首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chellemi DO 《Phytopathology》2002,92(12):1367-1372
ABSTRACT Nonchemical methods including host resistance, organic amendments, crop rotation, soil solarization, and cultural practices have been used to control soilborne pests in fresh market vegetable production systems. Their suitability as alternatives to methyl bromide will depend on the approach to pest management used by the grower. Traditionally, methyl bromide is used in production systems that rely on the single application of a broad-spectrum biocide to disinfest soils prior to planting. Non-chemical methods are not suitable for a single tactic approach to pest management because they do not provide the same broad spectrum of activity or consistency as fumigation with methyl bromide. Nonchemical methods are compatible with an integrated pest management (IPM) approach, where multiple tactics are used to maintain damage from pests below an economic threshold while minimizing the impact to beneficial organisms. However, adoption of IPM is hindered by the paucity of economically feasible sampling programs and thresholds for soilborne pests and by a reluctance of growers to commit additional resources to the collection and management of biological information. A novel approach to the management of soilborne pests is to design the crop production system to avoid pest outbreaks. Using this "proactive" approach, a tomato production system was developed using strip-tillage into existing bahia-grass pasture. By minimizing inputs and disruption to the pasture, growers were able to reap the rotational benefits of bahiagrass without cultivating the rotational crop. While minimizing the need for interventive procedures, a proactive approach is difficult to integrate into existing crop production systems and will require several years of testing and validation.  相似文献   

2.
小麦重大病虫害综合防治技术体系   总被引:17,自引:0,他引:17  
陈万权 《植物保护》2013,39(5):16-24
小麦是我国的主要粮食作物,病虫害是影响其稳产、高产的重要生物灾害。本文综述了自“七五”以来,我国小麦重大病虫害综合防治技术体系的主要研究进展,内容涉及综合防治的指导思想与策略、基本思路以及不同麦区病虫害综合防治技术体系基本模式,并对现有综合防治体系中存在的问题和发展前景进行了讨论。  相似文献   

3.
Fleischer SJ  Blom PE  Weisz R 《Phytopathology》1999,89(11):1112-1118
ABSTRACT Measuring and understanding spatial variation of pests is a fundamental component of population dynamics. The resulting maps can drive spatially variable pest management, which we define as precision integrated pest management (IPM). Precision IPM has the potential to reduce insecticide use and slow the rate of resistance development because of the creation of temporally dynamic refuges. This approach to IPM requires sampling in which the objective is to measure spatial variation and map pest density or pressure. Interpolation of spatially referenced data is reviewed, and the influence of sampling design is suggested to be critical to the mapped visualization. Spatial sampling created problems with poor precision and small sample sizes that were partially alleviated with choosing sampling units based on their geostatistical properties, adopting global positioning system technology, and mapping local means. Mapping the probability of exceeding a threshold with indicator kriging is discussed as a decision-making tool for precision IPM. The different types of sampling patterns to deploy are discussed relative to the pest mapping objective.  相似文献   

4.
Management of stored-grain insect pests by farmers or elevator managers should be based upon a knowledge of the grain storage environment and the ecology of insect pests. Grain storage facilities and practices, geographical location, government policies, and marketing demands for grain quality are discussed as factors influencing stored-grain insect pest management decisions in the United States. Typical practices include a small number of grain samples designed to provide grain quality information for segregation, blending and marketing. This low sampling rate results in subjective evaluation and inconsistent penalties for insect-related quality factors. Information on the efficacy of insect pest management practices in the United States, mainly for farm-stored wheat, is discussed, and stored-grain integrated pest management (IPM) is compared to field-crop IPM. The transition from traditional stored-grain insect pest control to IPM will require greater emphasis on sampling to estimate insect densities, the development of sound economic thresholds and decision-making strategies, more selective use of pesticides, and greater use of nonchemical methods such as aeration. New developments in insect monitoring, predictive computer models, grain cooling by aeration, biological control, and fumigation are reviewed, their potential for improving insect pest management is discussed, and future research needs are examined.  相似文献   

5.
Modern commercial poultry production under large companies is expanding worldwide with similar methods and housing, and the accompanying arthropod and rodent pest problems. The pests increase the cost of production and are factors in the spread of avian diseases. The biology, behavior and control of ectoparasites and premise pests are described in relation to the different housing and production practices for broiler breeders, turkey breeders, growout (broilers and turkeys), caged-layers, and pullets. Ectoparasites include Ornithonyssus fowl mites, Dermanyssus chicken mites, lice, bedbugs, fleas, and argasid fowl ticks. Premise pests include Alphitobius darkling beetles, Dermestes hide beetles, the house fly and several related filth fly species, calliphorid blow flies, moths, cockroaches, and rodents. Populations of these pests are largely determined by the housing, waste, and flock management practices. An integrated pest management (IPM) approach, tailored to the different production systems, is required for satisfactory poultry pest control. Biosecurity, preventing the introduction of pests and diseases into a facility, is critical. Poultry IPM, based on pest identification, pest population monitoring, and methods of cultural, biological, and chemical control, is elucidated. The structure of the sophisticated, highly integrated poultry industry provides a situation conducive to refinement and wider implementation of IPM.  相似文献   

6.
Production and trade in oil crops has expanded in response to an increasing world population and improved living standards. The global production of oil palm has increased rapidly over the last 30 years, and palm oil is now the world's second most important vegetable oil after soybean. Oil palm is an important cash crop in Papua New Guinea (PNG), with about 80,000ha in cultivation, grown both on large-scale plantations and by smallholders. The principal pests of oil palm in PNG are a group of insect species from the Tettigoniidae family (Orthoptera), known collectively as sexava. Three species of sexava are pests of oil palm in PNG, Segestes decoratus, Segestidea defoliaria and Segestidea novaeguineae. These insects cause damage by feeding on oil palm fronds and defoliation levels can be very severe where high populations occur. Severe defoliation causes reductions in photosynthesis resulting in yield loss from lower fruit production. During the last five years an integrated system has been developed for the management of sexava. This integrated pest management (IPM) system has the following components: (1) a knowledge of the biology and ecology of the pest, (2) economic thresholds, (3) monitoring system for the pest, (4) precise targeting of chemical control agents, (5) biological control, and (6) cultural control. The IPM system is sustainable and environmentally acceptable to the industry.  相似文献   

7.
Coffee in East Africa (Kenya, Tanzania and Uganda) is an important cash and export crop for small-scale farmers. The crop suffers heavy yield losses due to damage caused by a wide range of indigenous pests (insects, diseases, nematodes and weeds). Current recommended pest control measures include a combination of cultural, resistant/tolerant cultivars and the use of broad spectrum chemical pesticides. Chemical pesticides are far more popular at the farm level than any of the other recommended pest control measures. Coffee pest control strategies are often aimed at individual pests with little consideration of the implications for the total coffee pest complex and its agro-ecosystem. This unilateral approach has resulted in increased pest pressure on coffee and some of its companion crops, outbreak of new pests of coffee, development of pest strains resistant to the cheap and commonly available chemical pesticides, increased environmental problems, increased health risks to man and livestock and an overall increase in the costs of coffee production, thus forcing many farmers to neglect their coffee plantations. Measures to alleviate the above problems, particularly the high production costs, are needed to improve coffee production and increase the cash return to the small-scale farmer. Integrated pest management (IPM) offers the best prospects for solving the above problems. However, lack of national IPM policies, poor extension systems, inefficient research-extension-farmer linkage and the lack of a holistic approach will delay the development and implementation of appropriate, acceptable and sustainable IPM practices.  相似文献   

8.
害虫对转Bt基因植物抗性的治理策略   总被引:6,自引:2,他引:6  
转Bt基因植物在害虫综合防治中发挥着重要作用。但是害虫对转Bt基因植物可以产生抗性,从而影响其对害虫的防治效果和应用价值。通过制订合理的抗性治理策略可以使害虫对转Bt基因植物的抗性得到延缓和克服,在论述了转Bt基因抗虫植物的研究和应用现状的基础上,从IPM理论和生态学角度,就害虫对转Bt基因植物的抗性治理中的多毒素策略,高表达/低表达策略、避难区策略、特异性/诱导性表达策略以及其他可并用的防治手段进行了评价。  相似文献   

9.
Journal of Plant Diseases and Protection - In integrated pest management (IPM), pests are controlled when the costs of control correspond with the damage caused by a pest on a monetary scale,...  相似文献   

10.
ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.  相似文献   

11.
Integrated pest management (IPM) is a broad‐based approach for addressing pests that negatively affect human and environmental health and economic profitability. Weeds, insects and disease‐causing pathogens (diseases) are the pests most often associated with IPM. A systematic review, widely used in other scientific disciplines, was employed to determine the most commonly studied IPM topics and summarize the reasons for these trends and the gaps. In a field synopsis of the literature, 1679 relevant published papers were identified and categorized into one of the following five broad areas: IPM and organic (organic), climate change and pests (climate), rural and urban IPM (rural and urban), next‐generation education (education) and advanced production systems (technology). Papers were examined in greater detail for at least one of the three main pests in a systematic review. A majority (85%) of IPM papers have been in the area of rural and urban IPM, primarily addressing agriculture (78%). Professionals, landowners and the general public were the focus of a majority (95%) of IPM papers on education. Technology is an increasing area of focus in the literature. Over the past 40 years, IPM papers have primarily (75%) addressed insects and been limited mostly to rural and urban settings. Climate change, technology and education specific to pest management studies are increasingly being published and will help broaden the focus that could result in increased adoption and development of IPM. © 2017 Society of Chemical Industry  相似文献   

12.
Abstract

Regarding pests as reproductive pollutants, pest management can be considered as an optimal stock management problem similar to that faced in fishery and forestry. Taking this view, an optimal control model with N heterogeneous farmers sharing a mobile pest is developed to investigate the conventional pest management tactic on a farm-by-farm basis and the innovative area-wide pest management tactic on a regional basis. The study results indicate that area-wide pest management (APM) is superior to farm-by-farm pest management in the presence of pest movement. We proceed to examine the stability of the cooperative solution under APM by formulating the pest management problem as a repeated game of infinite duration. The results suggest that a one-off pest suppression campaign can be a practical strategy for initiating APM programs.  相似文献   

13.
Insecticide resistance management (IRM) is a component of integrated pest management (IPM) that has the goal of forestalling resistance development to all insecticides. Since the advent of the organochlorine insecticides in the 1940s, an average of about one class of insecticide has been lost every 10 years because of resistance. Effective insecticides are necessary for optimum IPM and are too important and too expensive a resource to be lost so rapidly. By adhering to the principles of IPM and utilizing other IPM components such as biological and cultural control, IRM has the potential of conserving the susceptibility of pests to insecticides. Although initial attempts of IRM appear to be successful, it is imperative that research to undergird IRM be greatly accelerated.  相似文献   

14.
Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed various studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Using examples from cotton crops, we show how trained plants can be brought to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit the agricultural benefits associated with this technique in cotton crops, with a focus on its potential as a supplementary tool for integrated pest management (IPM). In particular, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense through artificial injury. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. © 2018 Society of Chemical Industry  相似文献   

15.
Currently, European farmers do not have access to sufficient numbers and diversity of crop species/varieties. This prevents them from designing cropping systems more resilient to abiotic and biotic stresses. Crop diversification is a key lever to reduce pest (pathogens, animal pests and weeds) pressures at all spatial levels from fields to landscapes. In this context, plant breeding should consist of: (1) increased efforts in the development of new or minor crop varieties to foster diversity in cropping systems, and (2) focus on more resilient varieties showing local adaptation. This new breeding paradigm, called here ‘breeding for integrated pest management (IPM)’, may boost IPM through the development of cultivars with tolerance or resistance to key pests, with the goal of reducing reliance on conventional pesticides. At the same time, this paradigm has legal and practical implications for future breeding programs, including those targeting sustainable agricultural systems. By putting these issues into the context, this article presents the key outcomes of a questionnaire survey and experts' views expressed during an EU workshop entitled ‘Breeding for IPM in sustainable agricultural systems’. © 2017 Society of Chemical Industry  相似文献   

16.
BACKGROUND: The Southern Nursery Integrated Pest Management (SNIPM) working group surveyed ornamental nursery crop growers in the southeastern United States to determine their pest management practices. Respondents answered questions about monitoring practices for insects, diseases and weeds, prevention techniques, intervention decisions, concerns about IPM and educational opportunities. Survey respondents were categorized into three groups based on IPM knowledge and pest management practices adopted. RESULTS: The three groups differed in the use of standardized sampling plans for scouting pests, in monitoring techniques, e.g. sticky cards, phenology and growing degree days, in record‐keeping, in the use of spot‐spraying and in the number of samples sent to a diagnostic clinic for identification and management recommendation. CONCLUSIONS: Stronger emphasis is needed on deliberate scouting techniques and tools to monitor pest populations to provide earlier pest detection and greater flexibility of management options. Most respondents thought that IPM was effective and beneficial for both the environment and employees, but had concerns about the ability of natural enemies to control insect pests, and about the availability and effectiveness of alternatives to chemical controls. Research and field demonstration is needed for selecting appropriate natural enemies for augmentative biological control. Two groups utilized cooperative extension almost exclusively, which would be an avenue for educating those respondents. Copyright © 2012 Society of Chemical Industry  相似文献   

17.

BACKGROUND

Integrated pest management (IPM) has a long history in fruit production and has become even more important with the implementation of the EU directive 2009/128/EC making IPM mandatory. In this study, we surveyed 30 apple orchards in Norway for 3 years (2016–2018) monitoring pest- and beneficial arthropods as well as evaluating fruit damage. We obtained growers’ diaries of pest management and used these data to study positive and negative correlations of pesticides with the different arthropod groups and damage due to pests.

RESULTS

IPM level had no significant effects on damage of harvested apples by arthropod pests. Furthermore, damage by arthropods was mainly caused by lepidopteran larvae, tortricids being especially important. The number of insecticide applications varied between 0 and 3 per year (mean 0.8), while acaricide applications varied between 0 and 1 per year (mean 0.06). Applications were often based on forecasts of important pest species such as the apple fruit moth (Argyresthia conjugella). Narrow-spectrum insecticides were commonly used against aphids and lepidopteran larvae, although broad-spectrum neonicotinoid (thiacloprid) insecticides were also applied. Anthocorid bugs and phytoseiid mites were the most abundant natural enemies in the studied orchards. However, we found large differences in abundance of various “beneficials” (e.g., lacewings, anthocorids, parasitic wasps) between eastern and western Norway. A low level of IPM negatively affected the abundance of spiders.

CONCLUSION

Lepidoptera was found to be the most important pest group in apple orchards. Insecticide use was overall low, but number of spray applications and use of broad-spectrum insecticides varied between growers and regions. IPM level did not predict the level of fruit damage by insects nor the abundance of important pests or most beneficial groups in an apple orchard. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

18.
害虫种群的区域性分布特征和生态调控已经成为近十年来综合治理研究的热点问题。经过几十年的发展,害虫生态调控的防控技术表现了可持续和绿色等特征,但从田块到区域尺度的生态调控系统策略还不完善,很多仍需依赖传统的化学防治为辅助。面对农业害虫区域性灾变的重大农业生态学问题,本文总结了害虫种群的区域性分布特征,包括区域性、异质性、扩散性、突发性、协同性五大特征;重点阐述了害虫种群区域性生态调控的系统策略,形成了预防性管理、靶向式调控、成灾后治理三位一体的害虫“防控治”生态调控体系,协调多种生态调控技术在区域水平内“防控治”才能有效遏制害虫种群的持续暴发;对害虫种群的区域性管理进行了展望,未来害虫种群的区域性生态调控不仅要考虑经济指标,还需要具备安全、高效、精准、可持续四大核心特点。因此,害虫种群的区域化生态调控是未来保障农业生产和生态安全的必然选择。  相似文献   

19.
Abstract

Comparative field research on transgenic Bt cotton and conventional cotton under different conditions (fields without pesticide inputs, fields managed by farmers with IPM education, fields managed by farmers lacking IPM education) were carried out in Hubei province of China in 2002. The amount of pesticide used on Bt cotton by non-IPM farmers was found to be around three times that used by IPM farmers. IPM farmers made significantly higher net profits from cultivating transgenic Bt cotton in comparison with non-IPM farmers. Other pest management practices had more significant influences on the population dynamics of predatory natural enemies and major insect pests than did the adoption of transgenic Bt cotton in the cotton ecosystem. Our study showed that IPM education, by increasing farmer capacity to critically evaluate inputs and their effects, monitor their fields and make informed decisions on pest management, enabled farmers to reduce pesticide use significantly, so resulting in improved production and profit margin. IPM farmer education thus, contributed to maximising the value of planting transgenic Bt cotton.  相似文献   

20.
Six mealybug species have been reported as citrus pests in the Mediterranean Basin: the citrus mealybugPlanococcus citri (Risso), the citriculus mealybugPseudococcus cryptus Hempel, the longtailed mealybugPseudococcus longispinus (Targioni-Tozzetti), the citrophilus mealybugPseudococcus calceolariae (Maskell), the obscure mealybugPseudococcus viburni (Signoret) and the spherical mealybugNipaecoccus viridis (Newstead). Some of these species,e.g. N. viridis, have recently been introduced into the region and are still spreading. Mealybugs are usually occasional or minor pests of citrus, but some species can reach key pest status. Mealybug management strategies in citrus have been based mostly on classical biological control and, to a lesser extent, on augmentative releases. However, chemical control is widely used, mainly because of the poor adaptation of the principal natural enemies to the climatic conditions of the Mediterranean. The application of pheromones is still restricted to monitoring the citrus mealybug, whose sex pheromone is commercially available. Mass trapping and mating disruption should be considered for possible use in IPM programs as an alternative method to supplementary chemical treatments. Enhancement of biological control through management of ant populations is another promising tactic for control of mealybugs. Strategies for managing mealybug pests of citrus, and possible levels of integration of different tactics according to the pest status, are discussed. http://www.phytoparasitica.org posting Oct. 3, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号