首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To explore the role of endogenous and exogenous hydrogen sulfide (H2S) in acute lung injury (ALI) induced by ischmia-reperfusion (IR) of hind limbs in rats.METHODS: A Sprague-Dawley rat model of acute lung injury was induced by ischemia of the hind limbs for 4 h and reperfusion for another 4 h. The rats (n=120) were randomly divided into 4 groups: control, IR, NaHS (H2S donor)+IR, and propargylglycine +IR. The animals were sacrificed after reperfusion. Lung weight/body weight ratio (LW/BW) was measured and calculated. Morphological changes of the lung tissues were observed. The concentrations of H2S, nitric oxide (NO) and carbon monoxide (CO) in plasma were tested. The content of malondialdehyde (MDA), the activity of CSE, inducible nitric oxide synthase (iNOS) and hemeoxygenase (HO) in the lungs were determined. The polymorpho-nuclear neutrophils(PMN) and protein content in bronchoalveolar lavage fluid(BALF) were also measured. The correlation of H2S content with the above indices was analyzed.RESULTS: Compared with control group, severe injuries of the lung tissues, raised LW/BW, MDA concentration, PMN and protein contents in BALF were observed in IR group. Limb IR also made a drop in the concentration of plasma H2S and the activity of lung CSE, while the activity of iNOS and HO in the lung tissues and the levels of plasma NO and CO increased. Administration of NaHS before IR attenuated the changes induced by IR, while pre-administration of PPG exacerbated the IR injuries and increased the plasma NO level and lung iNOS activity. The H2S content was positively correlated with CSE activity, CO content and HO-1 activity (P<0.01), and negatively correlated with the other indices (P<0.01).CONCLUSION: Down-regulation of H2S/CSE is involved in the pathogenesis of acute lung injury induced by IR. Endogenous and exogenous H2S protects against lung injuries. The anti-injury effects of H2S are related with its anti-oxidative activity to attenuate the inflammatory over-reactions in the lung induced by PMN. Down-regulation of NO/iNOS system and up-regulation of CO/HO-1 system by H2S are also involved in the process of anti-injury to ALI.  相似文献   

2.
AIM: To explore the role of endogenous hydrogen sulfide (H2S) in the mechanism of cholecystokinin octapeptide (CCK-8) to alleviate acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS: Eighty-four Sprague-Dawley rats were randomly divided into seven groups: control, LPS (instilled intratracheally to reproduce the model of ALI), NaHS (H2S donor) +LPS, propargylglycine [inhibitor of cysathionine-γ-lyase (CSE), PPG]+LPS, CCK-8+LPS, PPG+CCK-8+LPS and CCK-8 group. Animals were sacrificed at 4 h and 8 h after agent instillation. The wet and dry ratio (W/D) of the lung weight was measured and calculated. Morphological changes of lung tissues were observed. H2S concentration in plasma, malondialdehyde (MDA) content, myeloperoxidase (MPO) and CSE activities in the lung were determined. Furthermore, the level of P-selectin of lung tissue was measured by radioimmunoassay, the CSE mRNA expression in the lung was detected by RT-PCR, and the protein content in bronchoalveolar lavage fluid (BALF) was detected. RESULTS: Compared with control, severe injury of lung tissues and increase in W/D, protein content in BALF, MDA content, MPO activity and P-selectin level in the lung were observed in rats treated with LPS. LPS also lead to a drop in plasma H2S concentration, lung CSE activity and CSE mRNA expression. Administration of NaHS before LPS could attenuate the changes induced by LPS, while H2S concentration, CSE activity and CSE mRNA expression were higher than those in LPS group. However, pre-treatment with PPG exacerbated the lung injury induced by LPS, H2S concentration, CSE activity and CSE mRNA expression were lower than those in LPS and CCK-8 +LPS group, respectively. CONCLUSION: CCK-8 attenuates LPS-induced acute lung injury by means of anti-oxidation and inhibition of PMN adhesion and aggregation, both of which are mediated by endogenous H2S.  相似文献   

3.
AIM: To evaluate the effect of exogenous hydrogen sulfide (H2S) on the expression of NLRP3 inflammasome in hepatocytes.METHODS: The hepatocytes L02 and SMMC-7721 were used to establish the model of inflammation by stimulating with lipopolysaccharide (LPS) at different concentrations in vitro. The expression of NLRP3 inflammasome in the hepatocytes was detected by Western blot and the cell viability was measured by MTT assay for determining appropriate concentration of LPS. The hepatocytes were divided into 4 groups:the cells in control group were incubated with normal medium for 18.5 h; the cells in LPS group were incubated with normal medium for 0.5 h followed by 100 μg/L LPS for 18 h; the cells in LPS+H2S group and H2S group were incubated with 200 μmol/L sodium hydrosulfide hydrate (NaHS) for 0.5 h followed by 100 μg/L LPS or normal medium for 18 h, respectively. The protein expression of NLRP3 and caspase-1 in the cells of every group was determined by Western blot. RESULTS: Compared with control group, the protein expression of NLRP3 and caspase-1 increased significantly in LPS group (P<0.05) and had no significant change in H2S group. Compared with LPS group, the protein expression of NLRP3 and caspase-1 in LPS+H2S group decreased significantly (P<0.05). CONCLUSION: In hepatocytes, exogenous H2S suppresses the expression of NLRP3 inflammasome.  相似文献   

4.
AIM: To investigate the role of hydrogen sulfide(H2S) on impaired wound healing in ob/ob mice and the underlying mechanism.METHODS: The ob/ob mice were randomly divided into 3 groups, including vehicle, insulin and NaHS for treatment. C57BL/6 mice were treated with vehicle as control. Full-thickness punch biopsy wounds were created on the mice. Firstly, H2S concentrations in the skins and granulation tissues were measured. The mRNA expression of cystathionine γ-lyase(CSE) was detected by RT-qPCR. The protein expression of CSE and MMP-9 were determined by Western blot. The neutrophil and monocyte/macrophage infiltration was analyzed by immunohistochemistry me-thod. The levels of tumor necrosis factor(TNF)-α and interleukin(IL)-6 were measured by ELISA.Collagen formation was measured by Masson staining.RESULTS: The H2S levels in the skin and granulation were significantly decreased in ob/ob mice and increased in the NaHS-treated mice(P<0.05). CSE expression at mRNA and protein levels was significantly decreased in ob/ob mice compared with the control mice(P<0.05). The wound healing period was significantly shorter in NaHS group than that in vehicle-treated ob/ob mice group(P<0.05), in which the insulin group had no difference with vehicle ob/ob mice group. The neutrophil and monocyte/macrophage infiltration, and TNF-α and IL-6 levels were significantly increased in ob/ob groups, but were decreased in NaHS group(P<0.01 or P<0.05). Meanwhile, NaHS increased collagen formation in the granulation tissues of ob/ob mice.CONCLUSION: H2S/CSE down-regulation contributes to impaired wound healing in diabetes, which is alleviated by exogenous H2S possibly through anti-inflammation.  相似文献   

5.
AIM: To investigate the effect of hydrogen sulfide (H2S) on airway inflammation induced by ozone (O3) exposure and its mechanisms.METHODS: C57BL/6 mice (n=32) were randomly divided into control group, O3 group, NaHS+O3 group and NaHS group. The mice in O3 group and O3+NaHS group were exposed to 2.14 mg/m3 O3 for 3 h on days 1, 3 and 5, while the mice in control group and NaHS group were exposed to filtered air. NaHS (14 μmol/kg) was administered intraperitoneally to the mice in NaHS group and O3+NaHS group 30 min before each exposure. After the last exposure for 24 h, the airway responsiveness was determined, and bronchoalveolar lavage fluid (BALF) was collected for counting inflammatory cells and measuring total protein concentration. The lung tissues were collected for observing the morphological changes with HE staining. The levels of interleukin-6 (IL-6), interleukin-8 (IL-8), malondialdehyde (MDA) and NF-κB p65 protein in the lungs were determined.RESULTS: Compared with control group, the airway responsiveness, inflammatory cells, protein concentration, inflammation score, levels of IL-6, IL-8, MDA and NF-κB p65 in O3 group increased significantly, but these in NaHS+O3 group decreased compared with O3  group.CONCLUSION: The present findings suggest that H2S attenuates O3 induced airway inflammation by inhibiting NF-κB expression and preventing lipid peroxidation.  相似文献   

6.
AIM:To investigate the protective effect of exogenous hydrogen sulfide (H2S) on obstructive renal injury in mice, and to explore the possible potential mechanisms involved in this animal model. METHODS:Male C57BL/6 mice (8 weeks old) were randomly divided into sham group, operation group and H2S group, with 5 rats in each group. The model of obstructive renal injury was induced by unilateral ureteral obstruction (UUO). The mice in H2S group were intraperitoneally injected with NaHS daily, while the mice in sham group and operation group were administered with the same volume of saline intraperitoneally. After 7 d, the mice were executed and the renal tissues were taken out for experiments. RNA was extracted to detect the mRNA expression of H2S catalytic enzymes in the mice of 3 groups. HE staining was performed to observe the structural changes of renal tissues in the mice. Renal fibrosis in the mice of 3 groups was evaluated by Masson staining. The content of cystatin C in the plasma was detected to reflect glomerular filtration ability. The protein expression of LC3, beclin-1 and fibronectin (FN) in the mice of 3 groups was determined by Western blot. RESULTS:Compared with sham group, the mRNA expression of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in operation group decreased significantly. The collagen fiber content in operation group was increased significantly, while collagen fiber content in H2S group was decreased significantly as compared with operation group. Compared with sham group, the protein expression of FN in operation group was increased significantly, while the protein expression of FN in H2S group was decreased significantly as compared with operation group. Compared with sham group, the protein expression of LC-Ⅱ and beclin-1 in operation group was increased significantly, while the protein expression of LC-Ⅱ and beclin-1 in H2S group was increased significantly as compared with the operation group. CONCLUSION:Exogenous H2S possibly mitigates renal fibrosis in UUO mice by up-regulating autophagy.  相似文献   

7.
AIM:To explore the effects of hydrogen sulfide (H2S) on proliferation of vascular smooth muscle cells (VSMC) stimulated by endothelin (ET-1, 10-7mol/L) and mitrogen-activated protein kinase (MAPK) activity in VSMCs.METHODS:Cultured VSMCs were divided into six groups: (1) control group, (2) serum group, (3) endothelin group, (4) NaHS groups, (5) serum+NaHS group, and (6) endothelin+NaHS group. VSMC proliferation was measured by[3H]-TdR incorporation and MAPK activity in VSMC was determined by radioactivity assay.RESULTS:ET-1 increased VSMC[3H]-TdR incorporation by 2.39 times (P<0.01) and MAPK activity by 1.62 times(P<0.01), as compared with control. H2S (5×10-5-5×10-4mol/L) decreased VSMC[3H]-TdR incorporation and MAPK activity by 16.8%-37.4% and 7.4%-33.6%, respectively (P<0.05 or P<0.01).CONCLUSION:This study demonstrates that H2S inhibits ET-1-induced proliferation of VSMC, which might be mediated by the inhibition of MAPK.  相似文献   

8.
AIM: To study whether salidroside plays a protective role in hypoxia-induced pulmonary hypertension by suppressing oxidative stress. METHODS: Sprague-Dawley rats were randomly divided into 4 groups:normoxia (N) group, hypoxia for 4 weeks (H4) group, low-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 16 mg/kg, H4S16) group and high-dose salidroside (hypoxia for 4 weeks and treatment with salidroside at 32 mg/kg, H4S32) group. The mean pulmonary arterial pressure (mPAP), the weight ratio of right ventricle/(left ventricle+septum)[RV/(LV+S)] and vessel wall area/vessel total area (WA/TA) were evaluated. The levels of malondialdehyde (MDA) in the serum and lung tissues were detected by colorimetric method. The levels of 8-iso-prostaglandin F (8-iso-PGF) in the serum and lung tissues were measured by ELISA. The activity of superoxide dismutase (SOD) in the serum was analyzed by hydroxylamine method. The expression of NAPDH oxidase 4 (NOX4) and SOD1 in the lung tissues was determined by Western blot. RESULTS: Compared with N group, the levels of mPAP, RV/(LV+S) and WA/TA in H4 group were significantly increased, which were apparently attenuated by salidroside injection in a dose-dependent manner. Meanwhile, salidroside administration apparently decreased the levels of MDA and 8-iso-PGF in the serum and lung tissues, as well as the expression of NOX4 in the lung tissues. Besides, compared with N group, the activity of SOD in the serum and the expression of SOD1 in the lung tissues in H4 group were significantly decreased, while administration of salidroside increased the activity of SOD in the serum and the expression of SOD1 in the lung tissues in a dose-dependent manner. CONCLUSION: Salidroside protects the pulmonary vessels from remodeling and attenuates hypoxia-induced pulmonary hypertension by inhibiting oxidative stress.  相似文献   

9.
AIM: To investigate the influence of hydrogen sulfide (H2S) on intestinal epithelial cell mitochondrial morphology and function and the expression of caspase-3, cleaved caspase-3, cytochrome C (Cyt C), Bcl-2 and Bax in rats with intestinal ischemia-reperfusion (I/R) injury. METHODS: Wistar rats (n=24) were randomly divided into 3 groups (8 in each group): sham group, I/R group and I/R+sodium hydrosulfide (NaHS) group. The animal model of intestinal I/R injury was established. The rats in I/R+NaHS group received NaHS (100 μmol/kg bolus +1 mg·kg-1·h-1 infusion) 10 min prior to the onset of reperfusion, whereas the rats in I/R group and sham group received equal volume of normal sodium. Ileum epithelial mitochondrial morphology and function were measured. Plasma H2S was detected by sensitive sulfide electrode. The expression of Bcl-2 and Bax mRNA was studied by RT-PCR. The protein levels of caspase-3, cleaved caspase-3, cytochrome C (Cyt C), Bcl-2 and Bax were tested by Western blot.RESULTS: The area, volume density, maximum diameter, minimum diameter and equivalent diameter of mitochondria, and the expression of cleaved caspase-3, Cyt C and Bax in I/R group were significantly higher than those in I/R+NaHS and sham groups (P<0.01). The mitochondrial count, circumference, specific surface area, area density and population density, plasma H2S, respiratory control rate (RCR), the ratio of P/O, R3 , R4, and the expression of Bcl-2 in I/R group were sharply lower than those in I/R+NaHS and sham groups (P<0.01). H2S was negatively correlated with caspase-3, cleaved caspase-3, Cyt C and Bax (P<0.01), and was positively correlated with Bcl-2 (P<0.01). CONCLUSION: H2S has a protective effect on mitochondrial morphology and function in rats with intestinal I/R injury by down-regulating cleaved caspase-3, Cyt C and Bax and up-regulating Bcl-2.  相似文献   

10.
AIM: To investigate the changes of endogenous cystathionine-γ-lyase/hydrogen sulfide pathway on hypoxia/reoxygenation injury in vivo and to explore the relationship between this pathway and hypoxia/reoxygenation injury. METHODS: Primary myocardial cell culture in vivo came from Wistar baby rats born less than 48 h. The cells were under the conditions of hypoxia (2% O2, 5% CO2) for 3 h and reoxygenation (21% O2, 5% CO2) for 2 h to induce hypoxia/reoxygenation injury. MTT was used to detect the cell survival in every group. The activities of lactate dehydrogenase (LDH) in culture medium, malondialdehyde (MDA) and superoxide dismutase (SOD) in myocardial cells were measured with colorimetry method. RT-PCR method was used to test CSE mRNA expression in myocardial cells. RESULTS: Compared to IR group, the cells in NaHS+IR and IR+NaHS groups had a higher survival rate, lower LDH concentration in culture medium, higher SOD activity and lower MDA in myocardial cells. At the same time, the results of RT-PCR displayed that CSE mRNA were down-regulated in myocardial cells after hypoxia/reoxygenation injury, and if CSE inhibitor PPG was added into the culture medium before hypoxia, no protective effects were detected. CONCLUSION: NaHS might protect the myocardial cells from hypoxia/reoxygenation injury through decreasing oxygen free radical production and stabilizing the cell membrane.  相似文献   

11.
AIM:To explore the effect of hydrogen sulfide (H2S) on urosepsis-induced acute kidney injury. METHODS:New Zealand white rabbits were randomly divided into control group, sham group, model (sepsis) group, NaHS treatment (NaHS) group, and NaHS combined with TAK-242 (a TLR4 inhibitor) treatment (NaHS+TAK-242) group. After treatment for 72 h, HE staining was used to measure the histopathological changes of rabbit kidney. The levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected by automatic biochemical analyzer. The serum levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), procalcitonin (PCT), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by ELISA. The TLR4/MyD88/PI3K signaling pathway-related proteins in the kidney were determined by Western blot. RESULTS:Compared with control group, obvious damage was observed in the kidneys of septic rabbits, but the kidneys were markedly improved by treatment with NaHS. The levels of BUN, SCr, NGAL, KIM-1, PCT, IL-1β, IL-6 and TNF-α in the septic rabbits were higher than those in control group, and decreased significantly in NaHS group and NaHS+TAK-242 group. The protein levels of TLR4, MyD88, p-PI3K and p-Akt in septic rabbit kidneys were higher than those in control group. However, NaHS or NaHS+TAK-242 inhibited the activation of TLR4/MyD88/PI3K signaling pathway in the kidneys of septic rabbits. CONCLUSION:H2S play a protective effect on the rabbits with urosepsis-induced acute kidney injury by blocking TLR4/MyD88/PI3K signaling pathway to inhibit inflammatory response.  相似文献   

12.
AIM: To investigate the effect of hydrogen sulfide (H2S) on high glucose (HG)-induced injury of the mouse podocyte cell line MPC5. METHODS: The cultured MPC5 cells were randomly divided into 4 groups: HG group, normal glucose (NG) group, NG+DL-propargylglycine (PPG) group, and HG+NaHS group. After treated for a certain time, the cells were collected for further detection. The expression of zonula occludens-2 (ZO-2), nephrin, β-catenin and cystathionine γ-lyase (CSE) was determined by Western blotting. RESULTS: High glucose significantly reduced the expression of nephrin, ZO-2 and CSE (P<0.05), while the level of β-catenin was elevated obviously (P<0.05), all in a time-dependent manner. NG+PPG inhibited the levels of ZO-2 and nephrin significantly (P<0.05), and increased the level of β-catenin (P<0.05), all in a PPG concentration-dependent manner. HG+NaHS induced a more significant increase in the levels of ZO-2 and nephrin as compared with HG group (P<0.01), whereas a severe reduction of β-catenin in HG+NaHS group was observed as compared with HG group. Compared with NG group, the expression of ZO-2 and nephrin was decreased obviously, and the level of β-catenin was increased in HG+NaHS group. CONCLUSION: Down-regulation of CSE contributes to hyperglycemia-induced podocyte injury. Exogenous H2S protects against hyperglycemia-induced podocyte injury, possibly through up-regulation of ZO-2 and subsequent suppression of Wnt/β-catenin pathway.  相似文献   

13.
AIM: To investigate the effects of sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S), on the membrane permeability, intracellular Ca2+ concentration ([Ca2+]i) and the release of IL-1β induced by adenosine triphosphate (ATP) in rat microglia, and to explore the effect of H2S on ATP-P2X purinergic signaling pathway and the molecular mechanism of its neuroprotective effect. METHODS: Rat microglia in logarithmic growth phase were used in the study. The[Ca2+]i was detected by Fura-2/AM staining. Fluorescent dye YO-PRO-1 was used to observe the membrane permeability. Interleukin-1β (IL-1β) was measured by rat IL-1β ELISA kits. RESULTS: The YO-PRO-1 fluorescence intensity was obviously elevated by ATP induction in a dose-dependent manner in the rat microglia, but this effect was counteracted by NaHS pretreatment (P<0.05).[Ca2+]i rapidly increased and then decreased slowly, forming a stable platform for a long time when rat microglia were treated with ATP. Ca2+ spike activity induced by ATP had no change, but the platform disappeared (P<0.05) after NaHS pretreatment. The ATP and LPS together facilitated the release of IL-1β, but the phenomenon was inhibited by NaHS (P<0.05). CONCLUSION: Hydrogen sulfide may decrease the membrane permeability, calcium inflow and IL-1β release in rat microglia activated by high dose of ATP. The cytoprotection of hydrogen sulfide may be mediated by purinergic signaling pathway.  相似文献   

14.
AIM: To investigate the effect of H2S on pulmonary artery hypertension during acute lung injury induced by LPS and the interaction between the systems of hydrogen sulfide (H2S)/cystathionine-β-lyase (CSE) and nitric oxide (NO)/nitric oxide synthase (NOS) in this process. METHODS: Seventy-two adult male rats were randomly divided into four groups: control group, LPS group, LPS+L-NAME group and LPS+propargylglycine (PPG) group. Mean pulmonary artery pressure (mPAP) of each rat was examined at 2 h, 4 h, 6 h and 8 h after treatment. H2S and NO contents in plasma, NO content, iNOS, cNOS and CSE activity in lung were measured at 4 h or 8 h after treatment, respectively. Expression of iNOS in lung tissue was also detected by immunohistochemistry technique, and the injury of lung was evaluated with morphological changes under microscope. RESULTS: LPS could induce severe lung injury, and mPAP, NO content, iNOS activity and its protein expression in LPS group significantly increased, but cNOS activity, H2S content and CSE activity decreased compared with those of control group. Administration of L-NAME before LPS could attenuate the changes induced by LPS. Pre-administration of PPG, a CSE inhibitor, exacerbated the injury by LPS, but there was no prominent variation in cNOS activity. CONCLUSION: Reduced endogenous H2S could increase pulmonary artery hypertension during acute lung injury induced by LPS. There is a negative effect between H2S/CSE system and NO/NOS system in this process.  相似文献   

15.
AIM: To investigate the effect of hydrogen sulfide (H2S) on the reactive oxygen species (ROS) level in medullary neurons induced by angiotensin II (Ang II). METHODS: Primarily cultured rat medullary neurons were divided into 5 groups as follows: control group, Ang II group, sodium hydrosulfide(NaHS) group, NaHS with Ang II group, and PD98059 (an inhibitor of p-ERK1/2) with Ang II group. ROS production was measured with dihydroethidium (DHE) staining. The expression of p-ERK1/2 and ERK1/2 was determined by Western blotting. The activity of neurons was detected by CCK-8 assay. RESULTS: Ang II at concentration of 100 nmol/L significantly increased ROS level in the neurons, but the effect was inhibited by NaHS at concentrations of 50~200 μmol/L, while NaHS alone had no influence on the ROS level in neurons. Additionally, PD98059 also depressed the ROS level in neurons induced by Ang II. Furthermore, the enhanced expression of p-ERK1/2 in the neurons induced by Ang II was significantly reduced by NaHS. CONCLUSION: H2S remarkably inhibits the ROS level in the neurons induced by Ang II via activation of MAPK signal pathways, especially p-ERK1/2, indicating that H2S rescues neurons from oxidative stress through declining the enhanced expression of p-ERK1/2.  相似文献   

16.
17.
AIM:To investigate the role of hydrogen sulfide (H2S) in alleviation of liver injury by mesenteric lymph drainage in hemorrhagic shock rats. METHODS:A hemorrhagic shock model was established in male Wistar rats. DL-propargylglycine (PPG), an inhibitor of cystathionine γ-lyase (CSE) which is a synthase of H2S, or sodium hydrosulfide (NaHS), a donor of H2S, was administered to the hemorrhagic shock rats with mesenteric lymph drainage. The rats were randomly divided into sham, shock, shock+drainage, shock+drainage+PPG (45 mg/kg, ip, 0.5 h before hemorrhage) and shock+drainage+NaHS (28 μmol/kg, ip, 0.5 h before hemorrhage) groups. Fluid resuscitation was performed 1 h after hypotension, and then mesenteric lymph was drained in the rats of shock+drainage, shock+drainage+PPG and shock+drainage+NaHS groups for 3 h. The hepatic histomorphology was observed. The biochemical indexes of hepatic function in plasma, and H2S, CSE, Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12 and tumor necrosis factor α (TNF-α) in hepatic homogenate were also examined. RESULTS:The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bile acid (TBA) in plasma, and H2S, CSE, TLR4, IL-10, IL-12 and TNF-α in hepatic homogenate in shock group were significantly higher than those in sham group. Mesenteric lymph drainage obviously reduced these indexes in shock rats, except for TLR4. PPG further decreased these indexes except for CSE, while NaHS increased these indexes except for TBA and CSE. Morphological observation showed that liver injury appeared in the rats from shock and shock+drainage+NaHS groups, and there was nearly normal hepatic structure in the rats from sham, shock+drainage and shock+drainage+PPG groups. CONCLUSION:The mechanism of mesenteric lymph drainage alleviating liver injury in hemorrhagic shock rats is related to reducing the production of H2S and alleviating the H2S-mediated inflammation.  相似文献   

18.
AIM: To investigate the neuroprotective effect of hydrogen sulfide (H2S) after cardiopulmonary resuscitation in rats with cardiac arrest (CA), and to explore the effects of H2S on neuron autophagy. METHODS: The CA model was established through asphyxia. Male Wistar rats were randomly divided into sham group, model group and NaHS group. The levels of beclin-1 and LC3 II/I were measured by Western blot at 2 h, 4 h, 12 h and 24 h after the restoration of spontaneous circulation (ROSC). At 12 h after ROSC, the formation of autophagic vacuole with LC3 dots was determined by immunohistochemical (IHC) method. The phenomenon of neuron autophagy was observed under transmission electron microscope. The numbers of apoptotic neurons were counted by TUNEL staining at 72 h after ROSC. The neurolo-gic deficit score (NDS) was used to evaluate the neurologic function after ROSC. RESULTS: The level of beclin-1 was gradually increased in model group, but it was increased and then gradually recovered in NaHS group (P < 0.05). The conversion of LC3 II in the cerebral cortex was the same as beclin-1. The results of IHC showed that LC3-positive nuclei in model group were more than those in NaHS group (P < 0.05). The number of autophagic vacuole in model group was more than that in NaHS group (P < 0.05). The number of the TUNEL-positive cells in model group was more than that in NaHS group (P<0.05). The NDS of the animals in NaHS group after ROSC was lower than that in model group(P < 0.05). CONCLUSION: H2S inhibits neuronal autophagy, decreases apoptosis and improves neurologic function in CA rats after ROSC.  相似文献   

19.
AIM: To investigate the potential role of exogenous hydrogen sulfide (H2S) and ATP-sensitive potassium (KATP) channels in chronic stress-induced colonic hypermotility.METHODS: Male Wistar rats were divided into water avoidance stress (WAS) group and sham WAS (SWAS) group. Organ bath recordings were used to test the contractile activity of colonic strips. The effects of H2S donor NaHS and pretreatment with glibenclamide on the contractions of colonic smooth muscle were studied and the IC50 of NaHS was calculated. The localization and expression of the subunits of KATP channels were determined by the methods of immunohistochemistry and Western blotting.RESULTS: WAS increased contractile activity of colonic strips. NaHS concentration-dependently inhibited the spontaneous contractions of strips from the SWAS and WAS rats. The IC50 of NaHS for longitudinal muscle (LM) and circular muscle (CM) of the WAS rats was 0.2033 mmol/L and 0.1438 mmol/L, significantly lower than those of the SWAS rats. Glibenclamide significantly increased the IC50 of NaHS for LM and CM from the SWAS and WAS rats. In both SWAS and WAS rat colon, Kir6.1, Kir6.2 and SUR2B were expressed on the plasma membrane of the smooth muscle cells. WAS treatment resulted in up-regulation of the expression of Kir6.1 and SUR2B in the colon devoid of mucosa and submucosa.CONCLUSION: The increased expression of Kir 6.1 and SUR2B in colonic smooth muscle cells may be a defensive response to chronic WAS. H2S donors may have potential clinical effect on treating chronic stress-induced colonic hypermotility.  相似文献   

20.
AIM:To investigate the potential role of endogenous hydrogen sulphide (H2S) in severe acute pancreatitis (SAP). METHODS:A rat model of SAP was used to evaluate the role of H2S on intestinal motility by counting the number of fecal pellets and the effect of H2S on the expression of inflammation-related molecule in intestine was investigated. The colonic muscle cells (CMCs) were treated with plasma of SAP rats, tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6), and the expression of cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), Sp1 and PI3K/Akt related proteins at mRNA and protein levels were determined by RT-qPCR, Western blot and immunohistochemical staining,respectively. The PI3K inhibitor LY294002 and the siRNA-Sp1 were used to suppress the activity of PI3K/Akt/Sp1 signaling pathway. RESULTS:H2S facilitated an inhibitory effect on the intestinal motility and enhanced the inflammatory responses in SAP (P<0.05). The expression of CSE and CBS in CMCs was significantly increased after treatment with TNF-α or IL-6 (P<0.05). Blockage of the PI3K/Akt/Sp1 signaling pathway remarkably inhibited the synthesis of CSE and CBS in CMCs(P<0.05). CONCLUSION:Inflammation driven activation of PI3K/Akt/Sp1 signaling pathway and endogenous production of H2S play a vital role in the pathogenesis of SAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号