首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对水轮发电机组筒式水轮机导轴承的润滑不良问题,以大型数学计算软件Matlab为工具对其润滑油膜承载力的分布即润滑油膜Reynolds方程(油膜压方程)进行了全新求解。首先利用五点差分法离散水导轴承压力方程并建立相应的代数方程模型;然后利用Matlab编程计算,定性探讨了不同偏心率下筒式水导轴承的油膜压力分布情况,并给出数值分析三维网格结果图形分布;最后,从所得压力分布情况,推出了润滑油膜力的非线性,且随着水导轴承偏心率的不同,主轴径向力和油膜承载力也随之相应变化。  相似文献   

2.
针对水轮发电机组筒式水轮机导轴承的润滑不良问题,以大型数学计算语言Matlab为工具对其润滑油膜承载力的分布即润滑油膜Reynolds方程(油膜压力方程)进行了全新求解,首先利用五点差分法离散水轮机导轴承压力方程并且建立了相应的代数方程模型。然后利用Matlab对其编程计算,分别定性探讨了不同偏心率下筒式水轮机导轴承的油膜压力分布情况并给出数值分析三维网格结果图形分布。最后,从所得压力分布情况推出了润滑油膜力的非线性,且随着水轮机导轴承偏心率的不同,主轴径向力和油膜承载力也随之相应变化。  相似文献   

3.
多级泵滑动轴承动特性系数求解算法   总被引:1,自引:0,他引:1  
对多级泵进行转子动力学分析时,需要先对多级泵所用的滑动轴承进行动特性系数计算.采用有限差分法将雷诺方程中导数转换为差分形式.通过Matlab编程对静态雷诺方程进行迭代求解,求得静态油膜压力分布.无量纲动特性系数仅与轴承宽径比和偏心率有关,为了确定轴承的偏心率,用辛普森积分法求油膜承载力,用插值法不断改变油膜偏心率直到油膜承载力与轴承处支反力大小相等.对小扰动下的雷诺方程继续用Matlab进行求解得到4个扰动压力,再用辛普森积分法求得动特性系数.取宽径比为0.2,偏心率为0.4,通过将所编制的程序与窄轴承简化公式的计算值对比发现算法可靠.计算结果表明轴承的交叉阻尼系数几乎相等,并用Matlab绘制了轴承的扰动压力分布图.  相似文献   

4.
针对海水淡化高压多级泵水润滑轴承的可靠性论证研究和探究其液膜动力传递机理,并分析液膜压力分布及其影响因素,文中采用有限差分法数值求解二维定常雷诺方程将方程离散化处理,并且采用超松弛迭代法求解离散的线性方程组以达到加速收敛的目的,通过Matlab编程求得海水淡化泵水润滑轴承沿周向的水膜压力先增后减并呈现出非线性,而沿轴向则呈抛物线分布,并通过对轴承宽径比和偏心率参数方案的选择对比,研究其影响水润滑轴承的压力分布,结果显示水膜压力随轴承宽径比和偏心率的增大而增大.验证结果表明前期设计的水润滑轴承,能够保证水润滑轴承所起的安全润滑和支撑作用.  相似文献   

5.
【目的】由于滑动轴承结构制造精度的限制和运行环境的变化,制造误差及运行磨损误差会对油膜连续性状态产生显著影响,进而影响滑动轴承工程性能,研究具体的影响机制对提升农用机械的工作精度具有重要作用。【方法】课题组利用无限短轴承模型假设建立误差滑动轴承模型,采用分形理论分离误差曲面各阶弦波特征,在频域范围内重构建立三维误差模型。根据含有制造误差的Reynolds方程表达式近似解析计算油膜特性,研究了制造误差对油膜厚度、油膜压力和承载力的影响。【结果】1)在误差轴颈运行位置角变化范围内,油膜厚度在油膜压力较大值时会产生明显波动,并呈周期性变化;2)当偏心率从0.1变化到0.5时,带有误差的油膜压力相较于理想轮廓轴承在运行时间范围内会产生较大的压力波动变化。同时,随着偏心率的增大,压力幅值变化增大。【结论】制造误差对油膜压力波动和方向承载力影响较大,可以根据实验结果进行相应调整,降低误差影响,保持滑动轴承的工程性能。  相似文献   

6.
导轴承刚度对水轮机轴系自振特性的影响   总被引:1,自引:0,他引:1  
为研究水轮发电机组轴系横向自振特性,采用有限元方法对轴系进行离散,利用能量法获得运动方程,根据简化的实际机组轴系参数,采用Matlab软件计算机组轴系各阶的固有频率、主振型以及临界转速,分析导轴承刚度系数的变化对机组轴系临界转速和主振型的影响.计算结果表明:当仅改变其中1个导轴承刚度时,上导轴承对机组临界转速几乎没有影响,下导和水导轴承对临界转速的影响较大.当导轴承刚度达到一定值时,临界转速不再随其增大而增大,出现“饱和”现象;而同时增加3个导轴承的刚度,机组轴系的临界转速有较大的增大.上导轴承的改变对前三阶振型几乎没有影响,下导和水导轴承的改变会导致某一阶的振型与原振型相反.工程中估算机组临界转速时需充分考虑导轴承刚度对机组的影响.  相似文献   

7.
基于气液两相流空穴模型,建立了螺旋油楔动静压轴承的热流体动力润滑数学模型.采用有限差分法,数值求解了广义雷诺方程、简化油膜能量方程及轴瓦热传导方程,研究了油膜压力分布以及供油温度和供油压力对轴承内表面温度的影响.结果表明:油膜破裂面积沿轴向先减小后增大,破裂位置沿圆周方向有一定的偏移,距离的大小与螺旋角有关;供油温度对轴承内表面温度的分布影响较大,而供油压力的影响相对较小.  相似文献   

8.
应用滑动轴承两相流理论和非定常动网格技术,建立了基于两相流理论的滑动轴承动力特性多频椭圆涡动求解模型,在验证求解模型准确性的基础上,研究了滑动轴承单相流与两相流模型的油膜压力分布特点以及轴颈多频椭圆涡动轨迹下油膜力的变化规律,并基于油膜力做功的方法定量分析了轴颈涡动频率、偏心率对转子稳定性的影响.研究结果表明:建立的转子多频涡动模型,只要2次非定常求解便可得到多个涡动频率下的动力特性系数,提高了分析效率;轴颈涡动引起油膜力随之变化,且油膜力的频率与轴颈涡动频率相同;轴颈涡动频率对滑动轴承动力特性系数和转子稳定性影响较大,需要考虑轴颈涡动频率对滑动轴承动力特性的影响;轴颈偏心率越大,油膜力对轴颈所做负功的绝对值越大,轴颈涡动能量被消耗得越快,越有利于转子的稳定性.  相似文献   

9.
为提高轴向柱塞泵滑靴工作可靠性,在充分考虑润滑流体在滑靴副间隙中流动特性的基础上,基于液压液阻原理提出等效液阻高度、构建流量模型,运用有限体积法对滑靴副油膜压力分布进行计算.从油膜挤压效应、供油压力、卷吸速度和油膜形状等方面对压力分布特性的影响进行分析,深入探讨了润滑油膜压力分布影响因素及变化规律.计算实例表明:在当前的数值计算方法下,动压和静压作用相对独立,相互影响较小;挤压效应对动压力影响显著;供油压力直接影响中心油腔压力,对动压几乎没有影响;卷吸速度对压力分布影响显著,不同的卷吸速度方向不但对动压力最大值影响很大,在膜厚较小区域压力分布呈现差异明显的变化规律,甚至在最大倾斜角附近会出现负压;油膜动压效应对中心膜厚和最大倾斜角非常敏感,在一定程度上,与中心膜厚相比,油膜动压效应对滑靴最大倾斜角更加敏感.  相似文献   

10.
根据对阻尼轴承供油槽的流体动压作用分析结果,研究了供油槽对油膜速度分布和油膜压力的影响,建立了包含供油槽动压作用的油膜作用力数学模型,并进行了实验验证,分析了供油槽的尺寸变化对油膜动力参数的影响。结果表明:当雷诺系数和偏心率较大时,传统理论将供油槽视为均匀压力腔的假设是不正确的。  相似文献   

11.
工作油温升对液粘传动调速起动的影响   总被引:1,自引:0,他引:1  
采用有限元法联立求解修正瞬态雷诺方程、热能量方程及润滑油粘温方程,对调速起动过程进行了数值模拟研究,讨论了起动过程中工作油温升对液粘传动调速起动的影响.结果表明,流人摩擦片工作油温度为30℃时,流经摩擦片后温度约升高20T,它所引起的油膜承载力下降9%;而流人摩擦片工作油温度由30℃升至50℃时,即使不考虑流经摩擦片的温升,油膜承载力也将下降32%.这样易引起油膜承载力低于比例溢流阀死区对应压力,导致摩擦片直接接合,不能取得理想的调速起动效果.调速起动实验验证了理论分析的正确性.  相似文献   

12.
简要分析了水轮发电机组轴系上的作用力,包括导轴承上的非线性油膜力、转子与转轮上的机械不平衡力、转子上的不平衡磁拉力和转轮上的水力不平衡力.采用零均值i.i.d.随机数序列模拟作用于水轮机转轮上的随机水力激励,通过调整随机数方差来改变随机水力激励的大小,建立了水轮发电机组轴系的非线性动力学模型.求解得到了机组轴系关键部位(转子、转轮和3个导轴承)响应的时域波形图、轴心轨迹图、频谱图和庞加莱图,以及系统响应的分岔图.结果表明:水轮机转轮上作用的随机水力激励对于轴系上部的上导轴承、发电机转子影响较小,对于下导轴承影响适中,对于轴系下部的水导轴承和水轮机转轮影响比较大.随着随机水力激励增强,水导轴承处和水轮机转轮处轴的横向摆度均发生明显的分叉,已明显影响了轴系的振动形态和振动稳定性.  相似文献   

13.
通过对含油轴承润滑方程的分析研究,提出并建立了有限宽任意壁厚含油轴承润滑方程--改进的Darcy模型.利用改进的Darcy模型分析了渗透度、壁厚、偏心率对含油轴承压力、承载能力、摩擦因数性能的影响,并与Brinkman模型的计算结果进行了对比分析.该模型比Brinkman模型结构简单,计算量小,比Darcy模型更接近实际情况.  相似文献   

14.
【目的】为了更好地研究油膜润滑理论在农业机械轴承上的应用,更高效灵活地使用农业机械。【方法】课题组通过概括滑动轴承油膜润滑理论的发展和研究现状,根据滑动轴承油膜的形成机理详细分析了油膜润滑理论的核心,即Reynolds方程,分别研究了轴承润滑分析中Reynolds方程三种不同的边界条件;针对不同的边界条件讨论了它们在轴承润滑分析中的优缺点,并重点分析了在Swift-Stieber边界条件下滑动轴承圆度误差旋量参数对滑动轴承油膜压力的影响。【结果】1)传统的边界条件如半Sommerfeld边界条件、Sommerfeld边界条件不适用于对误差轴承进行润滑特性分析,而Swift-Stieber边界条件可以对误差轴承的润滑特性进行良好的分析;2)在Swift-Stieber边界条件下求得的压力计算结果与实际情况较为接近;3)在Swift-Stieber边界条件下的Reynolds方程的圆度误差旋量参数会改变最大油膜压力的数值,与理想圆截面相比,油膜压力会随着旋量参数的增大而增大。【结论】Swift-Stieber边界条件是目前比较符合实际的边界条件,在Swift-Stieber边界条件下对Re...  相似文献   

15.
分析了轴-轴承系统中,当轴受载变形导致轴颈倾斜时,径向滑动轴承的流体动力润滑特性。计算结果表明,此时的轴承油膜压力明显偏布且最大油膜压力增大。在轴承润滑分析的基础上,将得到的轴承油膜压力作为载荷边界条件,计算了轴的应力分布。结果显示此时轴的应力分布在轴承最大油膜压力作用的邻近区域发生了明显变化,应力数值有较大增加,影响轴的强度。  相似文献   

16.
水轮机水导油槽进水是严重影响机组安全运行的重大缺陷之一,如果发现和处理不及时,就会导致水导轴承润滑油乳化变质,严重时会造成水导轴承烧瓦的重大设备事故。二滩水电站#1机组在2003年3月发生了两次水导油槽进水的重大缺陷,致使机组被迫停机抢修。经采取紧急处理措施,机组及时归调投运。经过多年的运行实践检验,证明缺陷处理方法得当,措施可靠,保障了机组的安全稳定运行。本文就水导油槽进水的原因作了详尽的分析,阐述了缺陷的处理方法和补救措施,并针对设备的实际情况,提出了一些相应的改进建议  相似文献   

17.
【目的】农机设备的不断更新发展对设备的整机性能提出了更高的要求,因此,对农机的滑动轴承转子系统的承载能力、运行稳定性以及摩擦损耗等特性进行研究十分重要。【方法】针对有限长农机动压滑动轴承模型,采用分离变量法、Sommerfeld积分变换法、Reynolds边界条件等,对农机转子系统的油膜压力进行解析求解,并对有限长、无限短、无限长三种不同农机转子轴承模型的系统承载能力系数和能量损失特性进行了分析。【结果】1)同等偏心率条件下,无限长轴承模型承载能力最强,其次是有限长、无限短轴承模型;随着偏心率的增大,有限长轴承模型的承载能力也会增大,并且与无限短轴承模型变化的趋势和速率相近。2)在偏心率相同的情况下,长径比越大,系统能量损失越大;无限短轴承模型的能量损失几乎为0,与实际严重不符;无限长轴承模型在整个偏心率内能量损失过大。【结论】通过对比发现,无限长、无限短轴承模型运行特性的误差较大,故不能应用于农机的实际检测;有限长农机轴承模型解析油膜力更加贴合实际,计算速度快,准确性高,提高了农机实际应用中的故障检测效率,可以为农机转子系统在实际应用中的故障检测提供可靠的理论支持。  相似文献   

18.
以轴承为研究对象,采用CFD方法建立了轴承流体润滑仿真模型.基于该模型,系统地研究了油槽设计对轴承润滑的影响,获取不同油槽宽度、深度下轴承的压力分布、流速分布.结果表明,这些参数对油膜压力分布、流速分布影响均较为明显.  相似文献   

19.
采用有限元法联立求解修正瞬态雷诺方程、热能量方程及润滑油粘温方程,对调速起动过程进行了数值模拟研究,讨论了起动过程中工作油温升对液粘传动调速起动的影响。结果表明,流入摩擦片工作油温度为30℃时,流经摩擦片后温度约升高20℃,它所引起的油膜承载力下降9%;而流入摩擦片工作油温度由30℃升至50℃时,即使不考虑流经摩擦片的温升,油膜承载力也将下降32%。这样易引起油膜承载力低于比例溢流阀死区对应压力,导致摩擦片直接接合,不能取得理想的调速起动效果。调速起动实验验证了理论分析的正确性。  相似文献   

20.
为分析水泵水轮机双向推力轴承支承结构对润滑性能的影响,建立了推力轴承的三维热弹流动力润滑数学模型,并给出了合理的边界条件. 分别通过有限差分法和大型有限元软件Ansys11.0求解热流体动力润滑模型和瓦块的热弹变形,二者之间的数据传递通过自编接口自动实现. 将文中所建立的计算模型应用于算例分析,得到额定工况下的油膜厚度、油膜压力和瓦块温度分布情况,通过对理论计算结果和试验测量结果对比发现两者吻合较好. 在此基础上分析了3种不同支承结构下的轴承静特性分布和瓦面热弹变形分布趋势.结果表明:选择合理的支承结构将明显提高轴承的润滑性能,条形支承结构和双托盘支承结构的瓦面热弹变形分布比单托盘支承结构更加合理,因此润滑性能要明显优于单托盘支承结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号