首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
OBJECTIVE: To evaluate the effects of interleukin (IL)-1beta on proteoglycan metabolism in equine cartilage explants when cultured in the presence of synoviocytes. SAMPLE POPULATION: Samples of cartilage and synovium collected from the femoropatellar joints of three 2- to 3-year-old horses. PROCEDURES: 3 experimental groups were established: cartilage explants only, synoviocytes only, and cartilage explants-synoviocytes in coculture. In each group, samples were cultured with or without IL-1beta (10 ng/mL) for 96 hours. Glycosaminoglycan (GAG) content of cartilage and medium samples was measured by use of a spectrophotometric assay; RNA was isolated from synoviocytes and cartilage and analyzed for expression of matrix metalloproteinases (MMP)-3 and -13 (cartilage and synoviocytes), aggrecan (cartilage), collagen type IIB (cartilage), and 18S as a control (cartilage and synoviocytes) by use of quantitative PCR assays. Cartilage matrix metachromasia was assessed histochemically. RESULTS: IL-1beta-induced GAG loss from cartilage was significantly less in cocultures than in cartilage-only cultures. Cartilage aggrecan gene expression was also significantly less downregulated and synoviocyte MMP-3 expression was less upregulated by IL-1beta in cocultures, compared with cartilage- and synoviocyte only cultures. Histochemical findings supported the molecular and biochemical results and revealed maintenance of matrix metachromasia in cocultured cartilage treated with IL-1beta. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that synoviocytes secrete 1 or more mediators that preferentially protect matrix GAG metabolism from the degradative effects of IL-1beta. Further studies involving proteomic and microarray approaches in similar coculture systems may elucidate novel therapeutic targets for the treatment of osteoarthritis.  相似文献   

2.
3.
OBJECTIVE: To determine response of interleukin-1alpha (IL-1alpha)-conditioned equine articular cartilage explants to insulin-like growth factor-1 (IGF-1). Sample Population-Cartilage from the trochlea and condyles of the femur of a clinically normal 4-year-old horse. PROCEDURE: Effects of IGF-1 (0 to 500 ng/ml) after addition of IL-1alpha were evaluated by assessing matrix responses, using a sulfated glycosaminoglycan (GAG) assay, matrix 35SO4 GAG incorporation, and release of GAG. Mitogenic response was assessed by 3H-thymidine incorporation into DNA and fluorometric assay of total DNA concentration. RESULTS: Human recombinant IL-1alpha (40 ng/ml) increased the amount of labeled GAG released and decreased labeled and total GAG remaining in explants, and IL-1alpha decreased mitogenic response. Addition of IGF-1 counteracted effects seen with IL-1alpha alone. In general, IGF-1 decreased total and labeled GAG released into the medium, compared with IL-1alpha-treated explants (positive-control sample). Values for these variables did not differ significantly from those for negative-control explants. A significant increase in total and newly synthesized GAG in the explants at termination of the experiment was observed with 500 ng of IGF-1/ml. Labeled GAG remaining in explants was greater with treatment at 50 ng of IGF-1/ml, compared with treatment with IL-1alpha alone. Concentrations of 200 ng of IGF-1/ml abolished actions of IL-1alpha and restored DNA synthesis to values similar to those of negative-control explants. CONCLUSIONS AND CLINICAL RELEVANCE: IGF-1 at 500 ng/ml was best at overcoming detrimental effects associated with IL-1alpha in in vitro explants. These beneficial effects may be useful in horses with osteoarthritis.  相似文献   

4.
OBJECTIVE: To assess the cellular, biochemical, and histologic effects of bipolar radiofrequency-generated heat on canine articular cartilage. SAMPLE POPULATION: Articular cartilage explants (n = 72) from 6 canine cadavers and cultured articular chondrocytes from 5 canine cadavers. PROCEDURE: Cartilage explants were randomly assigned to receive no treatment or treatment with focal (3 seconds) or diffuse bipolar radiofrequency. Following treatment, methylene blue permeability assay was performed (n = 12) and remaining samples (60) were cultured. Immediately and 5, 10, and 20 days after treatment, cultured explants were assessed for glycosaminoglycan (GAG) and collagen contents, type II collagen and matrix metalloproteinase (MMP)-13 immunoreactivity, and modified Mankin histologic scores. Liquid culture media were collected every 4 days and GAG content measured. Additionally, cultured chondrocytes were exposed for 3 seconds to media preheated to 37 degrees, 45 degrees, or 55 degrees C. Cell viability was determined via 2 different assays immediately and 24 hours after treatment. RESULTS: Radiofrequency-treated cartilage had reduced permeability and considerable histologic damage, compared with control samples; most treated samples had reduced collagen II staining and increased MMP-13 immunostaining. Compared with other treatments, less GAGs were released from cartilage after diffuse radiofrequency treatment throughout the study period. Cell viability was significantly different between controls and cells treated at 55 degrees C immediately and 24 hours after heat treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In this study, bipolar radiofrequency treatment had detrimental effects on normal articular cartilage cells and extracellular matrix with probable long-term clinical consequences. The usefulness of radiofrequency for treatment of osteoarthritic articular cartilage requires further investigation.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Osteoarthritis is a frequent sequela of joint disease, especially with severe injuries or if attempts at therapy are unsuccessful. Negative and positive effects of corticosteroid treatment of articular cartilage have been demonstrated by in vitro and in vivo studies. OBJECTIVES: To assess the metabolic effects of varying dosages of methylprednisolone acetate (MPA) and triamcinolone acetonide (TA) on interleukin-1alpha (IL-1) conditioned equine cartilage explants. Our hypothesis was that lower dosages of corticosteroids would be less detrimental to cartilage metabolism than higher dosages. TA would be less detrimental to cartilage metabolism than MPA. METHODS: Treatment groups included articular cartilage explants with no IL-1 (control), IL-1 alone, and IL-1 plus 10, 5, 1 and 0.5 mg/ml MPA or 1.2, 0.6, 0.12 and 0.06 mg/ml TA. Explants were labelled with 35SO4 prior to the beginning and end of the experiment to assess glycosaminoglycan (GAG) degradation and synthesis, respectively. Total GAG content in media and explants and total cartilage DNA were also analysed. RESULTS: MPA and TA reduced GAG synthesis compared to control and IL-1 alone. The highest dosage of MPA (10 mg/ml) reduced GAG synthesis less than lower dosages of MPA and all dosages of TA. Compared to IL-1 alone, all dosages of TA and lower dosages of MPA increased GAG degradation. MPA at 10 mg/ml reduced GAG degradation. Both MPA and TA increased media GAG content compared to control and IL-1 explants. Total cartilage GAGs were unchanged with MPA, but reduced with TA, compared with IL-1 alone. Total cartilage DNA was decreased with MPA and increased with TA compared to IL-1 and control explants. CONCLUSIONS: MPA and TA did not counteract the negative effects of IL-1 and did not maintain cartilage metabolism at control levels. Lower dosages of MPA and TA were not less detrimental to cartilage metabolism than higher dosages. TA did not appear to be less harmful than MPA on cartilage metabolism. The results of this study differ from the findings of comparable in vivo studies. POTENTIAL RELEVANCE: The low numbers of horses used in this study limits extrapolation of these findings to the equine population; however, this study also questions the clinical relevance of this in vitro model.  相似文献   

6.
7.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

8.
OBJECTIVE: To determine effects of sodium hyaluronate (HA) on corticosteroid-induced cartilage matrix catabolism in equine articular cartilage explants. SAMPLE POPULATION: 30 articular cartilage explants from fetlock joints of 5 adult horses without joint disease. PROCEDURE: Articular cartilage explants were treated with control medium or medium containing methylprednisolone acetate (MPA; 0.05, 0.5, or 5.0 mg/mL), HA (0.1, 1.0, or 1.5 mg/mL), or both. Proteoglycan (PG) synthesis was measured by incorporation of sulfur 35-labeled sodium sulphate into PGs, and PG degradation was measured by release of radiolabeled PGs into the medium. Total glycosaminoglycan (GAG) content in media and explants and total explant DNA were determined. RESULTS: Methylprednisolone acetate caused a decrease in PG synthesis, whereas HA had no effect. Only the combination of MPA at a concentration of 0.05 mg/mL and HA at a concentration of 1.0 mg/mL increased PG synthesis, compared with control explants. Methylprednisolone acetate increased degradation of newly synthesized PGs into the medium, compared with control explants, and HA alone had no effect. Hyaluronate had no effect on MPA-induced PG degradation and release into media. Neither MPA alone nor HA alone had an effect on total cartilage GAG content. Methylprednisolone acetate caused an increase in release of GAG into the medium at 48 and 72 hours after treatment. In combination, HA had no protective effect on MPA-induced GAG release into the medium. Total cartilage DNA content was not affected by treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that HA addition has little effect on corticosteroid-induced cartilage matrix PG catabolism in articular cartilage explants.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Clinical trials in human and veterinary literature have documented the benefits of oral nutraceutical joint supplements containing glucosamine (GU) and chondroitin sulphate (CS) to treat mild to moderate osteoarthritis, but the effects of these components have not yet been conclusively determined. OBJECTIVES: To assess varying dosages of GU and CS on normal and interleukin-1alpha (IL-1) conditioned equine cartilage explants and rationalise the use of these products. HYPOTHESIS: Treatment would not be detrimental to cartilage metabolism and higher dosages and the combination of GU and CS would be more beneficial than lower dosages and. GU or CS alone. METHODS: Articular cartilage explants collected from the femoral trochlea and condyles were cultured in normal and IL-1 conditioned media. Treatment groups included 0, 12.5, 25,125 and 250 microg/ml concentrations of GU alone, CS alone, or GU+CS in combination. Glycosaminoglycan (GAG) synthesis and total GAG content in the explants and media were analysed. RESULTS: There were no detrimental effects of GU, CS or GU+CS on cartilage metabolism. High dosages of GU+CS reduced total GAG release into the media (degradation). CONCLUSIONS: Our results suggests that GU+CS may prevent cartilage GAG degradation. POTENTIAL RELEVANCE: The combination of GU and CS may be more effective in preventing or treating osteoarthritis in horses than either product alone.  相似文献   

10.
The role of keratan sulphate (KS) as a metabolic marker of cartilage was evaluated using an in vitro model of equine articular cartilage. Articular cartilage was harvested from clinically healthy 6-month-old foals (n = 3). Chondrocytes were centrifuged and cultured as pellets. Chondrocyte pellets were stimulated by insulin-like growth factor-I alpha (IGF-I alpha) or interleukin-1 alpha (IL-1 alpha) for 2 weeks. The concentrations of sulphated glycosaminoglycans (GAG) and KS in the culture media were measured by a 1,9-dimethyl-methylene blue (DMMB) colorimetric assay and an inhibition enzyme-linked immunosorbent assay using a 1/20/5D4 antibody, respectively. The concentration of GAG was significantly increased both in the media of pellets stimulated by IGF-I alpha and in those stimulated by IL-1 alpha. KS concentration was significantly increased in those stimulated by IL-1 alpha, while no significant change was found in those stimulated by IGF-I alpha. A high correlation between GAG and KS concentrations was found in the media of pellets stimulated by IL-1 alpha (r = 0.84), but not in those stimulated by IGF-I alpha (r = 0.59). The results suggest that the concentration of KS reacting to 1/20/5D4 mirrors the GAG concentration during the stage of cartilage catabolism, but not during the cartilage anabolic stage. The KS concentration in biological fluids could therefore be a useful marker to understand further the cartilage catabolic process. It may also represent some aspects of the cartilage anabolic process.  相似文献   

11.
12.
OBJECTIVE: To evaluate the effects of triamcinolone acetonide (TA), sodium hyaluronate (HA), amikacin sulfate (AS), and mepivacaine hydrochloride (MC) on articular cartilage morphology and matrix composition in lipopolysaccharide (LPS)-challenged and unchallenged equine articular cartilage explants. Sample POPULATION: 96 articular cartilage explants from 4 femoropatellar joints of 2 adult horses. PROCEDURES: Articular cartilage explants were challenged with LPS (100 ng/mL) or unchallenged for 48 hours, then treated with TA, HA, AS, and MC alone or in combination for 96 hours or left untreated. Cartilage extracts were analyzed for glycosaminoglycan (GAG) content by dimethyl-methylene blue assay (ng/mg of dry wt). Histomorphometric quantification of total lacunae, empty lacunae, and lacunae with pyknotic nuclei was recorded for superficial, middle, and deep cartilage zones. RESULTS: LPS induced a significant increase in pyknotic nuclei and empty lacunae. Treatment with TA or HA significantly decreased empty lacunae (TA and HA), compared with groups without TA or HA, and significantly decreased empty lacunae of LPS-challenged explants, compared with untreated explants. Treatment with AS or MC significantly increased empty lacunae in unchallenged explants, and these effects were attenuated by TA. Treatment with MC significantly increased empty lacunae and pyknotic nuclei and, in combination with LPS, could not be attenuated by TA. Content of GAG did not differ between unchallenged and LPS-challenged explants or among treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with TA or HA supported chondrocyte morphology in culture and protected chondrocytes from toxic effects exerted by LPS, AS, and MC.  相似文献   

13.
OBJECTIVE: To study in vitro (1) the dose-response relationships between proteoglycan metabolism in normal and corticosteroid-treated articular cartilage; (2) long-term proteoglycan metabolism after treatment of articular cartilage with corticosteroids; and (3) the effect of corticosteroids on proteoglycan metabolism in articular cartilage treated with monocyte-conditioned medium (MCM). STUDY DESIGN: Equine and canine articular cartilage explants were treated with corticosteroids and MCM. Proteoglycan synthesis and degradation were measured by radioactive labeling in short-term culture, and the long-term effect of corticosteroid treatment on proteoglycan metabolism was studied in normal explants. ANIMALS: Two young cross-breed horses and 3 young Labrador retrievers. METHODS: Equine articular cartilage explants were incubated in medium containing methylprednisolone sodium succinate (MPS) at 0, .001, .01, .1, 1, and 10 mg/mL (final concentration) for 1 day and then in fresh medium without MPS. Proteoglycan synthesis was measured by incorporation of sodium [35S]sulfate at 1, 3, 7, 10, and 13 days after initial treatment with MPS. Proteoglycan release was measured from separate explants prelabeled with sodium [35S]sulfate and treated similarly. Equine articular cartilage explants were treated with equine MCM simultaneously with, and 24 hours before MPS, at 0, 0.01, 0.1, 1, or 5 mg/mL for 72 hours. Proteoglycan synthesis and degradation in these explants was compared. Proteoglycan synthesis and degradation were measured similarly in canine articular cartilage explants treated simultaneously with canine MCM and MPS at 0, 0.001, 0.01, 0.1, 1 and 10 mg/mL for 72 hours. Equine articular cartilage explants treated with 0, 0.01, 0.1, 1, and 5 mg/mL of MPS for 72 hours were evaluated histologically. RESULTS: Proteoglycan synthesis in normal equine articular cartilage was severely depressed by 10 mg/mL MPS for 24 hours, and proteoglycan synthesis failed to recover after 13 days of culture in medium without MPS. Cartilage treated with 5 mg/mL MPS had pyknotic chondrocyte nuclei and empty lacunae. Concentrations of 1 and 0.1 mg/mL MPS depressed proteoglycan synthesis in normal equine cartilage explants. For these 2 concentrations, proteoglycan synthesis recovered 2 days after MPS removal and increased significantly (P < .05) 7 days after treatment with MPS compared with controls without MPS. Concentrations of 0.001 and 0.01 mg/mL MPS did not significantly affect proteoglycan synthesis in normal equine cartilage explants. Cumulative proteoglycan loss over 13 days in culture from normal equine explants treated for 24 hours with different concentrations of MPS was not significantly different between treatment groups at any time point. MCM significantly depressed proteoglycan synthesis in both canine and equine articular cartilage explants and significantly increased proteoglycan release. These effects were prevented in the canine explants by simultaneous treatment with MPS at 1 and 0.1 mg/mL, and proteoglycan release induced by MCM in equine articular cartilage was inhibited by 1 mg/mL MPS. CONCLUSIONS: Concentrations of 1.0 and 0.1 mg/mL MPS alleviated articular cartilage degradation in MCM-treated articular cartilage in vitro. These concentrations of MPS in contact with normal cartilage explants for 24 hours are unlikely to be detrimental in the long term to proteoglycan synthesis. The response of articular cartilage to MPS was affected by treatment with MCM so that results of experiments with normal articular cartilage explants may not reflect results obtained with abnormal cartilage. CLINICAL RELEVANCE: It may be possible to find an intraarticular concentration of corticosteroid that protects articular cartilage against cytokine-induced matrix degradation yet not have prolonged or permanent detrimental effects on chondrocyte matrix synthesis.  相似文献   

14.
OBJECTIVE: To investigate the effects of insulin-like growth factor-II (IGF-II) on DNA and glycosaminoglycan (GAG) synthesis and the expression of matrix-related genes in equine articular cartilage explants and chondrocytes, respectively, with and without interleukin 1-beta (IL1-beta). SAMPLE POPULATION: Articular cartilage from 12 adult horses. PROCEDURE: Articular cartilage was incubated in standard media with and without equine IL1-beta (10 ng/mL) containing various concentrations of IGF-II for 72 hours. Synthesis of DNA and GAG was determined by incorporation of thymidine labeled with radioactive hydrogen (3H) and sulfate labeled with radioactive sulfur (35S), respectively. Total GAG content of the explants and spent media was determined by use of the 1,9-dimethylmethylene blue assay. Northern blots of RNA from cultured equine articular cartilage chondrocytes were hybridized with cDNA of major matrix molecules. RESULTS: Insulin-like growth factor-II stimulated DNA and GAG synthesis at concentrations of 25 and 50 ng/mL, respectively. In cartilage explants conditioned with IL1-beta, IGF-II stimulated DNA and GAG synthesis at concentrations of 500 and 50 ng/mL, respectively. Insulin-like growth factor-II had no effect on total GAG content as determined by the 1,9-dimethylmethylene blue assay. No specific effects on steady-state levels of messenger RNAs were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Insulin-like growth factor-II stimulated DNA and GAG synthesis in equine adult cartilage and may have potential application in vivo.  相似文献   

15.
16.
OBJECTIVE: To evaluate the effects of orally administered phenylbutazone on proteoglycan synthesis and chondrocyte inhibition by IL-1beta in articular cartilage explants of horses. ANIMALS: 11 healthy 1- to 2-year-old horses. PROCEDURE: Horses were randomly assigned to the control (n = 5) or treated group (4.4 mg of phenylbutazone/kg of body weight, p.o., q 12 h; n = 6). Articular cartilage specimens were collected before treatment was initiated (day 0), after 14 days of treatment, and 2 weeks after cessation of treatment (day 30). Proteoglycan synthesis and stromelysin concentration in cartilage extracts were assessed after 72 hours of culture in medium alone or with recombinant human interleukin-1beta (IL-1beta; 0.1 ng/ml). RESULTS: On day 0, proteoglycan synthesis was significantly less in cartilage explants cultured in IL-1beta, compared with medium alone. Mean proteoglycan synthesis in explants collected on days 14 and 30 was significantly less in treated horses, compared with controls. However, incubation of explants from treated horses with IL-1beta did not result in a further decrease in proteoglycan synthesis. Significant differences in stromelysin concentration were not detected between or within groups. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of phenylbutazone for 14 days significantly decreased proteoglycan synthesis in articular culture explants from healthy horses to a degree similar to that induced by in vitro exposure to IL-1beta. Phenylbutazone should be used judiciously in athletic horses with osteoarthritis, because chronic administration may suppress proteoglycan synthesis and potentiate cartilage damage.  相似文献   

17.
OBJECTIVES: To evaluate the effects of equine recombinant interleukin-1alpha (rEqIL-1alpha) and recombinant interleukin-1beta (rEqIL-1beta) on proteoglycan metabolism and prostaglandin E2 (PGE2) synthesis by equine articular chondrocytes in explant culture. SAMPLE POPULATION: Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse. PROCEDURE: Expression constructs containing cDNA sequences encoding EqIL-1alpha and EqIL-1beta were generated, prokaryotically expressed, and the recombinant protein purified. Near full-thickness articular cartilage explants (approx 50 mg) harvested from stifle joints of a 3-year-old and a 5-year-old horse were separately randomized to receive rEqIL-1alpha or rEqIL-1beta treatments 10 to 500 ng/ml). Proteoglycan release was evaluated by 1,9-dimethylmethylene blue spectrophotometric analysis of explant media glycosaminoglycan (GAG) concentration and release of 35S-sulfate-labeled GAG to explant media. Proteoglycan synthesis was assessed by quantification of 35S-sulfate incorporation into proteoglycan. Explant media PGE2 concentrations were evaluated using a PGE2-specific enzyme-linked immunoassay. Data were collected at 48-hour intervals and normalized by DNA content. RESULTS: Proteoglycan release was induced by rEqIL-1alpha and rEqIL-1beta at concentrations > or =0.1 ng/ml, with 38 to 76% and 88 to 98% of total GAG released by 4 and 6 days, respectively. Inhibition of proteoglycan synthesis (42 to 64%) was observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. Increased PGE2 concentrations were observed at IL-1 concentrations > or = 0.1 ng/ml at 2 and 4 days. CONCLUSIONS AND CLINICAL RELEVANCE: The rEqIL-1 induced potent concentration-dependent derangement of equine chondrocyte metabolism in vitro. These findings suggest this model may be suitable for the in vitro study of the pathogenesis and treatment of joint disease in horses.  相似文献   

18.
Herbs are an increasingly popular treatment option for horses with cartilage inflammation, despite a relative paucity of research demonstrating efficacy. The research objective was to evaluate the differential anti-inflammatory and chondroprotective efficacy of a simulated digest of indomethacin and a commercially available herbal product in a cartilage model of osteoarthritis. Cartilage explant was integrated with simulated digestion of indomethacin and the herbal product in order to account, at least in part, for the actions of major digestive enzymes and pH. The resulting digests were ultrafiltrated (50 kDa), to account for absorption from the GI tract and movement into the cartilage matrix. We hypothesized that (i) a simulated digest of indomethacin would block interleukin 1 beta-(IL-1) dependent formation of prostaglandin E2 (PGE2) and nitric oxide (NO) without protecting cartilage against IL-1-induced glycosaminoglycan (GAG) release, and (ii) the herbal product would reduce PGE2 and NO in IL-1-stimulated explants, and inhibit release of GAG, in IL-1-stimulated explants. Results showed that indomethacin is an effective anti-inflammatory, evidenced by strong inhibition of IL-1-induced PGE2 and NO from cartilage explants. However, indomethacin provided no protection against IL-1-induced GAG release. Simulated digest of the herbal extract significantly inhibited IL-1-induced NO production and GAG release, while having a slight increase in PGE2. These data provide evidence for the anti-inflammatory effect of indomethacin on IL-1-stimulated cartilage explants, and the herbal product Mobility may be a useful adjunct in arthritis because of its chondroprotective properties in IL-1-stimulated cartilage.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Previous in vitro pilot studies have defined a potentially beneficial effect of insulin-like growth factor-1 (IGF-1) and triamcinolone acetonide (TA) on interleukin-1 (IL-1)-conditioned equine cartilage. Furthermore, an optimal dose for IGF-1 treatment alone has been documented previously using the same test system as in the current project. OBJECTIVES: To perform a dose titration of TA on IL-1-conditioned equine articular cartilage explants in the presence of an optimised IGF-1 dose, in order to optimise a triamcinolone concentration for use in combination with IGF-1 for future investigations. METHODS: Cartilage explants were harvested from the distal femur of a normal horse. The effect of a clinically relevant TA dose range was evaluated in the presence of IL-1 and IGF-1 through measurement of proteoglycan (PG) matrix metabolism (synthesis and degradation). RESULTS: TA and IGF-1 in combination inhibited the IL-1-induced release of PG matrix components (glycosaminoglycan or GAG) from the articular cartilage, as well as producing a significant increase in GAG synthesis. CONCLUSIONS: This experiment provided proof of principle that a combination treatment appears to be able to combat the IL-1-induced matrix depletion, while enhancing anabolic metabolism within the articular cartilage. POTENTIAL RELEVANCE: The use of IGF-1 in conjunction with TA in vivo has the potential to provide beneficial anabolic effects not seen with TA alone.  相似文献   

20.
Osteoarthritis is the most common arthropathy of mammalian species including cats. Cartilage degradation is central to the disorder and here we present, for the first time, an in vitro model of feline cartilage degradation which will be useful for further studies in this target species. Feline articular cartilage explant cultures were maintained for 28 days and in the presence of oncostatin M with and without interleukin (IL)-17, tumour necrosis factor (TNF), IL-1α, or IL-1β. Media samples and digested cartilage explants were analysed for glycosaminoglycan (GAG) and collagen content. The combination of IL-1β and OSM, both at 20 ng/ml, was able to promote GAG release to the greatest extent at 14 days. At 28 days, all groups showed relatively high release of GAG. At 14 days, only IL-1β and OSM in combination were associated with a statistically significant increase in collagen release over and above control tissue. IL-1β dose-response studies showed that an IL-1β dose of 10 ng/ml promotes a statistically significant increase in GAG breakdown when used with OSM, and higher doses of IL-1β did not result in significantly greater response. The model demonstrated both GAG and collagen degradation and will be of use for further understanding of feline cartilage metabolism and for screening of potential structure-modifying agents to be used in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号