp. azarella. C. orientalis var. orientalis accession grouped with C. aronia var. arona accessions. Therefore, it can be concluded that, overall, the diversity patterns of pomological and molecular data, generated by RAPD, for Crataegus are in good agreement and the accessions of C. aronia var. aronia, C. aronia var. minuta, C. monogyna subsp. azarella and C. orientalis var. orientalis accessions.  相似文献   

20.
Analysis of the genetic structure of Indonesian Oryza sativa and O. rufipogon using neighbour-joining trees based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers revealed that O. sativa in Indonesia is separated from O. rufipogon. Accessions of O. sativa in this study were differentiated into two major groups, indica and tropical japonica, excluding some varieties. SSR and SNP markers revealed the high value of differentiation (F ST) and genetic distance (D) between indica and tropical japonica and we discovered four loci by SNP markers and one locus by SSR markers that play a role in differentiation between indica and tropical japonica. Interestingly, genetic diversity (H) in O. rufipogon was lower than that in O. sativa, however H in O. rufipogon was the highest and H in tropical japonica was the lowest when O. sativa was divided into two groups. Inbreeding coefficient (Fst) showed evidences that gene flow (Nm) between species and within species might be one of the mechanisms related to the diversification and differentiation of Indonesian rice germplasm by asymmetric pattern between species and within O. sativa as revealed by SSR and SNP markers. In addition, we found evidences on stabilizing selection in Indonesian rice germplasm and they might be the reasons why Indonesian rice germplasm did not differentiate due to source location of landrace. However, we found a weak relation between SSR and SNP markers probably due to highly polymorphic in SSR and the different properties of both markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号