首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The pyrethroid insecticide etofenprox is of current interest to rice farmers in the Sacramento Valley owing to its effectiveness against the rice water weevil, Lissorhoptrus oryzophilus Kuschel. This study aimed to describe the partitioning of etofenprox under simulated rice field conditions by determining its Henry's law constant (H) (an estimate of volatilization) and organic carbon‐normalized soil–water distribution coefficient (Koc) at representative field temperatures. A comparison of etofenprox and λ‐cyhalothrin is presented using a level‐1 fugacity model. RESULTS: Experimental determination of H revealed that etofenprox partitioned onto the apparatus walls and did not significantly volatilize; the maximum value of H was estimated to be 6.81 × 10?1 Pa m3 mol?1 at 25 °C, based on its air and water method detection limits. Calculated values for H ranged from 5.6 × 10?3 Pa m3 mol?1 at 5 °C to 2.9 × 10?1 Pa m3 mol?1 at 40 °C, based on estimated solubility and vapor pressure values at various temperatures. Log Koc values (at 25 °C) were experimentally determined to be 6.0 and 6.4 for Princeton and Richvale rice field soils, respectively, and were very similar to the values for other pyrethroids. Finally, temperature appears to have little influence on etofenprox sorption, as the log Koc for the Princeton soil at 35 °C was 6.1. CONCLUSION: High sorption coefficients and relatively insignificant desorption and volatilization of etofenprox suggest that its insolubility drives it to partition from water by sorbing to soils with high affinity. Offsite movement is unlikely unless transported in a bound state on suspended sediments. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
干旱区荒漠新垦土地土壤有机碳含量特征   总被引:6,自引:1,他引:5  
以克拉玛依生态农业开发区为例,研究了干旱区荒漠新垦土地不同土地利用方式下的土壤有机碳与活性有机碳含量差异及其剖面分布特征,并讨论了干旱区荒漠开垦利用对荒漠"碳汇"功能的促进作用,以及土地利用方式对土壤有机碳与活性有机碳剖面分布特征的影响。结果表明:克拉玛依生态农业开发区土壤有机碳含量普遍较低。在0~20cm深度内,速生杨林地与苜蓿地土壤有机碳含量随土层加深而降低,棉花地、打瓜-棉花地耕作类土壤有机碳垂直分布相对较均匀,但是表层0~5cm土壤有机碳略低于下层,土壤活性有机碳剖面分布特征与有机碳类似。农田与林地的土壤有机碳与活性有机碳含量均明显高于荒漠,农田对土壤有机碳的汇聚作用优于人工林地。  相似文献   

3.
BACKGROUND: Clomazone is a herbicide used to control broadleaf weeds and grasses. Clomazone use in agriculturally important crops and forests for weed control has increased and is a potential water contaminant given its high water solubility (1100 µg mL?1). Soil sorption is an environmental fate parameter that may limit its movement to water systems. The authors used model rice and forest soils of California to test clomazone sorption affinity, capacity, desorption, interaction with soil organic matter and behavior with black carbon. RESULTS: Sorption of clomazone to the major organic matter fraction of soil, humic acid (HA) (Kd = 29–87 L kg?1), was greater than to whole soils (Kd = 2.3–11 L kg?1). Increased isotherm non‐linearity was observed for the whole soils (N = 0.831–0.893) when compared with the humic acids (N = 0.954–0.999). Desorption isotherm results showed hysteresis, which was greatest at the lowest solution concentration of 0.067 µg mL?1 for all whole soils and HA extracts. Aliphatic carbon content appeared to contribute to increased isotherm linearity. CONCLUSION: The results indicate that clomazone does not sorb appreciably to sandy or clay soils. Its sorption affinity and capacity is greater in humic acid, and consequently clomazone has difficulty desorbing from soil organic matter. Sorption appears to follow processes explained by the dual‐mode model, the presence of fire residues (black carbon) and a recently proposed sorption mechanism. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not fully known. Studies concerned from degraded grassland ecosystems with low soil carbon(C) contents are rare, in spite of the global distribution of grasslands in need of restoration. All these have a high potential for carbon sequestration, with a reduced carbon content due to overutilization. An exudate component that rapidly decomposes will increase soil respiration and CO2 emission, while a component that reduces decomposition of native soil carbon can reduce CO2 emission and actually help sequestering carbon in soil. Therefore, to investigate root exudate effects on rhizosphere activity, citric acid, glucose and oxalic acid(0.6 g C/kg dry soil) were added to soils from three biotopes(grassland, fixed dune and mobile dune) located in Naiman, Horqin Sandy Land, Inner Mongolia, China) and subjected to a 24-day incubation experiment together with a control. The soils were also analyzed for general soil properties. The results show that total respiration without exudate addition was highest in grassland soil, intermediate in fixed dune and lowest in mobile dune soil. However, the proportion of native soil carbon mineralized was highest in mobile dune soil, reflecting the low C/N ratio found there. The exudate effects on CO2-C emissions and other variables differed somewhat between biotopes, but total respiration(including that from the added substrates) was significantly increased in all combinations compared with the control, except for oxalic acid addition to mobile dune soil, which reduced CO2-C emissions from native soil carbon. A small but statistically significant increase in pH by the exudate additions in grassland and fixed dune soil was observed, but there was a major decrease from acid additions to mobile dune soil. In contrast, electrical conductivity decreased in grassland  相似文献   

5.
Volatilization, mineralization, degradation and binding of soil-applied [14C]DDT were studied in three different soils from a tropical region of southern India subjected to solar irradiation and flooding for a period of 42 days. The soil types–red cotton soil, nursery soil and canal bank soil–differed in their organic carbon content, pH and texture. Under unflooded conditions, volatile losses were highest in the sandy canal bank soil. Flooding significantly enhanced volatilization, and this effect was maximal in the nursery soil, which had the highest organic carbon. The soils fully exposed to solar radiations in quartz tubes registered 1.5-1.8 times greater volatility. The volatilized organics contained appreciable quantities of DDE under both flooded and unflooded conditions. In addition, greater quantities of DDD volatilized from the flooded systems. The rate of formation of DDE was faster when soils were irradiated in quartz tubes. Mineralization remained minimal throughout the period of exposure and flooding the soil appeared to reduce further the [14C]carbon dioxide evolution. Canal bank soil exhibited the least mineralization and degradation. The data indicate that volatilization was significantly influenced by solar radiation and flooding to a much greater degree than by the differences in soil properties. Binding of DDT to soil was significantly increased by flooding the soil, thus leaving up to 33% of the initial DDT as bound residues in the nursery soil.  相似文献   

6.
甘肃省土壤有机碳储量及空间分布   总被引:4,自引:0,他引:4  
根据甘肃省第二次土壤普查所得的37个土壤类型、281个典型土壤剖面的理化性质和土壤各类型分布面积,以及1:300万甘肃省纸质土壤图,利用土壤类型法估算了甘肃省土壤有机碳的储量,并借助M ap-G IS软件分析了土壤碳密度的空间分布规律。结果表明:甘肃省土壤有机碳含量约为39.87×108t,占全国储量的4.47%;其中有机碳储量占前5位的土壤类型为亚高山草甸土、高山草甸土、褐土、灰褐土、亚高山草原土,五者之和占全省总储量的39.67%;另外,甘肃省土壤有机碳密度较高,土壤平均碳密度为17.62kg.m-2,高于全国平均水平9.60kg.m-2;泥炭土的有机碳密度最大,高达208.53kg.m-2;粗骨土的碳密度含量最低,为0.73kg.m-2,全省的土壤有机碳密度主要在0~15kg.m-2范围内变动。  相似文献   

7.
BACKGROUND: Pyrazosulfuron‐ethyl {ethyl 5‐[(4,6‐dimethoxypyrimidin‐2‐ylcarbamoyl)‐sulfamoyl]‐1‐methylpyrazole‐4‐carboxylate} is a new rice herbicide belonging to the sulfonylurea group. This study reports the translocation of 14C‐pyrazosulfuron‐ethyl to rice plants and its degradation in rice‐planted and unplanted soil. RESULTS: Pyrazosulfuron‐ethyl did not show any appreciable translocation to rice shoots, as 14C‐activity translocated to the aerial portion never exceeded 1% of the initially applied 14C‐activity over a 25 day period. Results suggested that the dissipation of pyrazosulfuron‐ethyl from soils followed first‐order kinetics with a half‐life of 5.5 and 6.9 days in rice‐planted and unplanted soils respectively. HPLC analysis of the organic extract of soil samples showed the formation of three metabolites, namely ethyl 5‐(aminosulfonyl)‐1‐methyl‐1‐H‐pyrazole‐4‐carboxylate, 5‐[({[(4,6‐dimethoxy‐2 pyrimidinyl)‐amino]‐carbonyl} amino)‐sulfonyl]‐1‐methyl‐1H‐pyrazole‐4‐carboxylic acid and 2‐amino‐4,6‐dimethoxy pyrimidine, in both rice‐planted and unplanted soils. CONCLUSION: The study indicates that pyrazosulfuron‐ethyl was a short‐lived compound in the soil and was degraded relatively faster in rice‐planted soil than in unplanted soil. The herbicide did not show any appreciable translocation to rice plants. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The organic carbon and humus content in oil polluted brown and grey-brown soils in Mangyshlak,Pre-Caspian Sea Region,was analyzed from 2000 to 2008.The results indicated that bitumen substances from crude oil pollution deteriorated the soil property,however,the organic carbon content increased significantly.The products of oil pollution changed the composition of car-bonaceous substances which formed soil humus,and changed the ratios of the humus components.Residual insoluble carbon increased with the rise of oil organic carbon.The mobility of humus components was significantly increased because of the high oxidation-reduction process in the topsoil,and the humus content and microorganism activity increased.The organic carbon content increased significantly,while it decreased with the distance away from the oil well.The rearrangement of physical,physical-chemical and chemical properties of the polluted soils was significant.  相似文献   

9.
耕作方式对黑钙土主要肥力特征及玉米产量的影响   总被引:1,自引:0,他引:1  
为揭示不同耕作方式对黑钙土主要肥力特征及玉米产量的影响,田间试验设置了旋耕(RT)、深松(ST)、免耕(NT)、深翻(DP)和深翻秸秆还田(DPS)等5种耕作方式,分析了玉米不同生长时期0~60 cm土层土壤容重、水稳性团聚体等物理指标,氮、钾、有机质等化学指标及玉米产量。结果表明,与RT处理相比,NT和ST处理土壤容重平均增加4.7%和3.8%,DP和DPS处理分别降低3.4%和2.6%;NT处理的田间持水量比RT降低2.7%,ST与RT相近,而DP和DPS处理分别比RT增加8.6%和7.0%,二者都显著高于RT(P0.05);土壤大团粒结构(0.25 mm)含量表现为苗期DP处理最高,抽雄期DPS最高、DP次之,整体来看,平均含量以DPS最高;除抽雄期NT含量较高外,DPS和DP是有机质含量整体较高的处理,说明翻耕的过程有利于土壤有机质含量的提升;从土壤全氮的比较来看,不同处理下差别不大,但碱解氮含量以RT最高,其他处理降低了6.8%~12.9%;与RT处理相比,ST和DPS处理玉米产量降低了7.4%和3.3%,NT、DP分别增加2.3%和7.8%。综合来看,虽然NT处理有一定的提升土壤结构和有机质的潜力,但改变效果不大,DP和DPS处理具有较好的土壤肥力特征,其中DP是兼具土壤肥力和增产效果的耕作方式。  相似文献   

10.
Abstract

Rice yield increased significantly and consistently up to 120 kg N/ha when weeds were not controlled. But when weeds were effectively controlled by two hand weedings (20 and 40 days after transplanting) or by use of thiobencarb at 1–0 kg a.i./ha rice yield increased significantly up to 80 kg N/ha. The optimum dose of N for transplanted rice under mid‐hill conditions of Himachal Pradesh (Palampur) was 82 kg/ha when two hand weedings were done and 86 kg/ha when weeds were managed using thiobencarb. The yield response per kg of N in the respective treatments was 20 and 24 kg of grain. The weed dry weight was significantly lower in thiobencarb and hand weeded plots compared with unweeded check though the difference in weed dry weight due to the former two treatments was not significant.  相似文献   

11.
Propargyl bromide is being investigated for its potential as a soil fumigant. Characterization of the fate of propargyl bromide in soil is important in determining both efficacy and the threat of environmental contamination. These experiments investigated some of the factors affecting the rate of propargyl bromide degradation in soil and quantified some of the products formed as a result of propargyl bromide degradation in four soils of differing composition and at three initial propargyl bromide concentrations. In all soils at all initial propargyl bromide concentrations, equimolar formation of Br- was observed during propargyl bromide degradation, but little propargyl alcohol (product of hydrolysis) was formed. The apparent first-order degradation coefficient (k) increased with decreasing initial propargyl bromide concentration in all soils, but the mass degraded per unit time increased with increasing propargyl bromide concentration. The rate of propargyl bromide degradation increased with increasing soil organic matter content, and the k value was correlated to the organic carbon content of the soil (correlation coefficient > 0.97 for all concentrations). Repeated application of propargyl bromide did not increase the rate of propargyl bromide degradation in soil. Addition of Br- did not affect the rate of propargyl bromide transformation in soil, so accumulation of Br- in the soil is not expected to impede propargyl bromide degradation.  相似文献   

12.
农药在土壤中的吸附和淋溶特性是评价其环境行为的重要指标。采用批量平衡法和土柱淋溶法,研究了双氟磺草胺在小麦种植区3种代表性土壤中的吸附和淋溶特性。结果表明:双氟磺草胺在安徽黏土、山东砂质壤土和河南砂质黏壤土中的吸附规律均可以较好地用Freundlich方程描述,其吸附系数(Kf)在0.39~0.62之间;土壤有机碳归一化吸附系数(Koc)在66.91~81.35之间,表明双氟磺草胺在3种土壤中均属于难吸附型;吸附自由能(ΔG)在-10.90~-10.42kJ/mol之间,均属于物理吸附。双氟磺草胺在3种土壤中的淋出率在71.7%~74.1%之间,说明其在3种土壤中的淋溶性均较强。双氟磺草胺初始添加量和腐殖酸对淋出率具有一定影响。综合试验结果,认为双氟磺草胺在3种土壤中的吸附和淋溶可能受土壤有机质含量、黏粒含量、阳离子交换量和土壤pH值等多个因素的综合影响,其对地下水的污染风险较大,因此应引起高度重视。  相似文献   

13.
BACKGROUND: Quinclorac (3,7-dichloro-quinoline-carboxylic acid) is a selective herbicide widely used to control annual grasses and certain broadleaf weeds. Echinochloa phyllopogon (Stapf) Koss. is the most noxious grass weed in California rice fields and has evolved resistance to multiple herbicides with different modes of action. A quinclorac-resistant (R) E. phyllopogon biotype found in a Sacramento Valley rice field where quinclorac has never been applied was investigated. RESULTS: Resistant to susceptible (S) GR50 (herbicide rate for 50% growth reduction) ratios ranged from 6 to 17. The cytochrome P450 inhibitor malathion (200 mg L−1) caused R plants to become as quinclorac susceptible as S plants. Quinclorac rapidly (6 HAT) stimulated ethylene formation in S plants, but only marginally in R plants. Malathion pretreatment did not reduce ethylene formation by quinclorac-treated S and R plants. Activity of β-cyanoalanine synthase (β-CAS) in tissue extracts was 2-3-fold greater in R than in S plants, and incubation of shoot extracts with 1 mM malathion reduced β-CAS activity by 40% in both biotypes. CONCLUSION: Resistance to quinclorac in R E. phyllopogon involved at least two mechanisms: (a) insensitivity along the response pathway whereby quinclorac induces ethylene production; (b) enhanced β-CAS activity, which should enable greater HCN detoxification following quinclorac stimulation of ethylene biosynthesis. This unveils new resistance mechanisms for this multiple-resistant biotype widely spread throughout California rice fields. Copyright © 2011 Society of Chemical Industry  相似文献   

14.

The impact of straw incorporation (6 Mg ha -1 year -1 ) into agricultural soils compared with straw removal on organic matter mineralization and salinity was studied. The mineralization coefficient (CO 2 -C evolved/organic C ratio) was obtained to evaluate organic matter mineralization. Soil salinity was measured as means of electrolytic conductivity of saturation paste extract. Both parameters were measured seasonally during two years in two salt-affected soils of the semiarid Central Ebro Valley (northeast Spain), a saline soil and a saline-sodic soil. The electrolytic conductivity (ranging from 2.5 dS m -1 to 24.3 dS m -1 ) and the mineralization coefficient (ranging from 5.9 10 -4 day -1 to 37.9 10 -4 day -1 ) varied widely during seasonal samplings of both soils. The lowest electrolytic conductivity values, coincided with the highest mineralization coefficient values. Straw mulching and burying decreased significantly the average seasonal electrolytic conductivity of both soils: 2.5 times in the saline soil, and 1.9 times in the saline-sodic soil. The EC reduction only increased significantly (P < 0.05) the mineralization coefficient on saline soil (1.6 times). Straw amendment, followed by rainy periods, allowed the soluble salts leaching but did not modify significantly sodium content. A logarithmic regression was found between mineralization coefficient and electrolytic conductivity (r 2 = 0.41), considering both soils. Infiltration, water aggregate stability, and qCO 2 were improved with the straw amendment, but only in saline soil. Soil differences showed the existence of a double effect: an osmotic and a specific ion effect.  相似文献   

15.
The present study investigates the effect of residues of noxious weed Parthenium hysterophorus in soil as well as under laboratory conditions. Soils were infested with different amounts of Parthenium residues to determine the changes in soil chemistry, phenolic content and the phytotoxic effects on crops like chickpea ( Cicer arietinum ) and radish ( Raphanus sativus ). The modified soils and unmodified (control) soil were analyzed for pH, conductivity, organic carbon, organic matter, available nitrogen, phosphorus, potassium and micronutrients such as sodium, iron, manganese and zinc. The pH of all the modified soils decreased whereas the conductivity, organic carbon and organic matter increased. Further, the amount of sodium and potassium increased, whereas that of zinc decreased. In the soil infested with 4 g of Parthenium residue, the amount of available nitrogen decreased. The presence of significantly high amounts of phenolics in all modified soils indicated their possible interactions with soil chemical properties. This was also indicated by the correlation analysis between phenolics and various soil properties. The growth studies carried out in the modified soils indicated their phytotoxic nature, as seedling growth of both chickpea and radish was significantly decreased compared with seedlings grown in unmodified soils. The extracts prepared from Parthenium residues were also found to be phytotoxic to both the test crops and were also rich in phenolics. The presence of phenolics in Parthenium residues and their interference with soil chemistry upon release may be responsible for a decrease in the growth of radish and chickpea.  相似文献   

16.
Rainfed lowland rice fields in northern Togo are increasingly infested by the facultative hemiparasitic weed Rhamphicarpa fistulosa that is widely reported throughout sub-Saharan Africa to be one of the most damaging weeds in rice fields. In this geographical area, some studies have shown that soil characteristics may influence the presence and/or the level of infestation of some parasitic weeds, but none have been conducted on R. fistulosa. Based on surveys conducted in northern Togo over two years in 66 lowland rice fields, we characterised the level of infestation of R. fistulosa as well as physico-chemical characteristics of soils. We highlighted that fields with medium-to-high levels of infestation of R. fistulosa (more than 5 plants per m2) were mainly characterised by a coarser soil texture, a higher potassium content and a higher pH, while fields without R. fistulosa were characterised by a lower proportion of silt content. In contrast, the level of infestation of R. fistulosa appeared only marginally influenced by soil organic carbon and nitrogen in our study. Considering these results, options to modify the main physico-chemical characteristics of soils that influence the level of infestation of R. fistulosa are likely difficult to implement. In order to continue rice production in these lowland fields, we suggest several measures to better manage R. fistulosa seedbank and development.  相似文献   

17.
The effects of lenacil, terbacil, chlorthiamid and 2,4,5-T at 100 ppm on carbon dioxide evolution, oxygen uptake and nitrogen transformation in two soils have been investigated for several months in the laboratory. The herbicides had no effect on CO2 output from either Boddington Barn soil (organic carbon content 1.6%, pH 6.1) or Triangle soil (organic carbon content 3.7%, pH 4.8) apart from 2,4,5-T which reduced it sometimes. All the herbicides caused temporary reductions in O2. uptake, but in Triangle soil treated with 2,4,5-T a significant reduction was observed during the second half of the incubation. 2,4,5-T and to a lesser extent chlorthiamid, reduced nitrification in Triangle soil. All the herbicides slightly increased mineralization of nitrogen except 2,4,5-T which had variable effects in Triangle soil.  相似文献   

18.
黄土高原不同土壤类型有机碳密度与储量特征   总被引:1,自引:0,他引:1  
土壤有机质的理化特性是黄土高原地区水土保持及生态修复的重要物质基础,充分了解黄土高原区不同土壤类型的有机碳密度与储量,对生态建设具有重要的实际意义。利用第二次全国土壤普查数据,对黄土高原不同土壤类型0~20 cm表层土体有机碳密度及储量进行估算,并分析两者的空间特征。结果表明:黄土高原区土壤有机碳密度加权平均值为2.00 kg·m-2,棕壤碳密度值最高,为15.56 kg·m-2,风沙土最低,仅为0.24 kg· m-2,空间上呈中间低四周高的分布格局。黄土高原地区总碳储量为1 239.85 Tg(1 Tg=1012 g),灰褐土及黄绵土碳储量较高,两者占总体的46.86%,灰漠土、冻漠土、碱土较低,总量仅占0.17%,空间上呈由西北向东南递增的分布规律。黄绵土、风沙土在黄土高原区分布较广,但两者碳密度较低。因此,在今后的生态修复措施中,提高两者有机碳含量十分关键。  相似文献   

19.
The rate of aerobic evolution of 14CO2 from 14C-glyphosate labelled in the methylphosphonyl carbon, varied 100-fold within a group of five Hawaiian sugarcane soils. The rate depended inversely on the degree of soil binding, probably associated with the phosphonic acid moiety, and to a less certain extent on soil pH and soil organic matter. After an initial rapid degradation, the rate of 14CO2 evolution in three soils reached a constant at 16–21 days which continued to the 60-day termination. The other two soils showed a continually decreasing rate throughout. Two soils released over 50% of the labelled carbon in 60 days, a third released 35%, while the remaining soils released 1.2 and 0.8% respectively. Labelled carbon in the soils after 60 days consisted of glyphosate and one metabolite, aminomethyl-phosphonic acid, with glyphosate predominating in high fixing soils. The 14C could be extracted almost completely with NaOH solution, and remained mainly in solution after acidification.  相似文献   

20.
毒死蜱和氰戊菊酯在土壤中的吸附与迁移   总被引:1,自引:2,他引:1       下载免费PDF全文
为评估被用作白蚁预防药剂的毒死蜱和氰戊菊酯在土壤中的移动性,采用平衡吸附法和薄层层析法分别测定了两种农药在浙江宁波地区的东钱湖土(粉砂质壤土)、青岭土(粉砂质壤土)和象山土(粉砂质黏壤土)3种土壤中的吸附常数(Kd)和迁移率(Rf)。结果表明,两种供试药剂在东钱湖土中的吸附等温线线性化程度均较高,而在青岭土和象山土中的吸附等温线均近似于 "L"型。从Kd和有机质吸附常数Koc的数值看,氰戊菊酯在土壤中的吸附作用主要受土壤有机质因素影响,而毒死蜱的吸附并非只受土壤有机质因素的影响。毒死蜱在3种供试土壤中的Kd和Rf值均高于氰戊菊酯。这表明由Kd值推测不同农药在土壤中的相对移动性可能会存在一定偏差。毒死蜱和氰戊菊酯在3种土壤中的Rf值由大到小的顺序为:东钱湖土>青岭土>象山土;而Kd值由大到小顺序为象山土>青岭土>东钱湖土。对Kd和Rf值与土壤理化性质的多元线性回归分析表明:1)土壤有机质含量和阳离子代换量在决定Kd和Rf值中所起的作用相互重叠;2)土壤有机质含量(或土壤阳离子代换量)和土壤黏粒含量是影响Kd和Rf值的关键因素,而土壤pH值对于Kd和Rf值无决定性影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号