首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this article is to present the problem of purification of 50-year-old weathered wastes (soil) from waste pits—the result of oil drilling. The soil was deeply contaminated with petroleum hydrocarbons—total petroleum hydrocarbon (TPH) level: 85,654–101,842 mg kg dry mass. This work presents results of waste pit material purification with the use of stage technology: initial reclamation, basic bioremediation, and bioaugmentation (inoculation with indigenous microorganisms). The whole process was controlled with the use of gas chromatography/flame ionization detector. This analytical method enables observation of alternation in n-alkanes content during the consecutive stages of purification. According to this method, estimation of oil hydrocarbon biodegradation degree with the use of n-C17/Pr and n-C18/F indicators can be done. The use of biomarker C30-17α(H)21β(H)-hopane to normalize the TPH concentration in laboratory research enabled the creation of the first-order mathematical model of biodegradation. It is possible to recognize the dynamics of the following purification stages due to the calculated first-order biodegradation constants. Decrease in the TPH content (63.8–65.1%) was a result of laboratory tests led in 130 days of basic bioremediation. The next stage of soil purification (130 days) included inoculation with biopreparation based on indigenous microorganisms—TPH decrease in 80.7–81.7%. Laboratory tests results enabled elaboration of purification methods applied in tested waste pits in industrial conditions (in situ). The technology of the G-44 and G-12 waste pits purification from huge petroleum hydrocarbons content, consisting of stage purification process, enables the TPH decrease to the satisfactory level in 3 years.  相似文献   

2.
Background, Aim and Scope   Phytoremediation is a remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading microorganisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal- contaminated soil was treated using phytoremediation in a 39- month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Materials and Methods: A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11400±4300 mg kg dry soil)-1 and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170±50 mgkg-1, 1100±1500 mg kg-1 and 390±340 mg kg-1, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results: Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were removed by the last four months of study. In soil amended with NPK fertilizer and municipal biowaste compost, 65 % and 60 % of hydrocarbons were removed, respectively. The soil contained metabolically diverse bacteria, measured as carbon source utilization and extracellular enzymatic activities. Compost addition resulted in a slight increase in enzymatic activities. Diesel fuel utilization potential in Biolog MT2 plates inoculated with a soil suspension was enhanced by both compost and NPK compared to non-amended soil. Soil toxicity to V. fischeri and E. albidus was low. The leachate was not toxic to V. fischeri. Pine (Pinus sylvestris), poplar (Populus deltoides x Wettsteinii), grasses and clover (Trifolium repens) survived to varying degrees in the contaminated soil. All plants suffered from phytotoxicity symptoms and some trees died during the study period. Plants formed a dense cover over the compost-amended soil, whereas non-amended soil had areas devoid of vegetation throughout the study. Vegetation coverage in the NPK-amended quarter was about 50 % after the first four months of study, but increased gradually to 100 %. Heavy metals did not accumulate in plant tissue. Discussion: Removal of hydrocarbons from weathered unfertilized hydrocarbon-contaminated soil was not statistically significant despite the presence of a viable hydrocarbon-degrading microbial community. This effect is attributed to soil heterogeneity and low bioavailability of hydrocarbons. Hydrocarbon concentrations were not reduced to the desired level, i.e., 1500 mg hydrocarbons (kg of dry soil)-1, in any treatment. . The presence of clay minerals and organic matter within the compost may have limited heavy metal transfer to leachate and plant tissue. Conclusions: Weathered hydrocarbons were partly decomposed in soil fertilized with NPK fertilizer or biowaste compost, but not from unfertilized soil. The active hydrocarbon-degrading microbiota and low toxicity of soil to V. fischeri and E. albidus indicates low availability of contaminants to microorganisms. Despite high heavy metal concentrations, the soil contained metabolically diverse bacteria, measured as carbon source utilization and extracellular enzymatic activities. Heavy metals did not accumulate in test plants. Pine and poplar suffered from phytotoxicity symptoms in the soil and could not enhance hydrocarbon removal in compost-amended soil. Compost addition combined with a grass and legume crop is suggested for stabilization of combined hydrocarbon- and metal-contaminated soil. Recommendations and Perspectives: Both compost and NPK fertilizers can be used to enhance phytoremediation of soil contaminated with weathered hydrocarbons in the presence of heavy metals; however, compost addition is recommended since it enables greater vegetative coverage. This in turn may decrease heavy metal mobility. Phytoremediation can be used for remediation of soil contaminated with weathered hydrocarbons in the presence of heavy metals. However, phytoremediation of weathered contaminants requires extended periods of time; thus, other remediation methods should be considered in the event of soil contamination posing an immediate public health and/or environmental threat.  相似文献   

3.
This work examines the rates of bioremediation during a landfarming process. A field study was performed using three types of soil, which were contaminated with two different hydrocarbon concentrations: 20,000 and 50,000 ppm of total petroleum hydrocarbons (TPH). They were subjected to landfarming under the action of different treatments, based on the provision of irrigation, aeration by rototilling, fertilizer, and surfactant. The biodegradation of TPH, considering concentration and families of hydrocarbon compounds (including polycyclic aromatic hydrocarbons, PAHs), was precisely measured for a period of 486 days. The results show how biodegradation rates depend on soil texture, initial contamination level, and type of amendment. Thus, the combination of fertilizer, irrigation, and aeration was the best treatment for treating the soil contaminated with 20,000 ppm of TPH (TPH final concentrations were reduced to a range of 49 to 62% depending on the soil texture). In the case of parcels contaminated with 50,000 ppm of TPH, the most effective treatment combined the supply of fertilizer, surfactant, irrigation, and aeration (TPH final concentrations were reduced to a range of 47 to 63%, depending on the soil texture). The best biodegradation results are obtained for soils with coarser textures and using the treatment with fertilizer, irrigation, and aeration. In addition, the application of surfactant did not imply a significant improvement in the level of biodegradation of hydrocarbons in soil contaminated with 20,000 ppm of TPH, whereas in soils contaminated with 50,000 ppm of TPH, it played a leading role.
Graphical Abstract ?
  相似文献   

4.
A study was conducted to determine nitrogen budget and ammonia volatilization in Japanese paddy fields supplemented with liquid cattle waste (LCW). A series of four, 2?×?10 m experimental plots was established in a paddy field with silty clay soil planted with forage rice (Oryza sativa L.). In addition to 195 kg N ha?1 of chemical or compost-based basal fertilizer, LCW was applied as an additional fertilizer at total nitrogen rates of 0, 255, 255, and 405 kg N ha?1 to the four plots C195, T450-1, T450-2, and T600, respectively. The mass balance showed that after application of LCW, 32–39% of total input nitrogen was assimilated into aboveground parts of rice plants, 11–15% leached downward, 2.5–4.0% was lost via ammonia volatilization, 1.6–5.1% was retained in roots or was adsorbed onto soil, and approximately 30–40% was lost via denitrification. Compared to animal waste slurries applied to unsaturated soils, nitrogen loss via ammonia volatilization was relatively lower, probably due to the dilution effect of floodwater. Nitrogen loss via denitrification was markedly higher in areas where LCW was applied compared to areas without LCW application. On the other hand, nitrogen leaching downwards represented a substantial loss and may be an environmental concern. However, after LCW application only, the ammonium ion was detected, at a maximum nitrogen concentration of 11.4 mg L?1. In this system, therefore, nitrogen has a different fate to that in animal waste slurries applied to unsaturated soil. In that situation, the major nitrogen form in leaching water is nitrate nitrogen, which moves readily into groundwater.  相似文献   

5.
A quasi steady state respiration test based on Fick’s law with a correction term for advective flux, for estimating petroleum hydrocarbon degradation rates, was evaluated in a full-scale (3,000 m3) biopile study. A contaminated clayey sand soil with an average TPH content of 1,421?±?260 mg kg?1 soil was treated in a biopile with a fixed venting and heating system. Temperature in the biopile ranged from 12.1 to 36.6°C and soil water content from 15.2 to 35.8 m3 H2O m?3 soil. Oxygen concentrations in the biopile showed a rapid decrease with depth, before venting and reached constant atmospheric concentration during venting. Measured oxygen consumption in the biopile ranged from ?0.04 to ?0.68 mol O2 m?3 soil day?1. Average oxygen consumption rates calculated with the quasi-steady-state method were significantly (P?<?0.05) lower then the oxygen consumption rates calculated with the transient method. It was suggested that the oxygen diffusion was underestimated by the diffusivity models used and that further research is needed to determine relative effective diffusion coefficients in biopiles. Although both respiration testing and petroleum hydrocarbon concentration showed a decrease of oxygen consumption in time, the estimated degradation rate was low compared to the actual decrease in petroleum hydrocarbon concentration. Additional work will have to be done to acquire a more precise knowledge of the relationship between respirometrically determined degradation rates and the actual change in petroleum hydrocarbon concentration in the soil.  相似文献   

6.
Two commercially available aerobic bioremediation methods (Daramend® and BioSan) were utilized to study the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAH) and the effect of the simultaneously present arsenic. The soil was collected at an old wood preservation site, and the initial PAH16-concentration was 46 mg/kg, with mainly high molecular weight congeners. The As concentration was 105 mg/kg with low availability as assessed with sequential extraction. To enhance the availability of PAH, the effect of a nonionic surfactant was evaluated. Degradation of both low and high molecular weight PAH was observed; however, after 30 weeks, the degradation was generally low and no treatment was significantly better than the others. The treatments had, on the other hand, an effect on As remobilization, with increased As concentration in the available fraction after treatment. This may be due to both the microbial activity and the presence of anoxic microsites in the soil. The overall efficiency of the biological treatment was further evaluated using the standardized ecotoxicity test utilizing Vibrio fischeri (Microtox®). The toxicity test demonstrated that the bioremediation led to an increase in toxicity, especially in treatments receiving surfactant. The surfactant implied an increase in contaminant availability but also a decrease in surface tension, which might have contributed to the overall toxicity increase.  相似文献   

7.
【目的】通过研究尿素、氯化铵以及二者混合高塔造粒而成的含氯脲铵氮肥对太湖地区稻麦轮作体系作物产量、氮肥利用率、氨挥发损失、土壤氯残留和耕层土壤 pH 的影响,为新型含氯氮肥的推广,降低环境风险提供理论依据。【方法】通过两年稻麦轮作季的田间小区试验,在当地适宜施氮量条件下,以 CK (不施氮) 和施用普通尿素为对照,研究了两种含氯氮肥的施用对稻麦轮作体系作物产量和氮肥利用率的影响。采集作物收获后 0—20 cm、20—40 cm 土壤样品,采用硫氰酸汞比色法测定土壤氯残留;施肥后采用密闭室间歇通气-稀硫酸吸收法测定氨挥发通量。【结果】尿素、氯化铵和含氯脲铵处理对稻麦产量无显著影响,但与尿素相比含氯脲铵对稻麦有增产的趋势,而氯化铵对小麦有减产趋势。与尿素相比施用含氯脲铵显著提高氮肥利用率 7.0% (P < 0.05)。氨挥发主要发生在稻季,与施用尿素相比单施氯化铵使麦季氨挥发降低 26.3% (1.39 kg/hm2),而使稻季氨挥发增加 10.4% (2.67 kg/hm2);含氯脲铵使麦季和稻季的氨挥发分别降低 5.2% (0.55 kg/hm2) 和 12.9% (6.16 kg/hm2)。施用含氯氮肥土壤氯残留表现为稻季显著增加,而麦季则显著降低的趋势,收获期耕层土壤 (0—20 cm) 氯离子含量最高不超过 160 mg/kg,低于水稻和小麦的耐氯临界值。经过两个稻麦轮作循环后,施用氯化铵土壤 pH 比尿素下降 0.88 个单位,而施含氯脲铵土壤 pH 与尿素没有显著差异。【结论】在太湖地区稻麦轮作体系中,综合考虑产量和环境效益,含氯脲铵氮肥与两种单质肥料相比有一定优势,为氨挥发减排和氯化铵施用难题的解决提供了依据。  相似文献   

8.

Purpose

The effect of pollutants in soil microorganisms is an important issue in order to understand their toxic effects in the environment, as well as for developing adequate bioremediation strategies. In this sense, the main objective of this study was to assess the involvement of the indigenous microbiota of an acidic forest Mediterranean soil by artificial pollution with heavy metals, and to detect and isolate resistant microorganisms that could be useful for bioremediation.

Materials and methods

Samples from a previously unpolluted acidic forest soil were amended with Cr(VI), Cd(II) or Pb(II) at total amounts ranging from 0.1 to 5,000 mg?kg?1. These soil microcosms were incubated under controlled laboratory conditions for 28 days. Soluble fractions of metals were determined from aqueous extracts. Both activity and composition of the microbial community were assessed, respectively, by respirometric assays and molecular analysis (polymerase chain reaction denaturing gradient gel electrophoresis). The isolation of metal-resistant microorganisms was attempted by culture plating from microcosms incubated with high concentrations of metals. Isolated strains were tested in cultures with minimal medium to check for their metal resistance and their capacity to reduce the presence of toxic Cr(VI).

Results and discussion

A decrease in the soil respirometric activity and changes in the microbial community composition were detected from 10/100 mg?kg?1 Cr and 1,000 mg?kg?1 Cd and Pb. Presumably resistant bacterial and fungal populations developed in most of these polluted microcosms; however, the microbiota was severely impaired at the highest additions of Cr. Even though Cr was the most damaging metal in soil microcosms, if the soluble fractions of metals are considered instead of their total added amounts, the comparison among their toxic effects suggests a similar potential toxicity of Cr and Pb. Isolated multiresistant microorganisms were related mainly to Actinobacteria, Firmicutes and Ascomycota. Some of them showed the capacity to reduce Cr(VI) concentrations between 54 % and 70 % of the initial value. These strains were affiliated to several species of Streptomyces and Bacillus.

Conclusions

The combination of respirometric assays with molecular methods has been useful to assess the effect of metals on the soil microbial community, which can greatly be explained by their differential bioavailability. Cultivation-dependent and -independent approaches have proved the presence and development of multiresistant microorganisms in a previously unpolluted soil. Due to their properties, some of the isolated strains are potentially useful for soil bioremediation.  相似文献   

9.
Phytoremediation uses plants and their associated microorganisms in conjunction with agronomic techniques to remove or degrade environmental contaminants. The objective of the field study was to evaluate the effect of vegetation establishment plus fertilizer addition on the biodegradation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Four replications of the following treatments were used: non-vegetated non-fertilized control; fescue (Lolium arundinaceum Schreb.) ? ryegrass (Lolium multiflorum L.) mixture + fertilizer; or bermudagrass (Cynodon dactylon (L.) Pers.) ? fescue mixture + fertilizer. Vegetation was successfully established at the site that had an initial total petroleum hydrocarbon (TPH) concentration of 9,175 mg/kg. While alkylated two-ring naphthalenes were degraded in all treatments equally, there was greater degradation of the larger three-ring alkylated phenanthrenes-anthracenes and dibenzothiophenes in the vegetated fertilized plots compared to the non-vegetated non-fertilized plots. In this field study, an increase in rhizosphere soil volume associated with increased root length along with nutrient additions resulted in increased total bacterial, fungal, and polycyclic aromatic hydrocarbon (PAH) degrader numbers that most likely resulted in increased biodegradation of the more recalcitrant alkylated polycyclic aromatic hydrocarbon compounds in the crude oil-contaminated soil.  相似文献   

10.
石油污染土壤中芳烃降解菌及邻苯二酚2,3双加氧酶的克隆   总被引:3,自引:3,他引:0  
吴宇澄  骆永明  滕应  刘五星  李振高 《土壤》2006,38(5):640-644
石油污染土壤中的芳烃降解菌是进行土壤修复的主要生物资源,本研究对某炼油厂附近土壤中的芳烃降解菌及邻苯二酚2,3双加氧酶基因进行了研究。结果表明,部分石油烃污染土壤中存在着大量的芳烃降解菌;对其中一个土壤样本中的邻苯二酚2,3双加氧酶基因进行克隆,获得了7个不同的邻苯二酚双加氧酶基因序列,序列分析表明这些基因可能来源于土壤中的假单胞菌,且该基因在土壤中的丰度与污染水平及芳烃降解菌的数量相关。可见,土壤中芳烃降解菌数量及降解基因的丰度和多样性,可以对石油污染土壤的生物修复进行监控并为生物修复提供丰富的微生物资源。  相似文献   

11.
In this paper, the effect of nitrogen addition on the aerobic bioremediation of a diesel-contaminated soil was studied. Soil was artificially contaminated with diesel at an initial 2% concentration (on a dry soil basis). Nitrogen was added as NH4Cl in a single load at the start of the experiment at concentration levels of 0, 100, 250, 500, 1,000, and 2,000 mg N/dry kg soil, and uncontaminated and unamended soil O2 consumptions were studied. Diesel degradation was indirectly studied via measurements of O2 consumption and CO2 production, using manometric respirometers. Results showed that the 250 mg N/dry kg concentration resulted in the highest O2 consumption among all runs, whereas O2 consumption was reduced by N additions greater than 500 mg N/dry kg. Zero to 0.6 order degradation kinetics appeared to prevail, as was calculated via the oxygen consumption rates. A theoretical biochemical reaction for diesel degradation was developed, based on measurement of the final diesel concentration in one of the runs. According to the stoichiometry, the optimal N requirements to allow complete diesel degradation should be approximately 0.15 g N/g diesel degraded or 1,400 mg N/dry kg of soil, based on the initial diesel concentration used in this study. This implies that N should be added in incremental loads.  相似文献   

12.
Abstract

This experiment evaluated the capacity of two species, Indian mustard (Brassica juncea Czern.) and tall fescue (Festuca arundinacea Schreb.) to extract zinc (Zn) from soils. Also, this experiment focused on using nitrogen (N) fertilizers to increase the phytoextraction of Zn. Two soils of the Hadley series (Typic Udifluvents) were studied. A treatment array of Zn concentrations in soils was supplied as zinc sulfate. Nitrogen was supplied at 200 mg N/kg of soil as calcium nitrate, urea, or compost. Two successive plantings of Indian mustard in the same media were grown until flowering and harvested. Fescue was grown from seeding to a height of 15 cm, harvested, grown again in the same media to a height of 15 cm, and harvested again. After the second harvests of Indian mustard and fescue, soil samples were taken for analysis of extracts with water and with Morgan's solution. Indian mustard was grown with Zn additions ranging from 0 to 100 mg/kg soil. The shoot mass of Indian mustard in both harvests increased to a soil‐Zn level of 25 mg/kg and then decreased. Although growth decreased as the soil‐Zn levels increased beyond 25 mg/kg, Zn concentration and total accumulation increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation in Indian mustard were highest in soils amended with urea and were lowest in soils with no fertilizer. Fescue was grown with Zn additions ranging from 0 to 1000 mg/kg soil. The shoot mass of fescue increased to a soil‐Zn level of 125 mg/kg (harvest 1) or 250 mg/kg (harvest 2) and then decreased as the soil‐Zn levels increased. Concentration and accumulation of Zn in fescue increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation were highest in fescue grown in soils amended with urea and lowest in soils with no fertilizer. The highest accumulation of Zn in fescue (3800 mg/pot) occurred at 1000 mg Zn/kg soil. Highest concentrations of soil Zn were extracted with Morgan's solution or water from soils amended with urea, regardless of the species grown in the soils. Lowest concentrations of Zn were extracted from soils with no fertilizer added, regardless of extract or species. In general, if fertilizers (calcium nitrate, urea, or compost) were added to the soils, the pH decreased. Fescue was easy to grow, tolerated much higher soil‐Zn levels than Indian mustard in this research, and could be a species useful for phytoextraction of Zn.  相似文献   

13.
Bioremediation of crude oil in salt marsh mesocosms growing Spartina alterniflora was investigated during winter and summer to determine the influence of nitrogen (N) and phosphorus (P) fertilization, flooding, and season. Fertilization with urea and ammonium (NH4 +) applied at 75 or 150 kg N ha-1 with or without P did not significantly (p = 0.05) increase oil or hydrocarbon degradation in continuously flooded mesocosms over an 82 day period during winter (temperature range of 17 to 30 °C). Phosphorus applied at 40 kg P ha-1 significantly (p = 0.05) increased oil and hydrocarbon degradation. Nitrate (NO3 -) added alone did not increase oil or hydrocarbon degradation, but when added with P, it significantly (p = 0.05) increased degradation above that for P alone. Up to 70% of applied oil and 75% of applied hydrocarbons were degraded in P supplemented treatments. Inipol, an oleophilic fertilizer containing N, P, and a dispersant, significantly increased oil and hydrocarbon degradation. During a 40 day summer experiment (temperature range of 27–42 °C), N and P fertilization did not increase oil or hydrocarbon degradation. For continuously flooded treatments, 72% of applied hydrocarbons were degraded while 51% were degraded in alternately flooded treatments. Mesocosms provided conditions suitable for quantitative recovery of oil and results indicated that N and P fertilization, flooding, and season interacted to influence oil bioremediation. Even under the most favorable conditions, more than 1 month was required for most of the oil to disappear.  相似文献   

14.
The gaseous losses of fertilizer nitrogen (N) applied to agroecosystems are a major contributor to a host of environmental problems, inefficient production systems, and decreased N-use efficiency. These losses lead to the wastage of resources, increasing the greenhouse effect and harming human health. The red soil hilly region of Southeast China houses the biggest orchard area of the world, and nitrogen fertilizers are usually heavily applied to the orchard systems in China. Therefore, this study aimed to measure the gaseous losses of the fertilizer N by ammonia (NH3) volatilization and denitrification losses using the venting method and acetylene inhibition method respectively, and to assess the potential environmental risk of NH3 and nitrous oxide (N2O) emission from this orchard system based on the recent orchard management practices. An experiment was conducted in an Ougan citrus (Citrus reticulata Blanco ‘Suavissima’) orchard in the red soil hilly region of Southeast China. Three fertilization treatments, including the control (no N fertilizer, CK), poultry manure (at a rate of 6.3 t/ha, OM), and conventional fertilization (OM 6.3 t/ha + chemical fertilizer 393 kg N/ha, CF), were used. In all treatments, the fertilizers were incorporated into the soil after application. The test results, which were continuously determined within one year, indicated that the NH3 volatilization losses accounted for 4.5% of the OM nitrogen (OM-N) and 2.9% of the CF nitrogen (CF-N), whereas the denitrification N losses accounted for 2.1% of the OM-N and 2.9% of the CF-N. Overall, the total gaseous N losses (including NH3 volatilization losses and denitrification N losses) were 5.8% in the CF treatment. A relatively higher N2O flux, accounting for 1.8% of the CF-N, emitted from the CF treatment.  相似文献   

15.
The purpose of this study was to understand the dynamic conditions of soil/organic mixtures in order to contribute to the study of remediation processes at hydrocarbon spill sites. Induced polarization (IP) and physical, chemical, and microbiological parameters for uncontaminated and artificially contaminated soil samples with diesel oil were evaluated under controlled conditions (constant temperature and soil moisture) during a period of 12 months. In contaminated samples, the resistivity and IP parameters (chargeability and polarizability) decreased during 8 months and remained relatively stable between 8 and 12 months. The observed reduction on resistivity and IP parameters was related to the increase on the granular aggregation of the soil and a decrease on total porosity, caused by diesel-degrading microorganisms. The behavior of the IP parameters observed after 8 months can be explained by a reduction in the microbial activity and, consequently, a decrease of the degradation rate of diesel. In the studied loamy soil with high content of organic matter (96.16 g/kg), the results demonstrate that IP time domain measurements can be used in the evaluation of the evolution of the hydrocarbon degradation even when the concentration is not very high.  相似文献   

16.
We did a pot experiment with three different fertilized soils (no fertilizer (No-F), inorganic fertilizer nitrogen, phosphorus and potassium (NPK), manure plus inorganic fertilizer (MNPK)) from a 19-year fertilizer trial. Three N treatments, (1) no N, (2) 100 mg/kg urea-15N (N), (3) 50 mg/kg urea-15N + 50 mg/kg corn straw-N (1/2N + 1/2S), were applied to each soil. The residual soil from the same treatments was used to grow second wheat crop. The MNPK soil had significantly higher nitrogen use efficiency (NUE) in the first growing season, and lower N loss than the NPK, and No-F soils. The 1/2N + 1/2S treatment decreased NUE on each soil, even though the MNPK soil still had highest NUE and lowest N loss. The residual 15N use efficiency (RNUE) in 1/2N + 1/2S treatment of MNPK soil was higher than NPK and No-F soils. We concluded that long-term application of manure plus inorganic fertilizer increased NUE and decreased N loss.  相似文献   

17.
控释复合肥对冷季型草坪氨挥发和硝态氮淋洗的影响   总被引:1,自引:0,他引:1  
通过田间试验,研究了控释复合肥、常规施肥、市售草坪专用肥对冷季型草坪氨挥发和硝态氮淋洗的影响。氨挥发采用通气密闭法收集测定,硝态氮利用土壤溶液提取器收集淋洗液然后进行测定。结果表明,常规施肥处理的氨挥发量为47.7 kg/hm2(占年施氮量的18.3%),显著高于控释复合肥处理(氨挥发损失为2.9 kg/hm2,占年施氮量的1.1%)和市售草坪专用肥处理(氨挥发损失为4.1 kg/hm2,占年施氮量的1.6%)。施氮不同程度增加了淋洗液中硝态氮的浓度,3种氮肥的硝态氮淋洗程度不同。0—50 cm土层,淋洗液的硝态氮浓度范围分别是:控释复合肥处理1.16~.7 mg/L,常规施肥处理1.21~0.1 mg/L,市售草坪专用肥处理1.51~6.7 mg/L;0—100 cm土层,淋洗液的硝态氮浓度范围分别是:控释复合肥处理1.15~.7 mg/L,常规施肥处理1.11~2.5 mg/L,市售草坪专用肥处理1.16~.2 mg/L。综上所述,控释复合肥降低了冷季型草坪氨挥发损失和硝态氮的淋洗,表现出明显的环境效益,是一种有应用前景的新型肥料。  相似文献   

18.
Waste engine oil pollution is an endemic problem in African countries as waste oil is often discharged into the environment without adequate treatment because waste oil recycling facilities are not readily available. In this study, laboratory-based microcosms (natural attenuation, biostimulation, bioaugmentation and combined treatment of biostimulation?Cbioaugmentation) were set up with soils (from old hydrocarbon biopiles) spiked with waste engine oil and monitored for 3 months. Total petroleum hydrocarbon analysis showed that biostimulation and biostimulation?Cbioaugmentation accelerated hydrocarbon degradation with over 84% reduction (<10,000 mg?kg?1) by week 8. It took another 2 weeks for other microcosms to get below this classification of low-level contaminated waste and landfill disposal level. The highest degradation rate of 92% was obtained in biostimulated?Cbioaugmented microcosms (week 10). However, by week 12, there were no significant differences in hydrocarbon levels in naturally attenuated and treated microcosms. 16S rRNA and ITS-based denaturing gradient gel electrophoresis profiling showed diverse bacterial and fungal communities with some dominant members belonging to hydrocarbon-degrading Proteobacteria, Ascomycetes and Basidiomycetes. This research has therefore shown that hydrocarbon-polluted soils possess substantial microbial hydrocarbon-degrading capacity which was successfully harnessed for degrading engine oil. In developing countries without recycling facilities but readily available hydrocarbon-contaminated soils, using such soils for ex situ monitored natural attenuation could be an effective, low-cost and environment-friendly option for treating waste engine oil.  相似文献   

19.
The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.  相似文献   

20.
石油的开采、运输、储存和使用等过程会导致一些土壤受到石油烃的污染。土壤中的石油烃会对生态安全和人类健康造成潜在危害,因此需要开展土壤修复。本研究采用热活化过硫酸钠氧化处理污染土壤中的石油烃,考察了氧化剂剂量和超声结合热活化对石油烃去除效率的影响,并对石油烃氧化产物以及氧化后土壤理化性质进行了分析。结果表明,当过硫酸钠的用量为2.4 mmol/g土壤时,石油烃的含量从3 800 mg/kg降至1 175 mg/kg,石油烃的去除效率可以达到69%。石油烃的去除效率随着氧化剂增加呈上升趋势。但当氧化剂的剂量超过2.4 mmol/g土壤时,石油烃的去除效率不再增加。使用超声结合热活化,石油烃的去除效率可以进一步提高。过硫酸盐氧化会使土壤p H显著下降,造成土壤酸化。气相色谱质谱(GC/MS)和傅里叶变换红外光谱(FTIR)分析表明石油烃氧化后可能会生成一些醇和羧酸类含氧产物。石油烃和土壤有机质被氧化成极性小分子更易进入水相,导致水中总有机碳(TOC)含量从52.4 mg/kg增加至79.8 mg/kg。扫描电镜和粒度分析表明氧化处理会改变土壤形貌,使土壤的粒径变小。氧化导致土壤的碳、氢含量减...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号