首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
A procedure for the measurement of the fungal and bacterial contribution to substrate-induced respiration was tested in three arable soils. Glucose and different amounts of cycloheximide (eukaryote inhibitor) and streptomycin sulfate (prokaryote inhibitor) were added to soil suspensions, and respiration (CO2 evolution) was measured. Streptomycin sulfate concentrations from 10 to 120 mg ml–1 soil solution caused a stable inhibition of respiration. Amounts of cycloheximide ranging from 5 to 35 mg ml–1 showed an increasing inhibition. In a test with separate and combined addition of the antibiotics at maximum inhibitory concentrations, inhibition by streptomycin was completely overlapped by cycloheximide. This indicated non-target inhibition which may lead to overestimation of fungal respiration. Experiments with sterilized soils inoculated with either fungi or bacteria confirmed that streptomycin selectively inhibited bacteria. Cycloheximide, however, did not only inhibit fungal respiration already at 2 mg ml–1, but also increasingly inhibited bacterial respiration at increasing concentrations. Only at less than 5 mg cycloheximide ml–1 was the condition of selective fungal inhibition fulfilled. When 2 mg cycloheximide and 10 mg streptomycin sulfate ml–1 were applied, the sum of the separate inhibitions almost equalled the combined inhibition by the mix of both inhibitors in field samples. This method yielded fungal:bacterial respiration ratios of 0.50 to 0.60, and confirmed the dominance of bacteria in Dutch arable soils. The ratios obtained by the selective inhibitors were not correlated with, and were higher than, ratios of fungal:bacterial biovolume (0.19 to 0.46) as determined by microscopy and image analysis. Similar measurements in a forest soil (A-horizon) raised doubts on the reliability of the fungal inhibition by cycloheximide in this soil. It is concluded that the separate:combined inhibition ratio should always be checked, and comparison with other approaches is recommended. Received: 17 September 1996  相似文献   

2.
Respiratory methods to estimate the amount of C in the soil microbial biomass and the relative contributions of procaryotes and eucaryotes to the biomass were used to evaluate the influence of pesticides on the soil microflora. Experiments were conducted with 5 and 50 μg·g?1 of three fungicides, captan, thiram and verdasan. At 5 μg·g?1 they caused significant decreases (40%) in the biomass; the organomercury fungicide verdasan also caused a shift from fungal to bacterial dominance. Within 8 days, biomass in captan- and thiram-amended soils had recovered to that of the controls. Although the fungal to bacterial balance was restored in verdasan-amended soils, biomass recovery was not complete. At 50 μg·g?1 the fungicides caused long-term decreases in the biomass and altered the relative proportions of the bacterial and fungal populations. Verdasan had the greatest effect on soil microbial biomass and composition.  相似文献   

3.
Fungal N2O production results from a respiratory denitrification that reduces NO3/NO2 in response to the oxidation of an electron donor, often organic C. Despite similar heterotrophic nature, fungal denitrifiers may differ from bacterial ones in exploiting diverse resources. We hypothesized that complex C compounds and substances could favor the growth of fungi over bacteria, and thereby leading to fungal dominance for soil N2O emissions. Effects of substrate quality on fungal and bacterial N2O production were, therefore, examined in a 44-d incubation after soils were amended with four different substrates, i.e., glucose, cellulose, winter pea, and switchgrass at 2 mg C g−1 soil. During periodic measurements of soil N2O fluxes at 80% soil water-filled pore space and with the supply of KNO3, substrate treatments were further subjected to four antibiotic treatments, i.e., no antibiotics or soil addition of streptomycin, cycloheximide or both so that fungal and bacterial N2O production could be separated. Up to d 8 when antibiotic inhibition on substrate-induced microbial activity and/or growth was still detectable, bacterial N2O production was generally greater in glucose- than in cellulose-amended soils and also in winter pea- than in switchgrass-amended soils. In contrast, fungal N2O production was more enhanced in soils amended with cellulose than with glucose. Therefore, fungal-to-bacterial contribution ratios were greater in complex than in simple C substrates. These ratios were positively correlated with fungal-to-bacterial activity ratios, i.e., CO2 production ratios, suggesting that substrate-associated fungal or bacterial preferential activity and/or growth might be the cause. Considering substrate depletion over time and thereby becoming limited for microbial N2O production, measurements of soil N2O fluxes were also carried out with additional supply of glucose, irrespective of different substrate treatments. This measurement condition might lead to potentially high rates of fungal and bacterial N2O production. As expected, bacterial N2O production was greater with added glucose than with added cellulose on d 4 and d 8. However, this pattern was broken on d 28, with bacterial N2O production lower with added glucose than with added cellulose. In contrast, plant residue impacts on soil N2O fluxes were consistent over 44-d, with greater bacterial contribution, lower fungal contribution, and thus lower fungal-to-bacterial contribution ratios in winter pea- than in switchgrass-amended soils. Real-time PCR analysis also demonstrated that the ratios of 16S rDNA to ITS and the copy numbers of bacterial denitrifying genes were greater in winter pea- than in switchgrass-amended soils. Despite some inconsistency found on the impacts of cellulose versus glucose on fungal and bacterial leading roles for N2O production, the results generally supported the working hypothesis that complex substrates promoted fungal dominance for soil N2O emissions.  相似文献   

4.
A study was conducted at two experimental tree plantations in the Pacific Northwest to assess the roles of bacteria and fungi in nitrogen (N) cycling. Soils from red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) plots in low- (H.J. Andrews) and high- (Cascade Head) productivity stands were sampled in 2005 and 2006. Fungal:bacterial ratios were determined using phospholipid fatty acid (PLFA) profiles and quantitative (Q)-PCR. Ratios from these two molecular methods were highly correlated and showed that microbial biomass varied significantly between the two experimental sites and to a lesser extent between tree types with fungal:bacterial biomass ratios lower in more N-rich plots. 15N isotope dilution experiments, with ammonium (NH4+) and nitrate (NO3?), were paired with antibiotics that blocked bacterial (bronopol) and fungal (cycloheximide) protein synthesis. This modified isotope dilution technique was used to determine the relative contribution of bacteria and fungi to net N mineralization and gross rates of ammonification and nitrification. When bacterial protein synthesis was blocked NH4+ consumption and nitrification rates decreased in all treatments except for NH4+ consumption in the Douglas-fir plots at H.J. Andrews, suggesting that prokaryotic nitrifiers are a major sink for mineral NH4+ in forest soils with higher N availability. Cycloheximide consistently increased NH4+ consumption, however the trend was not statistically significant. Both antibiotics additions also significantly increased gross ammonification, which may have been due to continued activity of extra- and intracellular enzymes involved in producing NH4+ combined with the inhibition of NH4+ assimilation into proteins. The implication of this result is that microorganisms are likely a major sink for soil dissolved organic N (DON) in soils.  相似文献   

5.
Soil pH is one of the most influential variables in soil, and is a powerful factor in influencing the size, activity and community structure of the soil microbial community. It was previously shown in a century old artificial pH gradient in an arable soil (pH 4.0-8.3) that bacterial growth is positively related to pH, while fungal growth increases with decreasing pH. In an attempt to elucidate some of the mechanisms for this, plant material that especially promotes fungal growth (straw) or bacterial growth (alfalfa) was added to soil samples of the pH gradient in 5-day laboratory incubation experiments. Also, bacterial growth was specifically inhibited by applying a selective bacterial growth inhibitor (bronopol) along the entire pH gradient to investigate if competitive interaction caused the shift in the decomposer community along the gradient. Straw benefited fungal growth relatively more than bacterial, and vice versa for alfalfa. The general pattern of a shift in fungal:bacterial growth with pH was, however, unaffected by substrate additions, indicating that lack of a suitable substrate was not the cause of the pH effect on the microbial community. In response to the bacterial growth inhibition by bronopol, there was stimulation of fungal growth up to pH 7, but not beyond, both for alfalfa and straw addition. However, the accumulation of ergosterol (an indicator of fungal biomass) during the incubation period after adding alfalfa increased at all pHs, indicating that fungal growth had been high at some time during the 5-day incubation following joint addition of alfalfa and bronopol. This was corroborated in a time-series experiment. In conclusion, the low fungal growth at high pH in an arable soil was caused to a large extent by bacterial competition, and not substrate limitation.  相似文献   

6.
Soil microbial communities were examined in a chronosequence of four different land-use treatments at the Konza Prairie Biological Station, Kansas. The time series comprised a conventionally tilled cropland (CTC) developed on former prairie soils, two restored grasslands that were initiated on former agricultural soils in 1998 (RG98) and 1978 (RG78), and an annually burned native tallgrass prairie (BNP), all on similar soil types. In addition, an unburned native tallgrass prairie (UNP) and another grassland restored in 2000 (RG00) on a different soil type were studied to examine the effect of long-term fire exclusion vs. annual burning in native prairie and the influence of soil type on soil microbial communities in restored grasslands. Both 16S rRNA gene clone libraries and phospholipid fatty acid analyses indicated that the structure and composition of bacterial communities in the CTC soil were significantly different from those in prairie soils. Within the time series, soil physicochemical characteristics changed monotonically. However, changes in the microbial communities were not monotonic, and a transitional bacterial community formed during restoration that differed from communities in either the highly disturbed cropland or the undisturbed original prairie. The microbial communities of RG98 and RG00 grasslands were also significantly different even though they were restored at approximately the same time and were managed similarly; a result attributable to the differences in soil type and associated soil chemistry such as pH and Ca. Burning and seasonal effects on soil microbial communities were small. Similarly, changing plot size from 300 m2 to 150 m2 in area caused small differences in the estimates of microbial community structure. In conclusion, microbial community structure and biochemical properties of soil from the tallgrass prairie were strongly impacted by cultivation, and the microbial community was not fully restored even after 30 years.  相似文献   

7.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

8.
The selective inhibition technique by specific antibiotics (streptomycin, cycloheximide) applied to substrate-induced respiration (SIR) measurement was used to test the relative contribution of fungi to bacteria (F/B ratio) to the overall microflora-induced activity in soils of European Russia. Investigated soils covered a wide climatic transect and different ecosystem types including managed vs. natural ecosystems. Before direct comparison among sites, the antibiotic inhibition technique was optimized for soil characteristics. Once the optimal concentration was set, the combined effect of the two antibiotics resulted in average 60% inhibition of SIR. The analyzed sites (in total 47) including various biomes (tundra, middle taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, steppe, mountain forests and arable sites), were characterized by a wide range of soil pHw (3.95–7.95), soil organic carbon (0.69–24.08%), soil microbial biomass carbon (149–5028 µg C g?1 soil) and soil basal respiration (0.24–8.28 µg CO2-C g?1 soil h?1). In all the analyzed sites, a predominance of fungal over bacteria activity was observed with F/B ratios always higher than one (4.9 on average). Natural sites were characterized by higher F/B ratios (on average 5.6) compared to agricultural ones (on average 3.5).  相似文献   

9.
The fungi-to-bacteria ratio in soil ecological concepts and its application to explain the effects of land use changes have gained increasing attention over the past decade. Four different main approaches for quantifying the fungal and bacterial contribution to microbial tissue can be distinguished: (1) microscopic methods, (2) selective inhibition, (3) specific cell membrane components and (4) specific cell wall components. In this review, the different methods were compared and we hypothesized that all these approaches result in similar values for the fungal and bacterial contribution to total microbial biomass, activity, and residues (dead microbial tissue) if these methods are evenly reliable for the estimation of fungal biomass. The fungal contribution to the microbial biomass or respiration varied widely between 2 and 95% in different data sets published over the past three decades. However, the majority of the literature data indicated that fungi dominated microbial biomass, respiration or non-biomass microbial residues, with mean percentages obtained by the different methodological approaches varying between 35 and 76% in different soil groups, i.e. arable, grassland, and forest soils and litter layers. Microscopic methods generally gave the lowest average values, especially in arable and grasslands soils. Very low ratios in fungal biomass C-to-ergosterol obtained by microscopic methods suggest a severe underestimation of fungal biomass by certain stains. Relatively consistent ratios of ergosterol to linoleic acid (18:2ω6,9) indicate that both cell membrane components are useful indicators for saprotrophic and ectomycorrhizal fungi. More quantitative information on the PLFA content of soil bacteria and the 16:1ω5 content of arbuscular mycorrhizal fungi is urgently required to fully exploit the great potential of PLFA measurements. The most consistent results have been obtained from the analysis of fungal glucosamine and bacterial muramic acid in microbial residues. Component-specific δ13C analyses of PLFA and amino sugars are a promising prospect for the near future.  相似文献   

10.
 There is much interest in the development of agricultural land management strategies aimed at enhancing reliance on ecosystem self-regulation rather than on artificial inputs such as fertilisers and pesticides. This study tested the usefulness of measures of soil microbial biomass and fungal:bacterial biomass ratios as indicators of effective conversion from an intensive grassland system, reliant mainly on fertilisers for crop nutrition, to a low-input system reliant mainly on self-regulation through soil biological pathways of nutrient turnover. Analysis of soils from a wide range of meadow grassland sites in northern England, along a gradient of long-term management intensity, showed that fungal:bacterial biomass ratios (measured by phospholipid fatty acid analysis; PLFA) were consistently and significantly higher in the unfertilised than the fertilised grasslands. There was also some evidence that microbial biomass, measured by chloroform fumigation and total PLFA, was higher in the unfertilised than in the fertilised grasslands. It was also found that levels of inorganic nitrogen (N), in particular nitrate-N, were significantly higher in the fertilised than in the unfertilised grasslands. However, microbial activity, measured as basal respiration, did not differ between the sites. A field manipulation trial was conducted to determine whether the reinstatement of traditional management on an improved mesotrophic grassland, for 6 years, resulted in similar changes in the soil microbial community. It was found that neither the cessation of fertiliser applications nor changes in cutting and grazing management significantly affected soil microbial biomass or the fungal:bacterial biomass ratio. It is suggested that the lack of effects on the soil microbial community may be related to high residual fertility caused by retention of fertiliser N in the soil. On the basis of these results it is recommended that following the reinstatement of low-input management, the measurement of a significant increase in the soil fungal:bacterial biomass ratio, and perhaps total microbial biomass, may be an indicator of successful conversion to a grassland system reliant of self-regulation. Received: 4 May 1998  相似文献   

11.
There is increasing community awareness of the potential environmental risks posed by Cu-based fungicide use, which is placing increasing pressure on governments and industry to undertake risk minimisation action. However, if there is going to be a widespread move away from the use of Cu-based fungicides, logically there needs to be assurance that the alternatives pose a lower environmental risk. To that end, this study compared the effect of copper hydroxide, captan and trifloxystrobin on soil enzymatic (phosphomonoesterase and urease) activity. Compared to an untreated control, copper did not inhibit either enzyme activity, even at the highest dose used in the study (156 mg/kg). At their respective high doses, captan (96 mg/kg) and trifloxystrobin (144 mg/kg) did not cause inhibition of phosphomonoesterase activity but did inhibit urease activity. Consequently, the results from this study suggest that the copper hydroxide alternatives, captan and trifloxystrobin, do not pose a short-term risk to P cycling processes in soil, although the results do suggest that these two are more toxic than copper hydroxide to N cycling processes in soil. Moreover, captan and trifloxystrobin compounds are unlikely to pose a long-term risk to soil microbial function as they are unlikely to persist in soil at concentrations found to cause an adverse effect on urease activity. Nonetheless, the potential disruption to N cycling processes needs to be recognised and consideration given to limiting the annual applications of these fungicides, particularly around the timing of repeat fungicide applications, to prevent accumulation of the fungicides in surface soils.  相似文献   

12.
The antibiotic block technique is used to distinguish between fungal and bacterial induced activity. In the present study, the antibiotic inhibition of peptone-induced NO3 production was tested across a soil moisture gradient. Soil was incubated at 60, 80, 90 and 100% water-filled pore space (WFPS) and as a water slurry. Peptone was used as the substrate and cycloheximide and C2H2 (0.1% v/v) were added to inhibit fungal and autotrophic nitrification, respectively, the latter being considered mainly of bacterial origin. At all moisture contents is more than 80% of NO3 production was due to autotrophic nitrification. At increasing water contents the percentage of NO3 production inhibited by C2H2 increased, whereas the percentage inhibited by cycloheximide decreased from 26.4% at 60% WFPS to 4.6% in the water slurry, suggesting a different sensitivity of bacterial and fungal nitrification to soil moisture. Although no direct evidence of an alteration in the fungal population was produced in this experiment, data proved that water content influences the result of the test and hence care should be taken when comparing data using different test conditions.  相似文献   

13.
《Applied soil ecology》1999,11(2-3):271-275
Identifying amino sugar pools from different land-use systems may advance our knowledge of land-use effects on the fate of microbially-derived substances. Surface soils (0–10 cm) from (1) native pasture, (2) a >80-years-arable site, and (3) a >80-years-afforested site were fractionated into clay, silt, fine-, and coarse-sand fractions. Then, soil organic carbon, N, glucosamine, galactosamine, mannosamine, and muramic acid were analyzed.Afforestation did not influence the amino sugar content in bulk soil, whereas cultivation reduced the content by 54%. The concentrations of amino sugars in g kg−1 SOM declined after both long-term cropping and afforestation by 6% and 13%, respectively, relative to that in the grassland. The amino sugar depletion at the forest site occurred mainly from the silt fraction (by 25%), while that in the cultivated site was mainly due to preferential loss of amino sugars from clay (by 19% compared with the grassland). Both ratios of glucosamine to galactosamine and glucosamine to muramic acid increased when the prairie was converted to forest or cultivated land, suggesting that bacterial N especially is better preserved than fungal N under prairie conditions.  相似文献   

14.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

15.
Native North American prairie grasslands are renowned for the richness of their soils, having excellent soil structure and very high organic content and microbial biomass. In this study, surface soils from three prairie restorations of varying ages and plant community compositions were compared with a nearby undisturbed native prairie remnant and a cropped agricultural field in terms of soil physical, chemical and microbial properties. Soil moisture, organic matter, total carbon, total nitrogen, total sulfur, C:N, water-holding capacity and microbial biomass (total PLFA) were significantly greater (p<0.05) in the virgin prairie remnant as well as the two long-term (21 and 24 year) prairie restorations, compared with the agricultural field and the restoration that was begun more recently (7 years prior to sampling). Soil bulk density was significantly greater (p<0.05) in the agricultural and recently restored sites. In most cases, the soil quality indicators and microbial community structures in the restoration sites were intermediate between those of the virgin prairie and the agricultural sites. Levels of poly-β-hydroxybutyrate (PHB) and PLFA indicators of nutritional stress were significantly greater (p<0.05) in the agricultural and recent restoration sites than in the long-term restorations or the native prairie. Samples could be assigned to the correct site by discriminant analysis of the PLFA data, with the exception that the two long-term restoration sites overlapped. Redundancy analysis showed that prairie age (p<0.005) was the most important environmental factor in determining the PLFA microbial community composition, with C:N (p<0.015) also being significant. These findings demonstrate that prairie restorations can lead to improved quality of surface soils. We predict that the conversion of farmland into prairie will shift the soil quality, microbial community biomass and microbial community composition in the direction of native prairies, but with the restoration methods tested it may take many decades to approach the levels found in a virgin prairie throughout the soil profile.  相似文献   

16.
Our aim was to determine if soil ergosterol concentration provides a quantitative estimate of the soil fungal biomass concentration, as is usually assumed. This was done by comparing soil ergosterol measurements with soil fungal biomass (fungal biomass C) concentrations estimated by microscopic measurements and by the selective inhibition technique linked to substrate-induced respiration (SIR). The measurements were compared in a silty-clay loam soil given a range of previous treatments designed to increase or decrease the soil fungal biomass and so also to change the soil ergosterol concentration. The treatments used were ryegrass amendment, to increase the total and fungal biomass, and CHCl3-fumigation and the addition of the biocides, captan, bronopol and dinoseb, to decrease both ergosterol and fungal biomass C concentrations. The mineralization of ergosterol following addition to sand innoculated with soil extract, and to a sandy loam soil, was also determined. The added ergosterol was little, if at all, degraded following addition to either sand or the unfumigated or fumigated soil during a 10 d aerobic incubation. Similarly, pesticide addition did not significantly change soil ergosterol concentrations yet the soil fungal biomass C concentration decreased significantly. Thus, the ratio: (soil ergosterol concentration/soil fungal biomass C concentration) was much higher in the pesticide-treated soils than the control soil. Following ryegrass amendment, soil ergosterol concentration increased from about 6-12 μg−1 soil within 5 d and then decreased gradually to about 7 μg g−1 soil by 20 d incubation. Changes in fungal biomass C (measured by direct microscopy) closely mirrored changes in soil ergosterol over this period. However, when the amended soil was fumigated and then incubated for a further 5 d, the initial ergosterol concentration declined from 7 to 5 μg g−1 soil by 20 d incubation (a decline of about 0.4). The comparable decline in fungal biomass C was about eight-fold. Thus the ratio of ergosterol to fungal biomass C increased from 0.005 to about 0.01. There was a significant correlation (r>0.84, P<0.001) between soil ergosterol concentration and fungal biomass measured by either SIR or microscopy. However, three data points played a vital role in the correlation. When these points were excluded the relationship was very poor (r<0.4). Our results therefore suggest that substantial amounts of ergosterol may exist, other than in living cells, for considerable periods, with little, if any mineralization. Thus, these results indicate that ergosterol and fungal biomass C concentrations are not always closely correlated, due to the slow metabolism of ergosterol in recently dead fugal biomass and/or the existence of exocellular ergosterol in soil.  相似文献   

17.
Exotic plant invasions alter ecosystem structure and function above- and below-ground through plant–soil feedbacks. The resistance of ecosystems to invasion can be measured by the degree of change in microbial communities and soil chemical pools and fluxes, whereas their resilience can be measured by the ability to recover following restoration. Coastal sage scrub (CSS) is one of the most highly invaded ecosystems in the US but the response of CSS soils to exotic plant invasion is little known. We examined resistance and resilience of CSS soil chemical and biological characteristics following invasion of exotic annual grasses and forbs and restoration of the native plant community. We hypothesized that invasion of exotic plant species would change biological and chemical characteristics of CSS soils by altering soil nutrient inputs. Additionally, we expected that if exotic plants were controlled and native plants were restored, native soil characteristics would recover. We sampled two locations with invaded, restored and native CSS for plant community composition, soil chemistry and microbial communities, and phospholipid fatty acid (PLFA) profiles. Communities invaded by exotic annuals were resistant to some measured parameters but not others. Extractable nitrogen pools decreased, nitrogen cycling rates increased, and microbial biomass and fungal:bacterial ratios were altered in invaded soils, and these effects were mediated by the phenological stage of the dominant plant species. The largest impact of invasion on soils was an overall reduction of spatial heterogeneity in soil nutrients, nutrient cycling and microbial communities. Restored plots tended to recover in most biotic and chemical parameters including increased resource heterogeneity compared to invaded plots, suggesting that CSS soils are resilient but not resistant to invasion.  相似文献   

18.
为了解随粪肥进入农田中的土霉素对土壤生物化学性质产生的可能影响,采用实验模拟方法研究了土霉素污染对土壤微生物生物量碳、土壤酶活性及微生物组成的影响。结果表明,土霉素污染对土壤细菌、放线菌数量和微生物总量均有一定的抑制作用,随土霉素污染程度的提高抑制作用也有所增强;但土霉素污染对真菌的作用较为复杂,一般是低浓度时有促进作用,高浓度时有抑制作用。低量土霉素污染对土壤脲酶和中性磷酸酶活性均无明显的影响,但高量的土霉素污染对土壤脲酶活性起抑制作用。土霉素对土壤微生物生物量碳的影响因土壤类型、土霉素加入量和培养时间不同有所差异。土霉素污染对土壤生物化学性质的影响主要发生在土霉素进入土壤的初期,随着时间的增加,影响逐渐减弱和消失;  相似文献   

19.
Summary The structure of the below-ground detrital food web was similar in three different semiarid vegetation types: lodgepole pine (Pinus contorta subsp. latifolia), mountain meadow (Agropyron smithii), and shortgrass prairie (Bouteloua gracilis). The densities of component food-web functional groups and the response to removal of component groups, differed however. As measured by biomass, bacteria were dominant in the meadow and prairie, while fungi were dominant in the forest. Resourde-base dominance was reflected in consumer dominance, and both directly correlated with the form of inorganic N present. Bacterial-feeding nematodes were numerically dominant in the meadow and prairie, while microarthropods were dominant in the forest. Ammonium-N was the dominant form in the forest, while nitrate —nitrite-N was the more important form in both bacterial-dominated grasslands.Addition of a biocide solution containing carbofuran and dimethoate reduced the numbers of both microarthropods and nematodes. In the bacterial-dominated grasslands, these reductions resulted in no apparent effect on bacterial densities because one group of bacterial consumers (protozoa) increased following the decrease in bacteria-feeding nematodes, in increased fungal biomass, and in increased soil inorganic N. Conversely, in the forest, following the biocide-induced reduction in consumers, the total fungal biomass decreased, but inorganic-N levels increased. The meadow appeared to be the most resilient of the three ecosystems to biocide disturbance, as both nematode and arthropod numbers returned to control levels more rapidly in the meadow than in the prairie or the forest.  相似文献   

20.
《Applied soil ecology》2001,16(3):195-208
Soil structure mediates many biological and physical soil processes and is therefore an important soil property. Physical soil processes, such as aggregation, can be markedly influenced by both residue quality and soil microbial community structure. Three experiments were conducted to examine (i) the temporal dynamics of aggregate formation and the water stability of the obtained aggregates, (ii) the effect of residue quality on aggregation and microbial respiration, and (iii) the effect of fungi and bacteria on aggregation.In the first experiment, 250 μm sieved air-dried soil, mixed with wheat straw, was incubated for 14 days to allow formation of water-stable macroaggregates (>250 μm). Aggregate stability was measured by wet sieving after four different disruptive treatments: (i) soil at field capacity; (ii) soil air-dried and slowly wetted; (iii) soil air-dried and quickly wetted; (iv) 8 mm sieved soil, air-dried and immersed in water (slaking). After 14 days of incubation, maximum aggregation for soil sieved at field capacity was reached; however, these newly formed aggregates were not yet resistant to slaking.During the second experiment, the effect of low-quality residue (C/N: 108) (with or without extra mineral nitrogen) and high-quality residue (C/N: 19.7) (without extra mineral nitrogen) on macroaggregate formation and fungal and bacterial populations was tested. After 14 days, aggregation, microbial respiration, and total microbial biomass were not significantly different between the low-quality (minus mineral nitrogen) and high-quality residue treatment. However, fungal biomass was higher for the low-quality residue treatment compared to the high-quality residue treatment. In contrast, bacterial populations were favored by the high-quality residue treatment. Addition of mineral N in the low-quality residue treatment resulted in reduced macroaggregate formation and fungal biomass, but had no effect on bacterial biomass. These observations are not conclusive for the function of fungal and/or bacterial biomass in relation to macroaggregate formation. In order to directly discern the influence of soil microflora on aggregation, a third experiment was conducted in which a fungicide (captan) or bactericide (oxytetracycline) was applied to selectively suppress fungal or bacterial populations. The direct suppression of fungal growth by addition of fungicide led to reduced macroaggregate formation. However, suppression of bacterial growth by addition of bactericide did not lead to reduced macroaggregate formation. In conclusion, macroaggregate formation was positively influenced by fungal activity but was not significantly influenced by residue quality or bacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号