首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
An unusual stem rust infestation occurred in German wheat fields in summer 2013. This study analysed 48 isolates derived from 17 Puccinia graminis f. sp. tritici (Pgt) samples and six races were identified: TKTTF, TKKTF, TKPTF, TKKTP, PKPTF and MMMTF. Infection type and genotypic data confirmed that none of these races belonged to the TTKS (Ug99) race group. German isolates of race TKTTF are phenotypically different to the ones responsible for the stem rust epidemic in Ethiopia in 2013–2014. Forty isolates were genotyped using a custom SNP array. Phylogenetic analysis showed that these 40 isolates represented two distinct lineages (clade IV and clade V). Thirty‐eight isolates clustered into clade IV, which previously was defined by Ethiopian isolates of race TKTTF. Race TKKTP is of special concern due to its combined virulence to stem rust resistance genes Sr24, SrTmp and Sr1RSAmigo. The vulnerability to race TKKTP in US and international winter wheat was confirmed as 55% of North American and international cultivars and breeding lines resistant to race TTKSK (Ug99) became susceptible to TKKTP. Races identified in Germany in 2013 confirmed the presence of virulence to important resistance genes that are effective against race TTKSK. This information should be useful for breeders to select diverse and effective resistance genes in order to provide more durable stem rust resistance and reduce the use of fungicides.  相似文献   

2.
Rouse MN  Jin Y 《Phytopathology》2011,101(12):1418-1423
Race TTKSK (or Ug99) of Puccinia graminis f. sp. tritici possesses virulence to several stem rust resistance genes commonly present in wheat cultivars grown worldwide. New variants detected in the race TTKSK lineage further broadened the virulence spectrum. The identification of sources of genetic resistance to race TTKSK and its relatives is necessary to enable the development and deployment of resistant varieties. Accessions of Triticum monococcum, an A-genome diploid wild and cultivated wheat, have previously been characterized as resistant to stem rust. Three resistance genes were identified and introgressed into hexaploid wheat: Sr21, Sr22, and Sr35. The objective of this study was to determine the genetic control and allelic relationships of resistance to race TTKSK in T. monococcum accessions identified through evaluations at the seedling stage. Generation F(2) progeny of 8 crosses between resistant and susceptible accessions and 13 crosses between resistant accessions of T. monococcum were evaluated with race TTKSK and often with North American races, including races QFCSC, TTTTF, and MCCFC. For a selected population segregating for three genes conferring resistance to race TTKSK, F(2:3) progeny were evaluated with races TTKSK, QFCSC, and TTTTF. In that population, we detected two genes conferring resistance to race TTKSK that are different from Sr21, Sr22, and Sr35. One of the new genes was effective to all races tested. The identification of these genes will facilitate the development of varieties with new resistance to race TTKSK.  相似文献   

3.
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a re-emerging disease, posing a threat to wheat production. In Spain, stem rust has been rarely detected since the 1970s, but infection was observed in wheat fields in 2018. We analysed six stem rust samples collected in Rota, Cádiz province and one from Monteagudo del Castillo, Teruel province. All the samples from Rota were typed as race TKTTF, whereas the sample from Monteagudo del Castillo, collected in a wheat field adjacent to barberry bushes, was typed as race TKHBK. This race has a unique and significant virulence combination that includes virulence to Sr31, Sr33, Sr53 and Sr59, and is avirulent to Rusty, a durum line developed for universal susceptibility to the wheat stem rust pathogen. TKHBK is the first race outside the Ug99 race group with virulence to Sr31 and the first known race with virulence to Sr59. Genotyping studies indicate that race TKHBK does not belong to the Ug99 or TKTTF race groups and constitutes a previously unknown lineage. Two hundred bread and durum wheat cultivars and breeding lines from Spain were evaluated against TKHBK, TKTTF, and six additional races. Resistance was observed to all the races evaluated. Molecular markers confirmed the presence of Sr7a, Sr24, Sr31, Sr38 and Sr57 in bread wheat, and Sr13 in durum wheat. The re-emergence of wheat stem rust in Spain and the occurrence of unique virulences underscore the need to continue surveying and monitoring this disease.  相似文献   

4.
5.
6.
Wheat stem rust samples were collected in 2006 and 2007 in the Arsi, Bale, Shewa and northwest regions of Ethiopia to determine virulence diversity and race distribution in Puccinia graminis f.sp. tritici populations. Stem rust incidence was high in Arsi, Bale and east Shewa. In northwest Ethiopia, and north and west Shewa, stem rust was prevalent at low levels. A total of 152 isolates was analysed and 22 races were identified. Races TTKSR (Ug99), TTHSR and RRTTR were predominant, with frequencies of 26·6, 17·7 and 11·1%, respectively. These races were also detected in all regions. The highly virulent race designated Ug99 was present throughout the country and dominated in all regions except northwest Ethiopia. A variant of Ug99 virulent against the stem rust resistance gene Sr24 was not detected in this study. Four stem rust resistance genes ( Sr13, Sr30, Sr36 and SrTm p) were found to confer resistance to most of the races prevalent in Ethiopia. With the exception of Sr30 , which is not effective against Ug99, these genes could be used in breeding for resistance to stem rust in Ethiopia.  相似文献   

7.
Known and unknown genes conferring seedling and adult plant resistance (APR) to leaf rust, stem rust and stripe rust were detected either singly or in combination in a set of 136 African wheat genotypes using multi-pathotype tests with characterized Australian Puccinia triticina (Pt), P. graminis f. sp. tritici (Pgt) and P. striiformis f. sp. tritici (Pst) pathotypes. Lines Beladi 132, IYN 68/9.44, Kenya Kifaru and Kenya Mbweha were postulated to carry resistance against multiple pathotypes of Pt, Pgt and Pst, whereas IAR/W/163-3, Grano Di Moggio Tipo 44 and Trigo 48 had resistance against all pathotypes tested in the current study. Field evaluation with the three rust pathogens detected low to high APR in more than 50% of lines, and while most tested positive with markers linked to known APR genes (csLV34, csLV46G22, TM10KASPAR, csGS, Cfb5006 and csSr2), many carried unidentified and useful resistance to all three rusts. Genetic analysis of F3 mapping populations based on seven genotypes showed either monogenic or digenic inheritance of APR to leaf rust, stem rust and stripe rust. The lines postulated to carry effective uncharacterized seedling genes and APR genes are of great potential value in diversifying resistance to help achieve durable control of all three rust diseases of wheat.  相似文献   

8.
Genetics of Stem Rust Resistance in Wheat Cvs. Pasqua and AC Taber   总被引:2,自引:0,他引:2  
Liu JQ  Kolmer JA 《Phytopathology》1998,88(2):171-176
ABSTRACT Canadian wheat cvs. Pasqua and AC Taber were examined genetically to determine the number and identity of stem rust resistance genes in both. The two cultivars were crossed with stem rust susceptible line RL6071, and sets of random F(6) lines were developed from each cross. The F(6) lines, parents, and tester lines with single stem rust resistance genes were grown in a field rust nursery, inoculated with a mixture of stem and leaf rust races, and evaluated for rust resistance. The same wheat lines were tested by inoculation with specific stem rust races in seedling tests to postulate which Sr genes were segregating in the F6 lines. Segregation of F(6) lines indicated that Pasqua had three genes that conditioned field resistance to stem rust and had seedling genes Sr5, Sr6, Sr7a, Sr9b, and Sr12. Leaf rust resistance gene Lr34, which is in Pasqua, was associated with adult-plant stem rust resistance in the segregating F(6) lines. Adult-plant gene Sr2 was postulated to condition field resistance in AC Taber, and seedling genes Sr9b, Sr11, and Sr12 also were postulated to be in AC Taber.  相似文献   

9.
Aegilops sharonensis (Sharon goatgrass) is a wild relative of wheat and a rich source of genetic diversity for disease resistance. The objectives of this study were to determine the genetic basis of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis and also the allelic relationships between genes controlling resistance to each disease. Progeny from crosses between resistant and susceptible accessions were evaluated for their disease reaction at the seedling and/or adult plant stage to determine the number and action of genes conferring resistance. Two different genes conferring resistance to leaf rust races THBJ and BBBB were identified in accessions 1644 and 603. For stem rust, the same single gene was found to confer resistance to race TTTT in accessions 1644 and 2229. Resistance to stem rust race TPMK was conferred by two genes in accessions 1644 and 603. A contingency test revealed no association between genes conferring resistance to leaf rust race THBJ and stem rust race TTTT or between genes conferring resistance to stem rust race TTTT and powdery mildew isolate UM06-01, indicating that the respective resistance genes are not linked. Three accessions (1644, 2229, and 1193) were found to carry a single gene for resistance to powdery mildew. Allelism tests revealed that the resistance gene in accession 1644 is different from the respective single genes present in either 2229 or 1193. The simple inheritance of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis should simplify the transfer of resistance to wheat in wide crosses.  相似文献   

10.
A total of 387 isolates of Puccinia graminis f. sp. tritici (Pgt) collected in the central region of the Russian Federation from 2000 to 2009 was analysed with North American differential sets comprising 16 genotypes for samples of 2000–2006 and 20 genotypes for samples from 2007–2009. Forty‐five races were identified. The race composition of the local population underwent changes during this period. Race MKBT was the predominant race in the earlier years, but TKNT and TKNTF were in the majority later. During 2000–2009 there were no stem rust epidemics in the region. It was assumed that the local pathogen population cycled on wild grasses (including Elytrigia, Agropyron, Festuca, Dactylis, Phleum and Lolium spp.) and not only on wheat. The existence of host communities of wheat stem rust was supported by random amplified polymorphic DNA (RAPD) markers produced with high‐GC primers. The local population of Pgt was considered to be sexual based on the relatively high diversity of races isolated from various hosts and the absence of correlation between virulence attributes and molecular markers.  相似文献   

11.
为明确中国不同春麦区小麦地方种质对当前小麦生产上流行的条锈病菌Puccinia striiformis f.sp.tritic的抗性水平及其所含抗性基因,利用条锈病菌生理小种条中32(CYR32)和条中34(CYR34)及混合生理小种(致病类群)对来自5个春麦区的196份小麦地方种质进行苗期、成株期抗性鉴定,并通过6个已知条锈病抗性基因Yr9、Yr18、Yr26、Yr48、Yr65Yr67对其所含重要抗性基因进行分子标记检测。结果显示,在苗期,有11份小麦地方种质对CYR32表现出抗性,有12份对CYR34表现出抗性,分别占供试种质总数的5.61%和6.12%;有6份对CYR32和CYR34均表现出抗性;在成株期,有59份小麦地方种质在5个田间诱导环境下表现出稳定的抗性。有119份小麦地方种质检测到含抗性基因,其中有3份携带Yr9,有50份携带Yr18,有43份携带Yr48,有54份携带Yr65,所有供试种质均未检测到Yr26Yr67,抗性基因的组合分析发现,共有31份小麦地方种质携带4种抗性基因组合类型Yr9+Yr18、Yr18+Yr48、Yr18+Yr65Yr48+Yr65。表明来自中国5个春麦区的小麦地方种质条锈病抗性表型呈多样性,且携带目前在小麦抗病育种和生产上有效的条锈病抗性基因(组合),建议加大对小麦地方种质的保护和应用力度。  相似文献   

12.
小麦秆锈菌新小种Ug99及其对我国的影响分析   总被引:3,自引:0,他引:3       下载免费PDF全文
Ug99(TTKS)是1999年在乌干达首次发现的对最重要小麦抗秆锈病基因Sr31有强毒力的秆锈菌新小种。大量证据显示:该小种不仅具有极其特殊的毒力组合而且传播十分迅速,除在中非乌干达、东非肯尼亚、埃塞俄比亚、苏丹流行外,Ug99现已越过红海、传到了阿拉伯国家也门,以及巴基斯坦的沿海地区,越来越逼近我国。Ug99堪称我国的超毒小种,我国最典型的秆锈菌小种只能分别克服或Sr5或Sr9 e或Sr11单基因抗性,而Ug99不仅具有Sr5、Sr9 e、Sr11的联合毒力,而且还具有Sr21、Sr31、Sr38的联合毒力,而我国从未有小种能克服后者的抗性。1B/1L(含Sr31)易位系曾是我国使用的重要秆锈抗源,必对Ug99高度脆弱,我国118份小麦品种在KARI的测定结果表明,高感品种频率98.3%。一旦Ug99入侵我国,其他流行条件也完全具备。因此,充分作好防范Ug99流行的准备十分必要。  相似文献   

13.
为西北农林科技大学小麦新育成品种(系)在黄淮麦区的大面积推广,该研究对83份西农新育成的小麦品种(系)进行苗期抗条锈病和白粉病鉴定,成株期抗条锈病、白粉病、叶锈病和赤霉病鉴定,并在田间自然环境下对其抗性进行鉴定及对相关抗病基因进行分子检测。结果显示,在苗期人工接种鉴定中,有63、29和16份小麦品种(系)分别对条锈菌Puccinia striiformis f.sp.tritici生理小种CYR32、CYR33和CYR34表现出抗性,9份小麦品种(系)对3个条锈菌生理小种均表现出抗性;有10、3和0份小麦品种(系)分别对白粉菌Blumeria graminis f.sp.tritici生理小种E15、E09和A13表现出抗性。在成株期人工接种鉴定中,有23、15、28和62份小麦品种(系)分别对条锈病、白粉病、叶锈病和赤霉病表现出抗性。在83份小麦品种(系)中有6份在苗期和成株期均对小麦条锈病表现出抗性。在田间抗性鉴定中,有57、6、65和40份小麦品种(系)分别对条锈病、白粉病、赤霉病及叶锈病表现出抗性。在83份小麦品种(系)中,3份含有Yr5基因,22份含有Yr9基因,3份含有Yr17基因,2份含有Pm24基因,14份含有Lr1基因,所占比例分别为3.6%、26.5%、3.6%、2.4%和16.8%。  相似文献   

14.
 西藏半野生小麦(Triticum aestivum ssp. tibetanum Shao)、云南铁壳麦(T. aestivum ssp. yunnanense King)和新疆稻麦(T. petropavloski Udats et Migusch)是我国特有的3个普通小麦亚种,它们具有特定的地理分布、明显不同于普通小麦的形态学特征,具有抗病、耐逆等优良性状,是可用于现代小麦品种生物和非生物胁迫改良的优异种质资源。本研究利用当前在我国流行频率高、毒性强的条锈菌生理小种和致病类群组成的混合菌对213份中国特有小麦种质(包括117份西藏半野生小麦、78份云南铁壳麦和18份新疆稻麦)进行苗期和成株期抗性表型鉴定,并利用与12个已知条锈病抗性基因(Yr)相关的分子标记进行分子检测。结果表明,共有18份中国特有小麦种质对混合生理小种表现苗期抗性,89份表现成株期抗性。进一步分析发现,成株期抗性种质主要来源于云南铁壳麦。结合系谱分析、抗性表型及条锈病抗病基因分子标记检测结果发现,2份中国特有小麦种质携带Yr18,所有种质均不携带Yr5、Yr9、Yr10、Yr15、Yr17、Yr24/Yr26、Yr30、Yr41、Yr48、Yr65和Yr67等已知抗病基因。未检测到供试基因的抗性种质可能携带其他已知或新的条锈病抗性基因。该研究为进一步有效利用中国特有小麦亚种抗条锈病种质和发掘其抗性基因提供依据。  相似文献   

15.
小麦品种C591的抗条锈性遗传分析   总被引:1,自引:0,他引:1  
李勇  牛永春 《植物保护》2006,32(6):39-41
C591是原产于印度的普通小麦品种,苗期和成株期均对中国小麦生产上流行的条锈菌(Puccinia striiformis f.sp.tritici)主要生理小种表现良好抗性。本文以感病品种Taichung29作母本、C591作父本通过杂交制备了F1代、F2代和BC1代种子,用人工接种方法研究了C591及其杂交后代对小麦条锈菌不同生理小种的苗期抗性并进行了遗传分析。结果显示,C591与Taichung29杂交F1代植株对小麦条锈菌条中19号、条中29号和条中32号小种均表现出与C591相似的高抗,说明C591中的抗条锈基因主要为显性表达。根据杂交F2代、BC1代植株的抗性分离情况和F1代植株及亲本的抗性表现,说明C591中至少具有3对抗条锈基因,针对条锈菌不同的生理小种其有效性是不同的。对条中32号小种的抗性受1对显性基因控制,对条中29号小种的抗性受1对显性基因和2对隐性基因的独立控制,对条中19号小种的抗性受2对显性基因独立控制。结果表明,C591作为抗源在我国小麦抗锈育种中具有较大应用价值。  相似文献   

16.
Invasions of new races can have contrasting consequences on populations of Puccinia striiformis f. sp. tritici, causing yellow rust of wheat. For example, the emergence of PstS7 (Warrior race) had major impacts in Europe and in France. By contrast, PstS2 had no impact in France, while it significantly affected other parts of the world. The objective of this study was to better understand factors that govern the success of an invasive race, taking the contrasting history of PstS7 and PstS2 in France as a case study. We compared these two races for three key factors driving invasive potential: (a) virulence against local cultivars, (b) aggressiveness in local environmental conditions, and (c) competitiveness against local races. During the period when PstS2 was detected, 70% of the grown wheat area was protected against this race by at least one known Yr resistance gene. By contrast, we found that only 15% of the wheat area had a low risk of infection by PstS7. In planta competition experiments suggested a higher competitiveness of PstS7 against local isolates compared to PstS2 in optimal thermal conditions. In silico experiments, based on thermal performance curves, suggested a high competitiveness of PstS7 considering infection efficiency. PstS2 was extremely competitive against local races in all considered environments (20 French sites × 15 years) due to its short latency period. Our findings highlight the importance of considering adaptation to environmental conditions, particularly temperature, in addition to virulence spectrum, in order to understand the evolutionary trajectories of emerging strains in pathogen populations.  相似文献   

17.
为调查西南地区小麦条锈病抗性、抗病基因位点及其组合多样性,于2013—2014年对以西南地区为主的140份小麦品种(系)进行了成株期、苗期抗病性鉴定和抗病基因标记扫描。成株期鉴定结果显示,2013年贵阳、赫章试验点和2014年贵阳、绵阳试验点都表现为抗病的品种(系)共有50份,其中表现为全生育期抗性的有37份,表现为成株期抗性的有13份;5个抗病基因Yr9、Yr10、Yr15、Yr18、Yr26的分子标记检测结果显示,西南地区小麦Yr26的使用频率最高,为41.4%,Yr9次之为37.9%,Yr10、Yr15、Yr18使用频率较低;抗条锈病基因的组合分析显示,共出现16份基因聚合品种、7种组合类型,其中组合Yr9+Yr26出现频率较高,为5%。表明西南地区的小麦品种(系)以利用全生育期抗性为主,且抗条锈病基因利用较为单一,应发掘和利用新抗条锈病基因及重视多基因的聚合。  相似文献   

18.
Nearly 100,000 ha in the Three Gorges Reservoir Area (TGRA) are in wheat production and the area is a junction where wheat stripe rust overwinters and causes epidemics the next spring; thus the area plays a pivotal role in wheat stripe rust epidemics in China. To better understand wheat resistance levels and the application of Yr genes in this area, 116 wheat cultivars (lines) were collected from the TGRA to investigate stripe rust resistance during the 2014–2016 cropping seasons. Seedling resistance evaluation results indicated that only nine accessions (7.8%) were immune or nearly immune to three predominant races of CYR32, CYR33 and PST-V26. In the field evaluation, 51 accessions (43.9%) showed adult-plant resistance, whereas 56 accessions (48.3%) were susceptible. The application of resistant sources focused on ineffective Yr9 (26.7%) and Yr17 (18.9%), and gradual ineffective Yr26 (34.5%), while effective Yr5, Yr10 and Yr15 were absent. Among them, 21 accessions (18.1%) were combined with two resistance genes. Both low resistance and more concentrated use of Yr genes indicated that this region faces a major risk for a wheat stripe rust epidemic. To improve the wheat resistance level in the TGRA, it is important to discover new all-stage resistance resources and diversify resistance resources for breeding.  相似文献   

19.
小麦抗源武汉2号和品冬34的抗条锈性遗传分析   总被引:1,自引:1,他引:0  
为明确小麦品种武汉2号和品冬34对小麦条锈菌流行小种的抗病性及抗病遗传规律,用小麦条锈菌生理小种CYR29、CYR31、CYR32、CYR33以及致病类型Su11-4、Su11-5、Su11-11、PST-Ch42在苗期接种小麦品种武汉2号和品冬34进行抗病性鉴定,并用武汉2号和品冬34分别与感病亲本铭贤169进行杂交,对F2群体和F2:3家系在温室进行苗期遗传分析。结果表明:武汉2号对CYR29和CYR32表现感病,对其它小种和致病型均表现抗病,且对CYR31的抗性由1对隐性基因控制;品冬34对所测试的小种和致病类型均表现高抗,且对CYR32的抗性由1对显性基因控制。  相似文献   

20.
Samples of wheat and triticale infected with leaf rust were collected from 2008 to 2010 in South Africa to identify Puccinia triticina races. Races were identified based on their virulence profile on standard differential lines. Eight races were identified from 362 isolates. The dominant races were 3SA133 (syn. PDRS) in 2008 (78 %) and 2009 (34 %), and 3SA145 (47 %) in 2010. Race 3SA145 (CCPS) identified in 2009 was a new race in South Africa with virulence for the adult plant resistance gene Lr37. Another new race, 3SA146 (MCDS), was identified in 2010. Race 3SA146 is also virulent for Lr37 but unlike 3SA145, it is virulent for Lr1 and Lr23 and avirulent for Lr3ka and Lr30. Microsatellite analysis showed that 3SA145 and 3SA146 shared 70 % genetic similarity with each other, but only 30 % similarity with other races in South Africa, suggesting that both represent foreign introductions. In seedling tests of 98 South African winter and spring cultivars and advanced breeding lines, 27 % were susceptible to 3SA145 and 3SA146 but resistant to 3SA133. In greenhouse studies of 59 spring wheat adult plants, 19 % of breeding lines and 46 % of cultivars were susceptible to 3SA145, whereas 29 % of the lines and 53 % of cultivars were susceptible to 3SA146. The cssfr6 gene-specific DNA marker confirmed the presence of Lr34 gene for leaf rust resistance in a homozygous condition in 28 wheat entries. Five entries were heterogeneous for Lr34. Several entries which were susceptible as seedlings to the new races carried Lr34. These lines are expected to show lower levels of leaf rust as adult plants. Results of these studies indicate a continued vulnerability of South African wheat cultivars to new races and emphasise the importance of regular rust monitoring and the need to incorporate genes for durable resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号