首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】克隆黄牛、牦牛和犏牛Sycp2基因序列,了解牛Sycp2基因序列特征和组织表达特征,分析睾丸组织中Sycp2基因的表达水平。【方法】采用电子克隆和克隆测序技术获得黄牛、牦牛和犏牛Sycp2基因序列,利用生物信息学方法分析其序列特征;采用RT-PCR分析牛Sycp2基因的组织表达特征;采用real-time PCR技术检测黄牛、牦牛和犏牛睾丸组织Sycp2基因的表达水平。【结果】①黄牛、牦牛和犏牛Sycp2基因编码区序列全长均为4 365 bp,命名为b-Sycp2,编码蛋白含有1 454个氨基酸残基,并包含卷曲螺旋结构域等典型结构域;②b-Sycp2基因在睾丸组织中特异表达,黄牛和牦牛睾丸组织中b-Sycp2基因的表达水平显著高于犏牛(P<0.05)。【结论】成功克隆了b-Sycp2基因,b-Sycp2基因为睾丸组织的特异表达基因,且黄牛和牦牛睾丸组织b-Sycp2基因表达水平显著高于犏牛。  相似文献   

2.
 【目的】研究牦牛和犏牛Dmc1基因编码区序列、结构和睾丸组织mRNA表达水平,探讨Dmc1基因与犏牛雄性不育的关系,为揭示犏牛雄性不育的分子机理提供参考。【方法】通过PCR扩增和克隆测序获得牦牛和犏牛Dmc1基因部分cDNA序列,运用生物信息学方法分析牦牛和犏牛Dmc1基因编码区序列、蛋白结构和进化关系,利用实时荧光定量PCR技术检测牦牛和犏牛睾丸组织中Dmc1基因mRNA表达水平。【结果】牦牛和犏牛Dmc1基因编码区序列全长均为1 023 bp,编码340个氨基酸,与黄牛Dmc1基因的同源性为100%,与哺乳纲其它物种的同源性在90%以上。牦牛和犏牛Dmc1蛋白含有RecA蛋白家族典型的第二结构域,且与人、鼠Dmc1蛋白结构域一致。系统发育分析显示牦牛、犏牛和黄牛首先聚为一类,后与家犬相聚;人、黑猩猩和猕猴聚为另一类,而与鸟纲动物相聚较远,与经典分类基本一致。定量结果显示犏牛睾丸组织Dmc1基因mRNA表达水平较低,与牦牛差异极显著(P<0.01),且犏牛表现出来的减数分裂障碍表型与小鼠Dmc1基因突变或敲除的表型一致。【结论】根据生物信息学分析结果推测牛Dmc1蛋白与人、鼠一样,在精母细胞减数分裂同源重组过程中发挥着重要作用;Dmc1基因在牦牛和犏牛睾丸组织中的表达量差异极显著(P<0.01),结合犏牛雄性减数分裂障碍表型,表明睾丸组织Dmc1基因可能与犏牛的雄性不育有一定的关系。  相似文献   

3.
【目的】研究犏牛与黄牛、牦牛睾丸组织SNRPN基因DMR甲基化状态、mRNA表达水平的差异,为揭示犏牛雄性不育的表观遗传机制提供依据。【方法】根据黄牛SNRPN基因序列设计引物,通过克隆测序获得牦牛SNRPN基因5'端序列,采用亚硫酸氢钠测序法检测犏牛及其亲本睾丸组织中SNRPN基因5'端DMR的甲基化状态,并采用Real-time PCR检测犏牛及其亲本睾丸组织中SNRPN基因的表达水平。【结果】牦牛SNRPN基因5'端序列长为1137bp,与黄牛的同源性达98.2%;生物信息学分析发现含有YY1和SP1等甲基化敏感位点。犏牛SNRPN基因DMR的甲基化水平(42.22%)极显著高于黄牛(21.08%)和牦牛(20.81%)(P0.01)。黄牛和牦牛睾丸组织中SNRPN基因mRNA表达水平高于犏牛,但未达到显著水平(P0.05)。【结论】犏牛睾丸组织SNRPN基因DMR的甲基化水平极显著高于黄牛和牦牛,且mRNA表达水平低于黄牛和牦牛,说明犏牛SNRPN基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

4.
【目的】研究牦牛和犏牛Dmrt7基因编码区序列和编码蛋白的结构,以及在睾丸组织中mRNA及其蛋白表达水平,探讨Dmrt7与犏牛雄性不育的关系,为揭示犏牛雄性不育的分子机理提供依据。【方法】利用分子克隆技术获得牦牛和犏牛Dmrt7基因编码区序列,并采用生物信息学方法对该基因及其编码蛋白的功能位点和二级结构等方面进行了预测和分析;通过半定量PCR技术检测Dmrt7基因mRNA在牦牛各组织器官中的表达水平;利用实时荧光定量PCR技术检测牦牛和犏牛睾丸组织中Dmrt7基因mRNA表达水平;并通过western blotting检测牦牛和犏牛睾丸组织中Dmrt7蛋白的表达水平。【结果】牦牛和犏牛Dmrt7基因cDNA序列一致,包含一个长度为1 113 bp的开放阅读框,编码370个氨基酸,具有完整的DM功能域,二级结构主要以无规则卷曲、α螺旋和延伸链为主。在牦牛各组织器官中,Dmrt7基因mRNA仅在睾丸组织中特异性表达。牦牛睾丸组织中Dmrt7mRNA和蛋白的表达水平极显著高于犏牛(P<0.01)。【结论】牦牛睾丸组织中Dmrt7基因mRNA和蛋白表达水平明显高于犏牛,且Dmrt7蛋白表达水平与其mRNA表达水平相一致。  相似文献   

5.
【目的】了解牦牛和犏牛睾丸组织中DDX4基因mRNA表达水平和启动子区甲基化状态。【方法】采用real-time PCR技术检测牦牛和犏牛睾丸组织DDX4基因mRNA表达水平,采用克隆测序技术获得牦牛和犏牛DDX4基因启动子区序列,采用亚硫酸氢钠测序法检测牦牛和犏牛睾丸组织中DDX4基因启动子区甲基化状态。【结果】牦牛睾丸组织中DDX4基因mRNA表达水平极显著高于犏牛(P<0.01);牦牛和犏牛DDX4基因启动子区1 370 bp,含有核心启动子区(251 bp)和CpG岛(918 bp)。犏牛睾丸组织中DDX4基因启动子区甲基化水平(86.5%)极显著高于牦牛(67.0%)(P<0.01)。【结论】牦牛睾丸组织DDX4基因表达水平极显著高于犏牛,获得了牦牛和犏牛DDX4基因启动子区序列,且犏牛睾丸组织中DDX4基因启动子区甲基化水平极显著高于牦牛(P<0.01)。  相似文献   

6.
【目的】研究b-Boule基因5′调控序列的序列特征,以及牦牛、黄牛与犏牛睾丸组织b-Boule基因DMR甲基化状态的差异,为揭示b-Boule基因的表达调控和犏牛雄性不育的表观遗传机制提供依据。【方法】采用PCR扩增和克隆测序技术获得牦牛b-Boule基因5′调控序列,利用生物信息学方法分析b-Boule基因5′调控序列的序列特征,采用亚硫酸氢钠测序法检测牦牛、黄牛与犏牛睾丸组织中b-Boule基因DMR的甲基化状态。【结果】b-Boule基因5′调控序列长度为1 352 bp,核心启动子区含有SP1等甲基化敏感位点,5′端存在一个CpG岛。犏牛b-Boule基因DMR的甲基化水平(17.78%)高于牦牛(7.50%)和黄牛(6.94%)(P<0.01),特别是CpG位点33—35的甲基化水平差异更明显。【结论】犏牛b-Boule基因DMR的甲基化水平高于牦牛和黄牛,结合前期mRNA表达水平和组织学观察结果,认为DMR甲基化在b-Boule基因的表达调控中发挥关键作用,犏牛b-Boule基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

7.
 【目的】研究b-Boule基因5′调控序列的序列特征,以及牦牛、黄牛与犏牛睾丸组织b-Boule基因DMR甲基化状态的差异,为揭示b-Boule基因的表达调控和犏牛雄性不育的表观遗传机制提供依据。【方法】采用PCR扩增和克隆测序技术获得牦牛b-Boule基因5′调控序列,利用生物信息学方法分析b-Boule基因5′调控序列的序列特征,采用亚硫酸氢钠测序法检测牦牛、黄牛与犏牛睾丸组织中b-Boule基因DMR的甲基化状态。【结果】b-Boule基因5′调控序列长度为1 352 bp,核心启动子区含有SP1等甲基化敏感位点,5′端存在一个CpG岛。犏牛b-Boule基因DMR的甲基化水平(17.78%)高于牦牛(7.50%)和黄牛(6.94%)(P<0.01),特别是CpG位点33—35的甲基化水平差异更明显。【结论】犏牛b-Boule基因DMR的甲基化水平高于牦牛和黄牛,结合前期mRNA表达水平和组织学观察结果,认为DMR甲基化在b-Boule基因的表达调控中发挥关键作用,犏牛b-Boule基因可能是通过DMR区的高甲基化抑制其mRNA表达来阻滞精子发生减数分裂过程。  相似文献   

8.
为了解DDX25基因的结构、功能及对犏牛雄性不育的影响。采用RT-PCR技术克隆获得牦牛和犏牛的DDX25基因,对核苷酸序列和氨基酸序列进行生物信息学分析,运用实时荧光定量PCR技术检测睾丸组织DDX25 mRNA的表达情况。结果表明,牦牛和犏牛DDX25基因编码区序列全长均为1 452bp,编码483个氨基酸,氨基酸存在19个磷酸化位点,无信号肽。牦牛睾丸组织DDX25基因表达水平显著高于犏牛,DDX25基因在犏牛睾丸组织的低表达与其雄性不育存在一定关系,该基因可作为研究犏牛雄性不育的候选基因。  相似文献   

9.
测定牦牛PRDX5基因序列,并比较其在牦牛和雄性不育犏牛睾丸组织中的表达差异,以探究该基因与犏牛雄性不育的关系。从牦牛睾丸组织中提取总RNA,采用RT-PCR技术克隆并测序获得牦牛PRDX5基因的c DNA序列;利用实时荧光定量RT-PCR技术检测该基因在牦牛与犏牛睾丸组织中的表达情况。结果表明:克隆获得的牦牛Prdx5序列长759 bp,包含长660 bp的CDS区,该序列与普通牛基因相差4个碱基,序列同源性为99.47%,相差的4个核苷酸导致推导的氨基酸序列存在3个氨基酸残基差异;Prdx5在牦牛和犏牛睾丸组织中均有表达,在牦牛睾丸组织中的表达量极显著高于犏牛(P0.01),是犏牛睾丸组织中表达量的6倍,提示Prdx5在犏牛睾丸组织中低水平表达可能与其雄性不育有关。  相似文献   

10.
对犏牛、牦牛睾丸组织中生长素(Ghrelin)与生长激素促分泌素受体(GHSR)基因mRNA表达水平进行研究。运用荧光定量PCR方法,检测Ghrelin、GHSR基因在犏牛、牦牛睾丸组织中m RNA的表达水平差异,结果显示:在犏牛、牦牛睾丸组织中,Ghrelin基因m RNA相对表达量犏牛显著高于牦牛(分别为0.8177±0.0225、0.4656±0.0222,P0.05);GHSR基因mRNA相对表达量也是犏牛显著高于牦牛(分别为0.8622±0.0347、0.4722±0.0761,P0.05)。相对于牦牛睾丸组织,犏牛睾丸组织中Ghrelin与GHSR基因m RNA均高表达可能是犏牛雄性不育的原因之一。  相似文献   

11.
类乌齐牦牛ACTA1基因克隆、分子特性及差异表达分析   总被引:1,自引:0,他引:1  
【目的】骨骼肌α肌动蛋白1(actin alpha 1, ACTA1)主要参与骨骼肌纤维的发育,在骨骼肌活动中发挥重要作用。本试验主要扩增类乌齐牦牛ACTA1基因的cDNA序列,检测ACTA1基因在类乌齐牦牛不同组织中mRNA水平的表达规律。【方法】采用RT-PCR方法扩增并克隆类乌齐牦牛ACTA1基因CDS区;通过在线软件对其一级结构、二级结构、三级结构进行生物信息学分析;利用核苷酸序列及氨基酸序列进行同源性和系统进化树分析;应用RT-qPCR技术检测ACTA1基因在类乌齐牦牛不同组织中的表达模式。【结果】类乌齐牦牛ACTA1基因编码区全长1134 bp,结构稳定,共编码377个氨基酸。生物信息学分析发现,类乌齐牦牛ACTA1基因编码的蛋白质是一种结构较稳定、带负电的亲水性蛋白,二、三级结构以α-螺旋为主,包含2个明显的跨膜区域,无信号肽,属胞内蛋白。保守结构域中含有明显的NDB区域,蛋白结构高度保守。同源性分析表明,类乌齐牦牛与水牛ACTA1基因的核苷酸及氨基酸同源性均较高。系统进化树分析显示,类乌齐牦牛与水牛亲缘关系最近,黄牛次之。实时荧光定量PCR结果显示,ACTA1基因在臀肌和大脑高表达。【结论】获得类乌齐牦牛ACTA1基因的CDS区全长1134 bp,ACTA1基因在类乌齐牦牛肌肉和大脑组织中显著表达,为进一步研究分析ACTA1基因在调控牦牛肌肉发育及机制等方面奠定基础。  相似文献   

12.
【目的】Akirin1基因是调控成肌细胞分化的关键基因,克隆美仁牦牛Akirin1基因编码区(CDS)序列进行生物信息学分析,并检测该基因在各组织间的表达特征,为研究调控牦牛肌肉生长的基因功能提供理论依据。【方法】利用RT-PCR技术克隆美仁牦牛Akirin1基因CDS区序列,通过生物信息学软件分析蛋白理化性质和结构,预测蛋白信号肽和磷酸化位点及构建系统进化树;通过qPCR技术检测Akirin1基因在美仁牦牛成年牛各组织间及胎牛肌肉中mRNA的表达水平。【结果】美仁牦牛Akirin1基因CDS区全长579 bp,编192个氨基酸,蛋白相对分子质量为21 879.86 u,理论等电点8.91,总平均亲水性-0.822,为亲水性蛋白;系统进化树表明:美仁牦牛与普通牛和印度水牛亲缘关系最近,同源性分别为100%、98.44%;Akirin1蛋白有29处磷酸化位点,无信号肽和跨膜区,主要在细胞核中发挥生物学功能;美仁牦牛Akirin1蛋白主要是由α-螺旋和无规则卷曲组成。Akirin1基因在美仁牦牛脂肪组织中表达量最高,与其他组织比较差异显著(P<0.05),且肌肉和心脏组织中的表达量最...  相似文献   

13.
【目的】孕激素受体膜组分1 (PGRMC1)在动物繁殖活动中有重要调节作用,本研究旨在探讨牦牛PGRMC1基因的序列及其在生殖轴的组织表达特性。【方法】试验采集5头牦牛和5头黄牛的下丘脑、脑垂体、卵巢、输卵管和子宫,以GenBank上已发布的普通牛PGRMC1基因序列设计引物,采用RT-PCR方法克隆牦牛和黄牛的PGRMC1基因,并使用相关的生物信息学软件对克隆所得序列进行分析;采用qRT-PCR法检测该基因在牦牛和黄牛不同组织中的表达情况。【结果】结果得到牦牛和黄牛PGRMC1基因cDNA序列(GenBank登录号:MF803753和MF803754),编码区(CDS)全长都为585 bp,编码194个氨基酸。其编码蛋白中含有1个Cyt-b5保守结构域。qRT-PCR结果表明:PGRMC1基因在牦牛和黄牛下丘脑、脑垂体、卵巢、输卵管和子宫都有表达,牦牛和黄牛的垂体中的PGRMC1的表达差异显著(P0.05),但在其他组织品种间差异不显著;牦牛PGRMC1在卵巢和垂体的表达量显著高于其他组织(P0.05)。【结论】本研究提示PGRMC1基因可能在牦牛卵泡发育、发情、排卵等繁殖机能调控中发挥重要作用。  相似文献   

14.
【目的】研究牦牛MYL3基因的结构和表达特征,探究其生物学功能及影响牦牛肌肉生长发育的机制。【方法】以美仁牦牛cDNA为模板,PCR扩增MYL3基因编码区序列(CDS),利用MEGA11软件构建系统进化树,利用生物信息学软件对其编码蛋白进行分析。通过实时荧光定量PCR(RT-qPCR)检测MYL3基因在心脏、肝脏、脾脏、肺脏(参照)、睾丸、肌肉和脂肪组织中的相对表达量。【结果】牦牛MYL3基因CDS区长600 bp,共编码199个氨基酸,存在1个碱基突变位点,位于第165位(A>T)。系统进化分析结果显示,牦牛与普通牛的亲缘关系最近,与单峰驼的亲缘关系最远。生物信息学分析结果显示,牦牛MYL3蛋白为不稳定的亲水性蛋白,无信号肽,不存在跨膜结构,主要存在于细胞质内,有8个磷酸化位点和2个N 糖基化位点,蛋白的二级结构以α-螺旋为主,主要与调控肌肉生长发育的相关蛋白相互作用。RT-qPCR结果表明,MYL3基因在心脏中的表达量最高,极显著高于其他组织;肌肉中次之,与除心脏外的其他组织存在极显著差异。【结论】MYL3基因可能与牦牛心脏发育有关,对肌肉的生长发育和肉质有一定影响。  相似文献   

15.
【目的】 分析牦牛心肌脂肪酸结合蛋白3(FABP3)基因的结构和功能,并检测其在成年牦牛和胎牛中的表达水平,为探究该基因在牦牛育种中的生物学功能提供理论参考。【方法】以美仁牦牛的心脏组织为试验材料,PCR扩增FABP3基因,对得到的编码区序列(CDS)进行生物信息学分析;利用实时荧光定量PCR(RT-qPCR),检测FABP3基因在成年牦牛和胎牛心脏、肝脏、脾脏、肺脏、肾脏及肌肉组织的表达水平。【结果】牦牛FABP3基因编码区序列长度为402 bp,编码133个氨基酸;蛋白质的高级结构主要是β 转角和延伸链;牦牛FABP3蛋白不存在跨膜区域和信号肽,属于具有一定亲水性的稳定蛋白;牦牛FABP3基因CDS区核苷酸及其编码氨基酸序列的同源性分析显示,FABP3基因在牛属动物中具有一定的保守性;系统进化树分析表明,牦牛与野牦牛和瘤牛的亲缘关系最近,与鸡的亲缘关系最远。RT-qPCR结果显示,FABP3基因在成年牦牛和胎牛的心脏、肝脏、脾脏、肺脏、肾脏及肌肉组织中均有表达,但在胎牛肝脏、脾脏、肾脏和肌肉中的表达水平显著或极显著高于成年牦牛,在成年牦牛肺脏中的表达水平极显著高于胎牛。【结论】克隆了牦牛FABP3基因,探究了FABP3基因在牦牛中的组织表达规律,为进一步研究该基因在牦牛脂肪沉积中的作用提供了基础数据。  相似文献   

16.
【目的】克隆牦牛(Bos grunniens)精子相关抗原11(Sperm-Associated Antigen 11,SPAG11)基因,并了解其分子结构特征,为进一步研究牦牛SPAG11生物学功能奠定基础。【方法】从牦牛睾丸中提取总RNA,RTPCR扩增并克隆SPAG11C、SPAG11 D和SPAG11E基因,测序后进行生物信息学分析。【结果】克隆出牦牛SPAG11基因3个亚型:SPAG11C、SPAG11 D和SPAG11E,序列大小分别是351,408和261bp,分别编码117,129和80个氨基酸,其中SPAG11 D和SPAG11E序列包含1个完整开放阅读框(ORF),SPAG11C序列包含部分ORF。牦牛SPAG11C、SPAG11 D和SPAG11E核苷酸序列与黄牛(Bos taurus)相应序列相似性最高,而与黄牛β-防御素1相似性较低(50%)。3个蛋白亚型均具有β-防御素家族基本特性,生物信息学分析显示其均含有磷酸化位点。【结论】成功克隆牦牛SPAG11C、SPAG11 D和SPAG11E基因,明确了其编码蛋白的分子结构特征。  相似文献   

17.
为探讨MEISETZ基因与犏牛雄性不育可能性关系,克隆测序牦牛、犏牛MEISETZ基因CDS区,运用生物信息学软件对其编码区作序列分析、蛋白结构与功能预测。结果表明,牦牛、犏牛MEISETZ基因CDS区长度均为688 bp,编码222个氨基酸残基;牦牛、犏牛MEISETZ蛋白均为偏碱性蛋白,不稳定指数高于阈值,蛋白结构不稳定,均无跨膜结构域,无信号肽,属非分泌型蛋白,二三级结构均以无规卷曲为主,均含有SET超家族结构域。系统进化分析显示,犏牛与牦牛聚为一类,亲缘关系最密切,序列高度保守。牦牛与犏牛核苷酸序列相比,共有4处发生碱基变异,相似性为99.4%;牦牛MEISETZ蛋白氨基酸序列与犏牛相比,144位(A→G)、204位(P→Q)2个位点发生变异,同源性为99.1%,研究为牦牛、犏牛MEISETZ基因结构与功能特别是犏牛雄性不育后续研究提供基础数据。  相似文献   

18.
【目的】对牦牛Cygb基因进行克隆与序列分析,为进一步深入研究Cygb基因在牦牛对低氧环境适应性中的作用提供理论基础。【方法】参照GenBank中牛的Cygb基因序列设计引物,提取牦牛肝组织RNA,以反转录合成的cDNA为模版,克隆牦牛Cygb基因并进行测序,运用生物信息学软件对所得序列进行分析。【结果】牦牛Cygb基因编码区全长573bp,编码190个氨基酸,编码产物分子质量21.5ku,理论等电点为6.61。蛋白预测表明,Cygb编码蛋白整体表现为亲水性,蛋白质的二级结构主要由α螺旋及延伸链构成。同源性分析表明,11条序列当中牦牛与牛、绵羊等物种具有较高的同源性,在系统发育树中距离最近,其中牦牛与牛的同源性最高,达到99.0%。【结论】克隆到573bp的牦牛Cygb基因编码区全长序列,该序列在哺乳动物中具有很高的保守性。  相似文献   

19.
【目的】克隆分析绵羊联会复合中心组分蛋白1(synaptonemal complex central element protein 1,SYCE1)基因,检测其在雄性生殖轴系中的表达,探索SYCE1对雄性动物生殖发育的调控机制。【方法】以雄性绵羊(小尾寒羊)为研究对象,通过RT-PCR技术克隆SYCE1基因序列,并对该序列及其编码的蛋白进行生物信息学分析;利用qRT-PCR、Western blotting技术分析SYCE1在绵羊下丘脑-垂体-睾丸生殖轴及不同发育阶段(40日龄、3月龄和12月龄)睾丸中的表达情况;采用免疫组织化学染色方法检测SYCE1蛋白在不同发育阶段睾丸组织中的分布情况。【结果】核苷酸序列分析表明,SYCE1基因CDS全长972 bp,编码274个氨基酸。进化树结果表明,绵羊SYCE1氨基酸序列与山羊、欧洲普通牛、野牛、白尾鹿等的氨基酸同源性高;不同物种之间同源性分析发现,SYCE1基因在进化中高度保守;qRT-PCR、Western blotting检测结果表明,SYCE1 mRNA及其蛋白在绵羊的下丘脑、垂体、睾丸及附睾组织中均有表达,其中睾丸组织表达量极显著高于其他组织(P<0.01),对于不同发育阶段的睾丸组织SYCE1表达水平随着绵羊年龄的增加逐渐升高;免疫组织化学染色结果显示,SYCE1蛋白在40日龄定位于睾丸间质细胞和少量精原细胞,在3月龄定位于睾丸初级精母细胞、精原细胞和间质细胞,在12月龄定位于睾丸初级精母细胞、次级精母细胞、精原细胞、间质细胞和支持细胞。【结论】SYCE1在雄性绵羊生殖轴和不同发育阶段睾丸中均有表达,随着绵羊年龄的增加SYCE1在睾丸组织中的表达水平逐渐上调,说明其与绵羊睾丸器官发育成熟度相关,推断其参与雄性绵羊生殖轴调控。  相似文献   

20.
【目的】克隆牛BMPRⅠA基因cDNA全长,以进行生物信息学分析和组织表达谱研究。【方法】运用生物信息学方法,结合RT-PCR和SMART RACE技术,对牛BMPRⅠA基因进行cDNA全长克隆和生物信息学分析,并通过RT-PCR方法进行了组织表达谱研究。【结果】克隆得到了牛BMPRⅠA基因4 067 bp的cDNA全长序列,通过核酸序列分析发现,该基因编码532个氨基酸,与人、黑猩猩、小鼠、大鼠、犬和红原鸡在核酸序列上分别有91%,93%,89%,88%,91%和82%的同源性;在氨基酸序列上分别有97%,95%,96%,95%,97%和91%的同源性。通过生物信息学分析发现,牛BMPRⅠA蛋白包含一个信号肽序列和一个跨膜区序列,其成熟蛋白可能位于细胞膜上。在牛卵巢、肝、肌肉、小肠、脂肪、子宫、肾脏、心肌、肺、胰腺、睾丸、乳腺、瘤胃、脾脏、淋巴、胸腺等组织中都检测到有BMPRⅠA基因表达。【结论】牛BMPRⅠA基因是一个功能重要、进化保守的基因,具有广泛的组织表达谱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号