首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】鉴定枇杷属普通枇杷野生种、栎叶枇杷和大渡河枇杷3个种的S-RNase基因型,为利用其优良性状开展种质创新,以及大渡河枇杷分类地位的探讨提供科学依据。【方法】以苹果S-RNase基因高度保守区设计兼并引物对3个种的基因组DNA进行PCR扩增,片段回收、克隆及测序,分别采用BLASTn、BLASTx、DNAMAN和CLUSTALW软件进行同源性检索、序列比对和结构分析。【结果】从参试的3个种中共分离了4个S等位基因,分别为S2-RNase、S26-RNase、S32-RNase和S34-RNase,其中S26-RNase、S32-RNase和S34-RNase为新分离的枇杷S-RNase基因,GenBank登录号分别为:MG765271、MG846012和MG812504。所克隆获得的4个枇杷S-RNase基因与苹果S-RNase基因的氨基酸序列结构相同,具有5个保守区(C1、C2、C3、RC4和C5)和1个高变区(HV)。此外,所获得的4个枇杷S-RNase基因电泳图谱及同源性和进化分析结果表明,大渡河枇杷可能为普通枇杷和栎叶枇杷的杂交后代。【结论】确定了普通枇杷野生种、栎叶枇杷和大渡河枇杷的S-RNase基因型分别为S2S26、S32S34和S26S32。大渡河枇杷S-RNase基因型及S-RNase的同源性和系统进化分析结果支持其可能为普通枇杷和栎叶枇杷杂交后代的结论。  相似文献   

2.
【目的】克隆新疆野扁桃(Amygdalus ledebouriana Schlecht.)自交不亲和性花柱特异性决定因子编码基因SRNase全长序列,为自交不亲和性的分子调控奠定基础。【方法】以新疆野扁桃花柱为试材,利用RT-PCR和RACE技术克隆S-RNase基因全长,采用BLAST和ORF Finder对核酸序列进行分析,利用CDD、Prot Param、Tmpred、Signal P、Target P、SOPMA、DANMAN、MEGA6和Prot Fun对推导的氨基酸序列进行分析。【结果】克隆到Pt S16-RNase基因和Pt S17-RNase基因,2者均属于RNase T2基因家族,与其他多种植物的S-RNase基因的序列相似度为83%~98%,序列均具有S-RNas蛋白典型结构。Pt S16-RNase基因ORF长690 bp,编码229个氨基酸,Pt S17-RNase基因ORF长678 bp,编码225个氨基酸。预测2个S-RNase蛋白均为亲水性、不稳定的分泌蛋白,二级结构均以α-螺旋、延伸链和无规卷曲为主,在蔷薇科李属植物中具有较高的系统进化一致性,可能的主要功能为水解酶和激素。【结论】获得2个新疆野扁桃自交不亲和性花柱特异性决定因子编码基因S-RNase全长序列。  相似文献   

3.
【目的】克隆新疆野扁桃(Amygdalus ledebouriana Schlecht.)自交不亲和性花柱特异性决定因子编码基因SRNase全长序列,为自交不亲和性的分子调控奠定基础。【方法】以新疆野扁桃花柱为试材,利用RT-PCR和RACE技术克隆S-RNase基因全长,采用BLAST和ORF Finder对核酸序列进行分析,利用CDD、Prot Param、Tmpred、Signal P、Target P、SOPMA、DANMAN、MEGA6和Prot Fun对推导的氨基酸序列进行分析。【结果】克隆到Pt S16-RNase基因和Pt S17-RNase基因,2者均属于RNase T2基因家族,与其他多种植物的S-RNase基因的序列相似度为83%~98%,序列均具有S-RNas蛋白典型结构。Pt S16-RNase基因ORF长690 bp,编码229个氨基酸,Pt S17-RNase基因ORF长678 bp,编码225个氨基酸。预测2个S-RNase蛋白均为亲水性、不稳定的分泌蛋白,二级结构均以α-螺旋、延伸链和无规卷曲为主,在蔷薇科李属植物中具有较高的系统进化一致性,可能的主要功能为水解酶和激素。【结论】获得2个新疆野扁桃自交不亲和性花柱特异性决定因子编码基因S-RNase全长序列。  相似文献   

4.
白梨新S基因的克隆   总被引:10,自引:4,他引:10  
 采用PCR - RFLP检测、DNA序列分析和田间杂交试验, 从白梨中分离鉴定了1个新的S-RNase基因。该S-RNase基因PCR扩增产物大小与S-RNase基因PCR产物相似, 为450 bp左右。但PCR -RFLP和DNA序列分析均表明, 它与S8-RNase基因存在较大差异, 该基因内含子为252 bp, 而S8-RNase的内含子为234 bp, 并在高变区中具有10个氨基酸出现替换, 有两个氨基酸出现缺失。而该S-RNase基因却与S12-RNase基因具有较高的相似性, 在HV区中只有1处碱基被替换, 周边区中有10处出现碱基替换或缺失。因此, 继梨S18-RNase基因, 将它命名为S19-RNase基因(AY250987) 。与S 基因型已确定的梨品种的杂交坐果率也说明了该基因是一个新的S-RNase基因。  相似文献   

5.
【目的】克隆中亚杏(Prunus armeniaca)品种自交不亲和花柱S-RNase基因全长序列,为分子手段调控杏自交不亲和性状奠定基础。【方法】以新疆栽培杏品种‘索格佳娜丽’和‘赛买提’为试材,利用RT-PCR克隆2个品种的花柱SRNase基因c DNA片段,RACE技术进行c DNA全长克隆,采用BLAST进行序列比对,Protparam软件分析2个基因的编码蛋白特性,MEGA 5.0构建进化树。【结果】从‘索格佳娜丽’中克隆了S_(52)-RNase(KF951503)基因,从‘赛买提’中克隆了一个新的S_(53)-RNase(KF975455)基因DNA和c DNA全长序列。S_(52)-RNase的DNA全长2 200 bp,c DNA全长765 bp,ORF(开放阅读框)长681 bp,编码226个氨基酸;S_(53)-RNase的DNA全长1 664 bp,c DNA全长907 bp,ORF长732 bp,编码242个氨基酸。BLASTP比对显示:这2个基因都具有保守的RNase-T2基因结构,属于RNase-T2家族。预测相对分子质量分别为26.5 ku和27.5 ku,等电点为9.36和9.03,都属于亲水性蛋白。进化分析表明,S_(52)与李(Prunus salicina,S_7)、S_(53)与大岛樱(Prunus speciosa,S_(13))亲缘关系最近,S_(52)和S_(53)处在2个不同的分支上,表现出较高的序列多态性,表明2个基因亲缘关系较远。【结论】获得了2个中亚杏品种自交不亲和花柱S-RNase基因全长序列。  相似文献   

6.
【目的】鉴定‘黄密’、‘贵妃’、‘早红’和‘软条白沙’4个枇杷品种的S基因型,为其生产栽培合理选择授粉树及杂交育种亲本选择提供科学依据。【方法】以苹果S基因高度保守区设计兼并引物对4个品种的基因组DNA进行PCR扩增,片段回收、克隆及测序,分别采用Blast软件和Bioedit软件进行同源性检索和结构分析。【结果】从参试的4个品种中共分离了4个S等位基因,分别为S2、S5、S6和S31,其中S31-RNase为新分离的枇杷S-RNase基因,Gen Bank登录号为:KC131133。所克隆获得的4个枇杷S-RNase基因均克隆到4个保守区(C2、C3、RC4和C5)和1个高变区(HV),具有与苹果S基因相同的氨基酸序列结构。【结论】确定了参试4个枇杷品种S基因型分别为:‘贵妃’S2-S6、‘黄密’S2-S5、‘早红’S5-S6、‘软条白沙’S6-S31。  相似文献   

7.
利用特异引物对秋子梨品种‘龙香'的基因组DNA进行PCR扩增.通过对扩增片段的回收、克隆和测序,获得2条大小分别为469 bp和653 bp的DNA序列,将其推导氨基酸序列与GenBank中已登录的梨S基因的序列进行比对.结果表明:469 bp序列与已登录梨的S16-RNase基因完全一致,确定‘龙香'的1个等位基因为梨S16基因;653 bp序列与梨S基因的相似性在75%~90%之间,且在高变区存在6个以上氨基酸的差异,近一步分析确定为1条新的梨S基因,命名为S42-RNase基因,该基因在GenBank的登录号为:EF088497.确定秋子梨品种‘龙香'的S基因型为S16S42.  相似文献   

8.
吴俊  李晓  张绍铃  刘庆忠 《果树学报》2008,25(3):332-337
以中国樱桃品种泰山干樱为试材,利用李属植物C2、C5保守区引物,扩增花柱S-RNase基因,获得4个S等位基因,测序结果表明序列大小分别为:1608、950、796、504bp。根据同源比较发现大小为796bp的等位基因与基因库中登录的S1-RNase为同一基因,其它3个S-RNase基因为首次报道,依序列大小分别命名为S2(1608bp,登陆号EF541168)、S4(950bp,登陆号EF541173)和S6(504bp,登陆号EF541172)。序列分析表明S2-RNase在C3区存在终止密码子,导致翻译提早终止;S4-RNase的C5区前有插入片断;S6-RNase在高变区比其它S等位基因少一个氨基酸残基。氨基酸序列同源性比较分析表明,中国樱桃S-RNase与樱花、扁桃的相似性高。在系统进化树中中国樱桃的4个S-RNase基因的氨基酸序列和樱花、扁桃、甜樱桃、酸樱桃等一起归于李亚科。  相似文献   

9.
江南    谭晓风  张琳  张靖国  胡红菊 《园艺学报》2015,42(12):2341-2352
利用东方梨中已鉴定的52个S等位基因HV区cDNA序列作为靶基因序列设计探针,制备梨S基因cDNA检测芯片,每张芯片上含有240个位点55个cDNA探针,包含所有序列完善的S基因HV区特异的cDNA序列。以被检测品种雌蕊cDNA为模板,采用Cy3荧光修饰引物经S基因特异PCR扩增标记被检测品种的cDNA序列,并与芯片杂交以检测不同品种的S基因型。结果表明:利用cDNA检测芯片与‘丽江黄酸梨’、‘秀玉’、‘弥渡玉梨’、‘白面梨’和‘德胜香’等已知S基因型品种杂交,杂交结果显示与S基因寡核苷酸芯片检测信号一致,与各品种已知S基因型相符合。利用cDNA芯片和进一步完善的S基因寡核苷酸芯片并行检测鉴定了‘文山红梨’等24个未知S基因型的砂梨品种,获得各品种的S基因型。梨S基因cDNA芯片的构建进一步完善了梨S基因检测平台。  相似文献   

10.
《果树学报》2011,(4):575-579
鉴定梨品种的S基因型可为合理配置授粉树、杂交亲本选配提供理论依据。为鉴定11个延边地区栽培梨品种的S基因型,利用梨的自交不亲和基因(S-RNase)特异引物FTQQYQ和anti-IIWPNV,对11个梨品种的基因组DNA进行S基因特异扩增,并对扩增片段进行回收、克隆、测序,使用生物信息学软件对各序列进行分析和同源性搜...  相似文献   

11.
以欧李4个品种为试验材料,采用同源克隆的试验方法,克隆S-RNase基因并分析其序列特征,确定不同品种基因型,以期为欧李杂交育种亲本选择提供参考依据。结果表明:克隆鉴定得到5个新的S-RNase基因,编码氨基酸168~172个,相对分子质量为19.87~20.34 kDa,等电点(PI)为9.60~9.73,以丝氨酸磷酸化为主;二级结构主要以α-螺旋和不规则卷曲为主;同源性比对和结构分析表明,5个新的S-RNase均属于RNase T2基因家族,推导的氨基酸序列包含5个保守区(C1、C2、C3、RC4和C5)和1个高变区(HV),具有与李属、梨属、苹果属S-RNase相似的保守结构;进化分析显示欧李S-RNase与李属果树S-RNase聚类在一起,亲缘关系较近。  相似文献   

12.
槜李等15个李品种S基因型鉴定及其多态性分析   总被引:4,自引:1,他引:3  
利用李属S-RNase基因特异性引物,对15个供试李品种进行PCR扩增,共获得30个目的条带。对这些目的条带进行测序鉴定出15个李品种的S基因型。通过与NCBI中利用BLASTn与GenBank+EMBL+DDBJ+PDB等数据库中的序列比对,结果表明,其中9个为新S-RNases基因,对9个新S-RNases核苷酸序列进行分析发现,位于高变区内的内含子大小为141~1758bp,其同源性为33.9%(S-18~S-19)~81.6%(S-20~S-21),表现出丰富的长度和序列多态性;编码区的核苷酸序列比对结果,其同源性为73.3%(S-16~S-19)~91.7%(S-17~S-22);其推导氨基酸序列相似性为67.3%(S-16~S-19)~89.1%(S-17~S-22);包含李属S-RNase一级结构所共有的C2、C3保守区和高变区(RHV)。系统进化分析表明,9个新S-RNases与李属其它树种S-RNases聚类在一起,归属为李亚科(Prunoideae)。  相似文献   

13.
【目的】自交亲和特性的产生可由多种因素导致,其中S-RNase被泛素化标记后移动到26S蛋白酶体中被降解这一途径,是显现自交亲和的重要原因。探究桃SFBs在S-RNase泛素化降解过程中的作用,为桃自交亲和机制的研究提供参考。【方法】通过生物信息学方法对PpSFBs和PpSLFLs进行基因定位和共线性分析,使用PCR确定PpSFBs在花器官中的特异表达位置,利用BiFC验证PpSFBs与S-RNase的互作后,通过S-RNase体外泛素化实验和寡核苷酸转染沉默PpSFBs实验来探究PpSFBs在S-RNase泛素化降解途径中的作用。【结果】PpSFBs和PpSLFLs无共线性关系;PpS1/2/4-RNase在花柱中特异性表达,PpSFB1m/2m/4m在花粉中特异性表达,PpSLFL1/2/3在不同桃品种中差异性表达,PpSLFL2在龙1-2-4品种中不存在;通过BiFC技术证明,PpS1/2/4-RNase分别与PpSFB1m/2m/4m和PpSLFL1/2/3互作。体外泛素化实验证明,PpSFB2m具有与PpSLFL2相似的功能,能泛素化PpS2-RNase。寡核苷酸转染实验证明...  相似文献   

14.
以‘国光’苹果(S1S2)花粉为材料,成功构建了酵母pGADT7-cDNA文库,转化效率约为1.2×106.μg-1,插入片段大小在300~2000bp之间。通过酵母双杂交方法,用苹果S2-RNase的C2HVC3区筛选文库获得一个长505bp的cDNA片段,经分析发现该cDNA序列上有一个261bp的开放阅读框(ORF),该ORF编码一个具N端信号肽的多肽,该成熟多肽由64个氨基酸组成,富含带正电荷的赖氨酸和精氨酸,其C端有8个半胱氨酸和一个γ-硫堇功能域,结构预测显示其具有一个α螺旋,3个β折叠,4个二硫键,由此,推断其为苹果γ-硫堇,命名为MdD1。RT-PCR分析发现:MdD1基因在‘国光’苹果叶片、萼片、花瓣、子房、花药和花柱等组织中都有表达,但花药中表达量最高。酵母双杂交结果表明MdD1除了与苹果S2-RNase的C2HVC3区互作外,还与S1-RNase的C2HVC3区,S1、S2-RNase的成熟多肽区存在互作。初步认为:苹果γ-硫堇可能通过与S-RNase非特异性互作,作为花粉非S因子参与自交不亲和反应。  相似文献   

15.
 以‘国光’苹果(S1S2)花粉为材料,成功构建了酵母pGADT7-cDNA文库,转化效率约为1.2 × 106 · μg-1,插入片段大小在300 ~ 2 000 bp之间。通过酵母双杂交方法,用苹果S2-RNase的C2HVC3区筛选文库获得一个长505 bp的cDNA片段,经分析发现该cDNA序列上有一个261 bp的开放阅读框(ORF),该ORF编码一个具N端信号肽的多肽,该成熟多肽由64个氨基酸组成,富含带正电荷的赖氨酸和精氨酸,其C端有8个半胱氨酸和一个γ–硫堇功能域,结构预测显示其具有一个α螺旋,3个β折叠,4个二硫键,由此,推断其为苹果γ–硫堇,命名为MdD1。RT-PCR分析发现:MdD1基因在‘国光’苹果叶片、萼片、花瓣、子房、花药和花柱等组织中都有表达,但花药中表达量最高。酵母双杂交结果表明MdD1除了与苹果S2-RNase的C2HVC3区互作外,还与S1-RNase的C2HVC3区,S1、S2-RNase的成熟多肽区存在互作。初步认为:苹果γ–硫堇可能通过与S-RNase非特异性互作,作为花粉非S因子参与自交不亲和反应。  相似文献   

16.
【目的】为了探明杜梨类钙调磷酸酶B亚基蛋白(Calcineurin B-like protein,CBL)基因的序列特征和表达特点,【方法】以杜梨幼苗为试材,运用同源克隆和半定量RT-PCR对PbCBL10基因进行克隆和表达分析。【结果】结果表明,PbCBL10基因编码区cDNA长度为801 bp,编码的多肽由266个氨基酸组成。该多肽预测的等电点为4.56,估计的相对分子质量为30.45 ku。其对应基因组DNA序列长1 983 bp,包括9个外显子和8个内含子。通过PSORT进行亚细胞定位分析发现PbCBL10蛋白位于质膜上的几率最大。PbCBL10基因编码的多肽具有4个钙离子结合域EF手形结构和1个钙调磷酸酶A亚基结合位点。PbCBL10与番茄SlCBL10(NP_001239045)和拟南芥AtCBL10(NP_195026)蛋白间的同源性较高,分别为82%和77%,并与AtCBL10亲缘关系最近。PbCBL10基因在杜梨幼苗根、茎和叶片中均为诱导型表达,50~200 mmol.L-1CaCl2、20μmol.L-1ABA、100 mmol.L-1NaCl、10%(w/v)PEG6000或180 mmol.L-1甘露醇处理后其表达量明显上调。【结论】PbCBL10基因具备植物CBL基因家族的固有特征,能够响应胞内钙浓度变化,对ABA、盐碱、干旱和渗透胁迫均存在转录响应。  相似文献   

17.
 采用PCR 和RT-PCR 技术, 从甘蓝基因组和柱头总RNA 中扩增获得了719 bp 的硫氧还蛋白(THL1) 的全长基因序列和430 bp 的cDNA 序列。序列分析首次表明, 克隆的THL1 基因全序列有两个内含子, cDNA 序列编码117 个氨基酸。  相似文献   

18.
梨20个品种S基因型的鉴定及新S-RNases基因克隆   总被引:3,自引:0,他引:3  
 为了鉴定我国梨品种和一些野生类型个体的S基因型,应用S-RNase特异PCR扩增、克隆和测序,对其S-RNases基因核苷酸序列进行分析,鉴定了20个梨品种和野生类型个体的S基因型。起源于我国的'奥连'(SpS32)、'吊蛋'(SdSe)、'沙疙瘩'(S36Sd)品种和杏叶梨的一个类型(S22Sc)个体中存在西洋梨的S-RNase基因,证明S-RNase基因分化是在东方梨种群和西方梨种群的各个种形成之前。在秋子梨的'麦梨'、'内蒙古山梨'中发现了2个新S-RNases基因,命名为S40-、S41-RNase(DQ903313、DQ988687)。S40-和S41-RNase基因推导的部分氨基酸序列分别与苹果属S11-和S6-RNase的同源性为100%和94.4%,这表明S-RNase的存在可能在梨属和苹果属形成之前。  相似文献   

19.
杨莎  张彬  韩垚  杨霞  李名扬  郭余龙 《园艺学报》2017,44(2):315-321
以矮牵牛(Petunia hybrida)自交系‘Mitchell Diploid’(MD)为材料,通过3′RACE和5′RACE获得了其八氢番茄红素脱氢酶基因(PhPDS)的cDNA序列,进而通过PCR扩增出编码区的基因组序列。分析结果显示,PhPDS的cDNA序列全长2 182 bp,编码区序列1 746 bp,编码582个氨基酸。推测的蛋白质序列具有类胡萝卜素脱氢酶的保守结构域特征。编码区的基因组序列长7 609 bp,结构与番茄和拟南芥等PDS基因相似,具有14个外显子和13个内含子。利用博德研究所的小发夹RNA(shRNA)设计程序设计了两个针对PhPDS的shRNA,构建植物表达载体转化矮牵牛后,从其中一个载体的转化子中获得白色愈伤组织和幼枝,对白色幼枝的RT-PCR检测表明,其PDS基因的cDNA累积量减少,表明shRNA基因沉默技术能在矮牵牛中应用。以PDS基因为靶基因比用花色素合成基因研究基因沉默技术能更快地分析基因沉默的效果,全长序列的获得将有助于PDS基因在矮牵牛基因沉默技术研究中的应用。  相似文献   

20.
薛丹  郭九峰  那日  刘腾 《食药用菌》2013,(5):282-287
参照Genbank中发表的杏鲍菇漆酶基因序列(No.AY686700),并根据真菌漆酶氨基酸序列保守区设计特异性引物。以杏鲍菇基因组DNA为模板,PCR扩增出长2 606 bp的漆酶基因片段,DNA经纯化后克隆到pGM-T载体上,经筛选、PCR鉴定和序列分析,证明该片段为完整的杏鲍菇漆酶基因(Genbank注册号KC789846)。通过对基因序列的内含子/外显子进行预测分析,获得漆酶编码区的cDNA,该基因的开放阅读框由1 596个核苷酸组成,编码一个由531个氨基酸组成的多肽,分子量大小约为56 682.0,等电点pI为4.56;比对结果发现该基因氨基酸序列与其他真菌漆酶的同源性最高达93%;进一步对X22-12漆酶二级结构进行分析,并通过SWISS-MODEL预测了该酶的三维结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号