首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To observe the expression of Snail1 and insulin-like growth factor-1 (IGF-1) in NRK-52E cells induced by high glucose, and to investigate the relationship of Snail1 and IGF-1 in the mechanism of epithelial to mesenchymal transition (EMT) in diabetic kidney disease (DKD).METHODS: The NRK-52E cells were treated with Snail1 siRNA and IGF-1 siRNA after cultured with high glucose medium for 72 h, and divided into control group, high glucose group, non-targeting (NT) siRNA group, Snail1 RNAi group and IGF-1 RNAi group. The cells were harvested at 48 h and 72 h. Real-time PCR was used to detect the mRNA expression of Snail1, IGF-1, E-cadherin and fibronectin (FN), and the protein levels were determined by immunofluorescence staining.RESULTS: Compared with control group, the expression of E-cadherin at mRNA and protein levels declined after stimulation with high glucose (P<0.01), while that of FN was elevated (P<0.01). Meanwhile, the mRNA and protein levels of Snail1 and IGF-1 were markedly increased (P<0.01).The expression of E-cadherin at mRNA and protein levels was improved in Snail1 RNAi group as compared with high glucose group(P<0.01), while that of FN, IGF-1 and Snail1 was significantly down-regulated (P<0.01). The same changes were observed in IGF-1 RNAi group (P<0.01). The protein expression of each factor in NT group had no significant change as compared with high glucose group (P>0.05). Pearson correlation analysis showed a close positive relationship between the expression of Snail1 and IGF-1 protein (r=0.852, P<0.01).CONCLUSION: Snail1 may facilitate DKD development by regulating IGF-1 in the process of EMT.  相似文献   

2.
AIM: To investigate the expression of poly(ADP-ribose) polymerase-1(PARP-1) in the epithelial ovarian cancer(EOC) and its relationship with epithelial-mesenchymal transition(EMT). METHODS: The expression of PARP-1, E-cadherin, vimentin and Snail was detected in the EOC and benign ovarian tumor tissues by immunohistochemical method and real-time PCR. The expression of PARP-1, E-cadherin, vimentin and Snail proteins in the SKOV3 cells treated with efficient PARP-1 inhibitor PJ34 was determined by Western blotting. RESULTS: The positive expression rates of PARP-1, vimentin and Snail were significantly higher in the EOC than that in the benign ovarian tumor tissues, whereas the positive expression rate of E-cadherin was the opposite(P<0.05). The expression of PARP-1, E-cadherin, vimentin and Snail in the EOC was associated with the histological grade, clinical stage and lymphatic metastasis(P<0.05), but no relationship with age and pathological types was observed. The expression of E-cadherin in the EOC was negatively co-related to that of PARP-1. In contrast, the expression of vimentin and Snail in the EOC was positively co-related to that of PARP-1. The relative mRNA expression of PARP-1, vimentin and Snail in the EOC was significantly higher than that in the benign ovarian tumor tissues(P<0.05), while the mRNA expression of E-cadherin in the EOC was remarkably lower than that in the benign ovarian tumor tissues(P<0.05). The protein expression of PARP-1, vimentin and Snail in the SKOV3 cells was significantly decreased(P<0.05), while E-cadherin protein was increased after treated with PJ34(P<0.05). CONCLUSION: PARP-1 may contribute to the onset of EMT in the EOC by regulating the expression of E-cadherin, vimentin and Snail. The role of PARP-1, which is relevant to EMT, might be important in the development of ovarian cancer.  相似文献   

3.
AIM: To investigate the effect of toosendanin (TSN) on invasion and migration abilities of human ovarian cancer cells and the related mechanism. METHODS: The human ovarian cancer cell lines CAVO-3 and SKVO-3 were treated with TSN at different concentrations. The cell viabilty at 12, 24, 48, 72 and 96 h after TSN treatment was measured by CCK-8 assay. Scratch wound healing assay and Transwell assay were employed to measure the invasion and migration abilities of CAVO-3 cells. The protein expression of nuclear factor-κB (NF-κB) p65, E-cadherin, N-cadherin, vimentin and Snail was determined by Western blot. RESULTS: TSN significantly inhibited the viability of CAVO-3 and SKVO-3 cells (P<0.05). Compared with control group, the migration and invasion abilities of CAVO-3 cells in TSN group decreased significantly (P<0.05). In addition, the expression of NF-κB p65 and E-cadherin protein increased notably, followed with N-cadherin, vimentin and Snail protein decreased significantly (P<0.05). However, the inhibitor of NF-κB BAY11-7082 reversed the impact above. Compared with TSN group, the migration and invasion abilities in TSN+BAY11-7082 group increased significantly (P<0.05). The protein expression of E-cadherin also decreased notably, followed with the protein expression of N-cadherin, vimentin and Snail increased significantly (P<0.05). CONCLUSION: TSN inhibits the invasion and migration abilities of human ovarian cancer cells, which is related to the inhibition of epithelial-mesenchymal transition process mediated by NF-κB/Snail signaling pathway.  相似文献   

4.
AIM: To investigate the mechanism of juglone on epithelial-mesenchymal transition in prostate cancer cells. METHODS: Human prostate cancer LNCaP cells were divided into control group (without juglone), 12.5 μmol/L juglone group and 25 μmol/L juglone group. LNCaP cells in the latter 2 groups were treated with juglone for 24 h. The invasion ability of the LNCaP cells was detected by Transwell assay. The protein expression of E-cadherin, vimentin, Snail and β-catenin was determined by Western blot. The LNCaP cells were treated with LiCl and juglone in combination for 24 h, and the protein expression of Snail and E-cadherin was detected by Western blot.RESULTS: The results of Trans-well invasion assay showed that the invasion ability in juglone groups was significantly decreased (P<0.01). The protein expression of E-cadherin in the LNCaP cells treated with juglone was increased, and the expression levels of vimentin and β-catenin were reduced (P<0.01). Treatment with LiCl significantly attenuated the inhibitory effect of juglone on Snail expression and subsequent down-regulation of E-cadherin expression. CONCLUSION: Juglone inhibits the epithelial-mesenchymal transition by inhibiting the Wnt/β-catenin/Snail signaling pathway in the LNCaP cells.  相似文献   

5.
AIM: To investigate the mechanism of Chutan-Jiedu decoction (CJD) reversing the resistance of lung cancer to gefitinib via epithelial-mesenchymal transition (EMT) pathway.METHODS: BALB/c nude mice (n=60) were selected to establish lung cancer xenograft model with human lung adenocarcinoma drug-resistant cell line H1975, which were randomly divided into 6 groups (10 mice per group):model group, gefitinib (0.04 g/kg) group, low-dose (13.52 g/kg) CJD group, middle-dose (27.04 g/kg) CJD group, high-dose (54.08 g/kg) CJD group, and combined medication group (27.04 g/kg CJD+0.04 g/kg gefitinib). The mice in each group were treated for 2 weeks before the tumor size and tumor weight were detected for the calculation of the tumor inhibitory rate. The mRNA and protein expression levels of E-cadherin, Snail and vimentin were determined by immunohistochemistry, Western blot and real-time PCR.RESULTS: Compared with model group and gefitinib group, the tumor size and the tumor weight in middle-dose CJD group, high-dose CJD group and combined medication group were decreased significantly (P<0.05). The results of immunohistochemistry, Western blot and real-time PCR showed that the expression of E-cadherin at mRNA and protein levels was increased significantly, while the expression of Snail and vimentin at mRNA and protein levels was decreased significantly (P<0.05).CONCLUSION: The growth of lung adenocarcinoma H1975 xenografts in nude mice is inhibited by CJD. In addition, the resistance of lung cancer to gefitinib is reversed. The mechanism may be related to the regulation of EMT-related protein expression.  相似文献   

6.
AIM: To explore the effect of urokinase (u-PA) and astragalus mongholicus(AM) on expression of Snail1 in rats with cyclosporin A (CsA) induced nephropathy. METHODS: Male SD rats were treated with CsA (25 mg·kg-1·d-1) by gavage to induce chronic kidney disease. The rats were randomly divided into 5 groups: control group, CsA group, u-PA group, AM group and combination group. Renal interstitial fibrosis was graded according to Masson staining. The expression of Snail1 was examined by immunohistochemistry and Western blotting. The expression of E-cadherin and FSP1 was also determined by Western blotting. RESULTS: The levels of collagen deposition and the expression of Snail1 and FSP1 in CsA group and treatment groups were significantly increased as compared to control group (P<0.05), but the expression level in the treatment groups was lower than that in CsA group (P<0.05). E-cadherin was decreased in CsA group, while such effects were significantly abrogated in the treatment groups (P<0.05). The best therapeutic efficacy was observed in combination group. CONCLUSION: Snail1 plays an important role in processing renal fibrosis through mediating epithelial-mesenchymal transition. Urokinase and astragalus mongholicus attenuate renal fibrosis in rats with cyclosporin A induced nephropathy, the mechanism may be related to the inhibition of Snail1 expression and the subsequent prevention of tubular epithelial-mesenchymal transition.  相似文献   

7.
AIM: To explore the effect of neuroepithelial cell transforming gene-1 (NET-1) expression on the metastasis of lung squamous-cell carcinoma (LSC) and the underlying molecular mechanism. METHODS: Immunohistochemistry was used to detect the expression of NET-1 protein in 53 cases of lung squamous-cell carcinoma (LSC group), 24 cases of normal lung epithelium (NLE group) and 27 cases of lung squamous intraepithelial lesions (SIL group). The correlation of clinical and pathological factors was analyzed. The protein expression of NET-1 in human lung squamous-cell carcinoma cell lines H226, H1703, H2170, SK-MES-1, H520 and YTMLC-90 was determined by Western blot. The RNA interference recombinant adenovirus against NET-1 gene (Ad-NET-siRNA) and Ad-control with control sequence were constructed and infected with human lung squamous cell carcinoma cell YTMLC-90 to silence the expression of NET-1 gene. The protein expression of NET-1, E-cadherin, vimentin and Snail1 in the BEAS-2B cells and the YTMLC-90 cells was determined by Western blot. The mRNA expression of E-cadherin and vimentin in each group of the cells was detected by qPCR. The invasive ability of the cells in each group was detected by Transwell chamber assay. RESULTS: The positive expression rate of NET-1 in LSC group was significantly higher than that in NLE group and SIL group(P<0.05). The distribution of NET-1 protein positive expression population was correlated with histological grade, lymph node metastasis, and TNM stage. The NET-1 expression rate of LSC with lymph node metastasis was significantly higher than that without lymph node metastasis. Over-expression of NET-1 protein in YTMLC-90 cells was observed. The expression of E-cadherin was decreased, and the protein expression of vimentin and Snail1 was increased in YTMLC-90 cells. Knock-down of NET-1 expression increased the expression of E-cadherin, and decreased the expression of vimentin and Snail1 in the YTMLC-90 cells. CONCLUSION: The expression of NET-1 promotes the lymphatic metastasis of lung squamous-cell carcinoma. This promotion may be achieved through the activation of epithelial-mesenchymal transition (EMT) by NET-1 expression.  相似文献   

8.
AIM: To explore the effect of Snail1 siRNA on high-glucose induced tubular epithelial-to-mesenchymal transition (TEMT). METHODS: Subconfluent renal tubular epithelial cells were incubated in serum-free DMEM for 24 h to arrest and synchronize the cell growth. Then cells were treated with normal glucose (5.5 mmol/L D-glucose) or high glucose (25 mmol/L D-glucose) for 72 h. Meanwhile 19.5 mmol/L D-manntiol was used as high osmotic control. Snail1 siRNA was transfected into tubular epithelial cells. In parallel, cells were transfected with non-specific siRNA which served as the control data sets. Cells were then treated with 25 mmol/L D-glucose for 72 h. RNA and cell lysates were collected to determine the protein and mRNA levels of Snail1, TGF-β1, α-SMA, vimentin and E-cadherin. RESULTS: Transfection caused the decreases in Snail1 at mRNA and protein levels by 62% and 68% respectively as compared to those in untransfected cells cultured in high glucose medium. Western blotting exhibited that Snail1 siRNA transfection restored E-cadherin protein expression by 61% compared to that in high-glucose-treatment cells, whereas it inhibited high-glucose-induced induction of α-SMA protein by 58%. Similarly, RT-PCR revealed that Snail1 siRNA transfection dramatically suppressed the high-glucose-induced mRNA expressions of α-SMA and vimentin by 72% and 61%, respectively, while E-cadherin mRNA increased by 53%. CONCLUSION: Our study provides direct evidence that Snail1 is able to control TEMT.  相似文献   

9.
LI Bai-he  YUAN Lei 《园艺学报》2016,32(5):852-856
AIM: To investigate the effect of digoxin on hypoxia-induced epithelial-mesenchymal transition (EMT), migration and invasion in human breast carcinoma MCF-7 cells. METHODS: MCF-7 cells were treated in vitro with a chemical hypoxia inducer cobalt chloride (CoCl2) to imitate hypoxia. Cell migration was observed by wound healing assay, and cell invasion was measured by Transwell invasion assay. The protein levels of hypoxia-inducible factor-1α (HIF-1α), Snail, E-cadherin and vimentin in MCF-7 cells were detected by Western blot. RESULTS: Digoxin inhibited CoCl2-induced EMT and reversed the mesenchymal phenotype. CoCl2 enhanced the abilities of migration and invasion (P<0.01), significantly decreased the expression of E-cadherin and increased the expression of HIF-1α, Snail and vimentin (P<0.01), but these effects were blocked by digoxin. CONCLUSION: Digoxin inhibits CoCl2-induced EMT and invasion most likely via HIF1-α-Snail signaling pathway.  相似文献   

10.
AIM: To investigate the inhibitory effect of microRNA-145 (miR-145) on epithelial-mesenchymal transition (EMT) in renal cancer A-498 cells. METHODS: The A-498 cells were transfected with miR-145 mimics (M145) and mimic negative control(MNC), which served as M145 group and MNC group, respectively. Mock control (MC) group was set up using untreated A-498 cells. The expression level of miR-145 in each group was detected by RT-qPCR. Transwell assay was used to detect the invasion ability of the cells. The protein expression of vimentin, E-cadherin and ADAM28 was determined by Western blot. Bioinformatic method was used to predict the target genes of miR-145. Antagonistic effect of ADAM28 over-expression on the inhibition of EMT by miR-145 was detected by Western blot. The relationship between miR-145 and ADAM28 was analyzed by dual-luciferase reporter assay. RESULTS: The expression level of miR-145 in M145 group was significantly up-regulated than that in MC group (P<0.05). The number of invasive cells in M145 group was 12.78±3.37, which was significantly lower than that in MC group (P<0.05). ADAM28 may be the target gene of miR-145. Compared with MC group, the protein expression of vimentin and ADAM28 in M145 group was significantly decreased (P<0.05), while the protein expression of E-cadherin was significantly increased (P<0.05).After ADAM28 over-expression, the protein expression of vimentin in the A-498 cells of M145 group was significantly increased (P<0.05), and the protein expression of E-cadherin was significantly decreased (P<0.05). The results of dual-lucife-irasei reporter assay showed that ADAM28 was a downstream target gene of miR-145. CONCLUSION: miR-145 may inhibit the expression of EMT-related proteins through the downstream target gene ADAM28 and inhibit the EMT process of renal cancer A-498 cells.  相似文献   

11.
AIM: To observe the expression of Akt/GSK-3β/Snail signaling pathway-related molecules in cisplatin-resistant cell line A549/DDP mediated by transforming growth factor-β1 (TGF-β1), and to explore the association of Akt/GSK-3β/Snail signaling pathway with epithelial-mesenchymal transition (EMT). METHODS: The A549/DDP cells were divided into TGF-β1 (+) group, TGF-β1 (-) group and LY294002 group. The morphological changes of A549/DDP cells treated with TGF-β1 were observed under microscope. The protein expression of E-cadherin and N-cadherin was determined by the methods of immumofluorescence and Western blot. The protein levels of Akt, p-Akt, GSK-3β, p-GSK-3βSer9 and Snail were also detected by Western blot. RESULTS: The A549/DDP cells in TGF-β1 (+) group were dispersive, showed a spindle-like shape and developed pseudopodia. This transformation was conformed to classic EMT markers. Compared with TGF-β1 (-) group, the protein expression of E-cadherin in TGF-β1 (+) group was significantly decreased (P<0.05), and N-cadherin was significantly increased (P<0.05). The protein levels of p-Akt, p-GSK-3βSer9 and Snail were also significantly increased (P<0.05). Compared with TGF-β1 (+) group, the protein levels of p-Akt, p-GSK-3βSer9 and Snail were significantly decreased in LY294002 group (P<0.05). No difference of Akt and GSK-3β expression between TGF-β1 (-) group and TGF-β1 (+) group was observed. CONCLUSION: The mechanism of EMT in A549/DDP cells might be related to Akt/GSK-3β/Snail signaling pathway activated by TGF-β1.  相似文献   

12.
AIM:To investigate the effect of interlukin-22 (IL-22) on diabetic nephropathy (DN) and its possible mechanism. METHODS:C57BL/6 mice were randomized to normal control (NC) group,DN group, DN+recombinant IL-22 (rIL-22) group and DN+IL-22 antibody (anti-IL-22) group. After successful establishment of diabetes model for 8 weeks, the mice in DN+rIL-22 group and DN+anti-IL-22 group were intraperitoneally injected with rIL-22 (200 μg/kg) and anti-IL-22 (200 μg/kg), respectively, and the mice in NC group and DN group were intraperitoneally injected with 0.1% bovine serum albumin, twice a week for 4 weeks. After the intervention, blood glucose, kidney function, 24 h urine microalbumin (m-Alb) and 24 h urine creatinine (UCr) were measured. The pathological changes of renal tissues were observed under light microscope. The mRNA expression of Snail1 was detected by qPCR. The protein levels of fibronetin (FN) and E-cadherin were determined by Western blot. RESULTS:After the intervention, the ratio of 24 h m-Alb/UCr increased significantly in other model groups compared with NC group (P<0.05). The levels of 24 h m-Alb and 24 h UCr increased significantly in DN+rIL-22 group compared with DN group (P<0.05). However, in DN+anti-IL-22 group, the levels of 24 h m-Alb, 24 h UCr and 24 h m-Alb/UCr ratio were significantly lower than those in DN group and DN+rIL-22 group (P<0.05). The tubular epithelial cell vacuolar degeneration, protein cast formation and glomerular mesangial expansion in the renal tissues from diabetic mice were observed under light microscope. The lesions were more severe in DN+rIL-22 group, but attenuated in DN+anti-IL-22 group. The mRNA expression of Snail1 increased significantly in diabetic mice (P<0.05), but decreased significantly after a 4-week intervention by anti-IL-22 (P<0.05). The expression of FN, an extracellular matrix protein, increased significantly in DN+rIL-22 group (P<0.05). The expression of E-cadherin, an epithelial-mesenchymal transition marker, decreased significantly in DN+rIL-22 group as well (P<0.05). CONCLUSION:IL-22 neutralizing antibody may attenuate microalbuminuria and delay the progression of DN via inhibition of Snail1 expression in the renal tubular epithelial cells.  相似文献   

13.
14.
AIM: To investigate the effect of linarin (LIN) on the migration and invasion abilities of human breast cancer MDA-MB-231 cells and its underlying mechanism. METHODS: MCF-7, MDA-MB-231 and MCF-10A cells were cultured in vitro and treated with LIN at 5, 10, 20, 40, 80 and 160 μmol/L for 24 h, and the cell proliferation was measured by CCK-8 assay and colony formation assay. The protein levels of Snail, E-cadherin, matrix metalloproteinase-9 (MMP-9), IκBα, p-IKKα/β and p-p65 were determined by Western blot. RESULTS: LIN remarkably reduced the viability of MDA-MB-231 cells in a dose-dependent manner (P<0.05), and the IC50 was 55.89 μmol/L for 24 h. LIN decreased the colony formation rate of MDA-MB-231 cells at the concentration of 20 μmol/L (P<0.05). After exposed to LIN at 5 μmol/L and 10 μmol/L for 24 h, the migration and invasion abilities of the MDA-MB-231 cells were significantly reduced (P<0.05), the protein expression levels of E-cadherin and IκBα were up-regulated (P<0.05), the protein expression levels of Snail and MMP-9 were down-regulated (P<0.05), and the phosphorylation levels of IKKα/β and p65 were decreased (P<0.05) in comparison with the control group. Meanwhile, IKK-16 (IKKα/β inhibitor) and PDTC (NF-κB inhibitor) also down-regulated the protein expression levels of Snail and MMP-9 (P<0.05), and up-regulated the protein expression level of E-cadherin (P<0.05). CONCLUSION: LIN down-regulates the protein expression levels of Snail and MMP-9, and up-regulates the protein expression level of E-cadherin most likely through inhibiting IKK/NF-κB signaling pathway, and ultimately lead to decreases in the migration and invasion abilities of MDA-MB-231 cells.  相似文献   

15.
AIM: To investigate the effects of sphingosine kinase l(SphK1) and focal adhesion kinase(FAK) on the epithelial-mesenchymal transition(EMT) of human colon cancer HCT116 cells. METHODS: Human colon cancer HCT116 cells were divided into 3 groups. N, N-dimethylsphingosine(DMS) was used to suppress the activity of SphK1. PF573228 was used to suppress the activation of FAK. The cells treated with equal volume of culture medium severed as control group. The cell viability was measured by MTT assay. The protein expression of SphK1, FAK and the EMT relative protein E-cadherin, N-cadherin, vimentin and matrix metalloproteinase(MMP) 2 was analyzed by Western blot. The mRNA expression of SphK1, sphingosine-1-phosphate(S1P), FAK, E-cadherin and vimentin was detected by real-time PCR. The ability of tumor cell migration was measured by wound-healing assay. RESULTS: The cell viability of HCT116 cells was suppressed by DMS and PF573228 in dose and time dependent manners. DMS significantly suppressed the expression of SphK1, FAK, N-cadherin, vimentin and MMP2, meanwhile enhanced the expression of E-cadherin. PF573228 reduced the expression of FAK, SphK1, N-cadherin, vimentin and MMP2, meanwhile increased the expression of E-cadherin(P<0.01). In addition, the migration ability of HCT116 cells was significantly decreased by treating with DMS and PF573228(P<0.01). Compared with control group, the mRNA expression of FAK, SphK1, S1P and vimentin was decreased, while the expression of E-cadherin was increased significantly in PF573228 group and DMS group(P<0.05). CONCLUSION: SphK1 and FAK signaling pathways may play an important role in the occurrence of EMT in the colon cancer HCT116 cells.  相似文献   

16.
AIM: To investigate the effects of proteasome inhibitor MG132 on the expression of SnoN in renal tubule epithelial cells incubated in high glucose, and to explore the possible mechanism and function that MG132 reduces or slows down renal tubular interstitial injury after incubated in high glucose. METHODS: The NRK-52E cells were divided into normal control group (NG), high glucose group (HG) and high glucose plus pretreatment with different doses of MG132 group (HG+MG132). The immunofluorescence staining was used to detect the protein expression of E-cadherin and α-smooth muscle actin (α-SMA) in NRK-52E cells under different conditions. The relative protein expression levels of SnoN, Smad ubiquitination regulatory factor 2 (Smurf2), Arkadia, E-cadherin, α-SMA and collagen type Ⅰ(Col-Ⅰ) were detected by Western blotting. RESULTS: Compared with NG group, the expression of E-cadherin and SnoN was decreased (P<0.05), while the expression of α-SMA, Col-Ⅰ, Smurf2 and Arkadia was increased (P<0.05). Compared with HG group, the protein expression of SnoN and E-cadherin was significantly up-regulated in HG+MG132 group (P<0.05), and the protein expression of α-SMA and Col-Ⅰ was significantly down-regulated in a dose-depended manner (P<0.05). However, no effect on the protein expression of Smurf2 and Arkadia was observed. CONCLUSION: MG132 inhibits the degradation of SnoN protein induced by high glucose, thus reducing the renal fibrosis.  相似文献   

17.
AIM:To investigate the effects of luteolin on the invasion and epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) in lung cancer A549 cells. METHODS:The effect of luteolin at 5, 10, 20, 40, 80 and 160 μmol/L on the viability of A549 cells was measured by MTT assay. The invasion ability was analyzed by Transwell method. The morphological changes of the A549 cells were observed under microscope.The protein expression of E-cadherin and vimentin in the A549 cells were determined by Western blot. RESULTS:The viability of the A549 cells was significantly inhibited by luteolin in a dose-time dependent manner (P<0.05). The IC50 of luteolin for the A549 cells (24 h) was 68.79 μmol/L, while that (48 h) was 47.86 μmol/L. TGF-β1 induced morphological alteration of the A549 cells from epithelial to mesenchymal forms. Luteolin significantly inhibited TGF-β1-induced invasion of the A549 cells (P<0.01). The protein expression of E-cadherin was significantly down-regulated and the protein expression of vimentin was significantly up-regulated in the presence of TGF-β1 at 5 μg/L (P<0.01). However, luteolin reversed TGF-β1-induced EMT, up-regulation of E-cadherin and down-regulation of vimentin (P<0.01). CONCLUSION:Lu-teolin reverses TGF-β1-induced EMT in the lung cancer A549 cells.  相似文献   

18.
AIM: To investigate the effect of hirsutine on hypoxia-induced migration and invasion abilities of human breast cancer MCF-7 cells and its possible mechanism. METHODS: CCK-8 assay was employed to detect the cytotoxic effect of hirsutine on the MCF-7 cells. Cell migration was observed by wound healing assay, and cell invasion ability was measured by Transwell invasion assay. Western blot was used to analyze the protein levels of hypoxia-inducible factor-1α (HIF-1α), Snail, E-cadherin and matrix metalloproteinase-9 (MMP-9). The mRNA levels of HIF-1α was detected by RT-PCR. RESULTS: Hirsutine remarkably reduced the cell viability from 32 μmol/L (P<0.05), and the IC50 value was 62.82 μmol/L. In hypoxia state, MCF-7 cells showed more powerful capabilities of migration and invasion (P<0.05), higher protein levels of HIF-1α, Snail and MMP-9 (P<0.05), lower protein level of E-cadherin (P<0.05), and higher mRNA level of HIF-1α (P<0.05). These hypoxia-induced effects were all inhibited by hirsutine at 16 μmol/L (P<0.05), apart from the mRNA level of HIF-1α. CONCLUSION: Hirsutine inhibits hypoxia-induced migration and invasion in human breast cancer MCF-7 cells most likely via down-regulation of the protein levels of HIF-1α, Snail and MMP-9, and up-regulation of the protein level of E-cadherin.  相似文献   

19.
AIM: To investigate the regulatory effects of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) on the expression of ectopic trypsin and proinflammatory cytokines in influenza A virus (IAV)-induced myocarditis. METHODS: Male BALB/c mice of 8 weeks old (n=40) were randomly divided into 4 groups: normal control group (NC), infection control group (IC), NF-κB inhibitor group (NI) and AP-1 inhibitor group (AI). The mice in NC group and IC group were instilled intranasally with 15 μL saline and 40 plaque forming units (PFU) IAV, respectively. The mice in NI group and AI group were infected intranasally with 40 PFU IAV and injected intraperitoneally with 10 mg/kg NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) or 2.5 mg/kg AP-1 inhibitor nordihydroguaiaretic acid (NDGA) once daily. The mice were euthanized at day 9 after instillation, and the hearts were removed for pathological and biochemical analysis. RESULTS: IAV infection induced significant up-regulation of ectopic trypsin, and proinflammatory cytokines interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in the myocardium, and triggered acute myocarditis. PDTC significantly inhibited NF-κB activation and up-regulation of ectopic trypsin and proinflammatory cytokines, and effectively suppressed IAV replication and myocardial inflammatory response (P<0.01). NDGA effectively inhibited AP-1 activity (P<0.01) and mildly suppressed up-regulation of proinflammatory cytokines (P<0.05), but had no effects on the expression of ectopic trypsin, IAV replication and the extent of myocarditis (P>0.05). CONCLUSION: IAV infection induces up-regulation of ectopic trypsin and proinflammatory cytokines in myocardium predominantly by the activation of NF-κB. AP-1 signaling pathway might be only partially involved in the regulation of proinflammatory cytokines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号