首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
OBJECTIVE: To determine the prevalence of serum IgE against the storage mites Acarus siro, Blomia tropicalis, and Tyrophagus putrescentiae in a population of dogs with atopic dermatitis. SAMPLE POPULATION: Sera from 84 dogs with atopic dermatitis residing in various regions of the United States and Europe. PROCEDURE: Immunoblotting of sera from atopic dogs was used to identify proteins in mite extracts that bound IgE. RESULTS: 94% of the dogs had serum IgE against proteins in extracts of 1 or more of the storage mite species. Ninety-five, 92, and 89% of the storage mite-sensitive dogs had serum IgE against proteins in extracts of A siro, B tropicalis, and T putrescentiae, respectively. Eighty-two percent had serum IgE against at least 1 protein in all 3 species. Most of the major allergens had molecular weights > 80 kd. A greater percentage of the dog sera had IgE against storage mite proteins, compared with proteins of the house dust mites Dermatophagoides farinae and D pteronyssinus. CONCLUSION AND CLINICAL RELEVANCE: Many dogs with atopic dermatitis have serum IgE against many allergens of storage mites. Most of these allergens, like allergens of dust mites, had molecular weights > 80 kd. Storage mite sensitivity in dogs may be as important, if not more important, than dust mite sensitivity.  相似文献   

2.
Sensitisation to mites is frequent in atopic dogs. The main mite genus involved in canine atopic dermatitis is Dermatophagoides. The importance of storage mite allergens in dogs has been controversial. The aim of this study was to evaluate the sensitisation rates against storage mites (Lepidoglyphus destructor and Tyrophagus putrescentiae) and house dust mites (Dermatophagoides farinae and D. pteronyssinus) in atopic dogs from Galicia, a highly humid and temperate region of Spain, using a FcepsilonRIalpha-based immunoglobulin E (IgE) in vitro test. The study was performed on 95 dogs suffering from atopic dermatitis and presenting detectable specific serum IgE levels: 91.6% of the dogs tested positive for storage mites, whereas sensitisation to house dust mites was detected in 87.4%. These results indicate the importance of storage mites in this specific geographic area.  相似文献   

3.
OBJECTIVE: To compare reactivities to intradermal injection of extracts of Dermatophagoides farinae, Dermatophagoides pteronyssinus, house dust mite mix, and house dust in dogs suspected to have atopic dermatitis. DESIGN: Retrospective study. ANIMALS: 115 dogs. PROCEDURES: Records of all dogs suspected to have atopic dermatitis that underwent intradermal testing between October 1996 and July 1998 were reviewed. Reactivities to intradermal injection of crude mixed house dust mite (1:25,000 wt/vol) and crude house dust (25 PNU/ml) extracts were compared with reactivities to intradermal injection of individual extracts of D farinae and D pteronyssinus (1:50,000 wt/vol). RESULTS: Ninety dogs were confirmed to have atopic dermatitis including 61 of the 69 dogs with positive reactions to either or both of the individual house dust mite extracts. Intradermal testing with the mixed house dust mite extract had sensitivity of 75%, specificity of 96%, and accuracy of 83%. Intradermal testing with the house dust extract had sensitivity of 30%, specificity of 93%, and accuracy of 56%. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that use of crude mixed house dust mite and crude house dust extracts for intradermal testing in dogs is not as accurate a method of determining house dust mite hypersensitivity as is the use of individual D farinae and D pteronyssinus extracts mainly because of the high percentage of false-negative results. Extracts of individual house dust mites are recommended for intradermal testing of dogs suspected to have atopic dermatitis.  相似文献   

4.
Although house dust mites (HDM(s)) are important elicitors of canine allergy, the low molecular weight molecules defined as major allergens for humans do not appear to be major allergens for dogs. Western blotting of Dermatophagoides farinae (D. farinae) extracts with sera from sensitized dogs showed that the majority of animals had IgE antibodies specific for two proteins of apparent molecular weights of 98 and 109kDa (98/109kDa). The N-terminal sequences of these two proteins were identical, suggesting they were very closely related, and sequencing of internal peptides showed the protein(s) to have homology with insect chitinases. A purified preparation of 98/109kDa proteins elicited positive intradermal skin tests (IDST(s)) in a group of well-characterized atopic dogs sensitized to D. farinae, but not in normal dogs. A rabbit polyclonal antiserum raised against the purified proteins was used to immunoscreen a D. farinae cDNA library. The mature coding region of the isolated chitinase cDNA predicts a protein of 63.2kDa; sequence analysis and glycan detection blotting suggest that the molecule is extensively O-glycosylated. Monoclonal antibodies made against the purified native protein were used to localize the chitinase in sections of whole D. farinae mites. The protein displayed an intracellular distribution in the proventriculus and intestine of the mite, suggesting that it has a digestive, rather than a moulting-related, function. The high prevalence of IgE antibodies to this antigen in canine atopic dermatitis makes it a major HDM allergen for dogs, and the protein has been formally designated Der f 15.  相似文献   

5.
This article reviews the literature regarding the role of house dust and forage mite allergens in canine atopic dermatitis. The presence of immunoglobulin E (IgE) to these mites, especially to Dermatophagoides farinae, is common in both normal and atopic dogs. Exposure of dogs to the different mites is described both in the direct environment and in the coat of animals for house dust mites and in the food for forage mites. Allergens causing allergic disease in dogs seem to be different from those in humans. Dogs seem to react to high molecular weight allergens, compared to the low molecular weight group 1 and group 2 proteases that are commonly implicated in humans with atopic diseases. Despite numerous published studies dealing with this subject, a number of questions still need to be addressed to better understand the exact role of these mites in the pathogenesis of canine atopic dermatitis and to improve the quality of the allergens used in practice.  相似文献   

6.
Atopic dermatitis is a chronic inflammatory and pruritic skin disease commonly seen in dogs and humans. Most cases involve hypersensitivity to the house dust mites (HDM) Dermatophagoides farinae and Dermatophagoides pteronyssinus. Human atopic dermatitis is associated with the HDM derived allergens Der f 1 and 2, and Der p 1 and 2. Serological data, however, suggest that a 98/104kD protein is the most important allergen in dogs with atopic dermatitis. The aim of this study was to characterise the specificity of circulating T-cells in canine atopic dermatitis for HDM derived allergens. Peripheral blood mononuclear cells (PBMCs) from dogs with atopic dermatitis that were skin test positive for D. farinae and D. pteronyssinus were cultured with crude extracts of D. farinae, D. pteronyssinus and D. microceras, a 98/104kD allergen purified from D. farinae, Der f 1 and Der f 2. There was significantly greater responsiveness of PBMCs to the D. farinae and D. pteronyssinus extracts compared to the D. microceras extract, and similarly to the purified 98/104kD allergen compared to Der f 1 and Der f 2. The close association between serological findings and PBMC proliferation implies that the 98/104kD HDM protein is a major target of immune recognition and that T-cells also participate in the pathogenesis of canine atopic dermatitis by supporting IgE production.  相似文献   

7.
OBJECTIVE: To quantitate the density of Dermatophagoides farinae and D pteronyssinus and concentrations of house dust mite (HDM) allergens (Der f 1, Der p 1, and Group 2 allergens) in the indoor microenvironment of dogs. SAMPLE POPULATION: 50 homes in Columbus, Ohio. PROCEDURES: In each home, samples of dust were collected from 3 locations in which dogs spent most time. Whenever possible, the species of mites collected was identified. Mite density (mites/g of dust) was assessed, and allergen concentrations were assayed by standardized ELISAs. Relative humidity and temperature in each home were monitored during a 5-day period. Characteristics of homes and sample sources were evaluated. RESULTS: Dust samples from all 50 homes contained > or = 1 HDM allergen; Der f 1 and Der p 1 were detected in 100 and 74% of homes, respectively. Fifteen homes had HDMs; compared with D pteronyssinus, D farinae was found more commonly (14/15 homes) and at a higher density. Basements, homes without central air-conditioning, and dog beds that were > or = 1 year old had high HDM allergen concentrations. Homes with > or = 2 microg of Der f 1 or Group 2 allergens/g of dust or > or = 100 mites/g of dust were significantly more likely to have a maximum relative humidity > or = 75%. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated the presence of HDMs and HDM allergens in the specific microenvironment of dogs in homes. Factors associated with high levels of exposure were identified, which may be associated with increased risk for sensitization and development of atopic diseases.  相似文献   

8.
Atopic dermatitis is a well-recognised chronic inflammatory skin disease of humans and dogs. Most atopic dogs are sensitised to Dermatophagoides mites. The aim of this study was to characterise allergens in different Dermatophagoides species using polyclonal and monoclonal antibodies to canine IgE. Western blots were prepared from crude extracts of D farinae, D pteronyssinus and D microceras, and purified group 1 and 2 allergens under reducing and non-reducing conditions. They were probed with sera from atopic (n = 33) and healthy (n = 27) dogs. There was no significant difference in the sensitivity or specificity between the polyclonal and monoclonal sera in detecting Dermatophagoides -specific IgE. Major allergens common to both D farinae and D pteronyssinus were detected at 97-98 kDa, 103-104 kDa and 134-139 kDa on both reducing and non-reducing blots. Major allergens at 84-85 kDa, 65-69 kDa and 44-45 kDa were only recognised on reducing blots, suggesting that these are fragments of the larger allergens. Only a few sera recognised group 1 or 2 allergens on blots of crude extracts or purified allergens. These results confirm that, in atopic dogs, high molecular weight allergens are the most important Dermatophagoides allergens, rather than the low molecular weight group 1 and 2 proteins.  相似文献   

9.
The most common families of mites found in house dust are Pyroglyphidae, Glycyphagidae and Acaridae; all are a source of many antigens responsible for allergic diseases. The aim of this study was to examine the seasonal dynamics of allergenic mite populations in dust samples collected from sleeping places in apartments in north-western Poland. The mites were isolated from the dust using a saturated saline floating method. In 132 dust samples we determined: Dermatophagoides farinae, Dermatophagoides pteronyssinus, Euroglyphus maynei, Hirstia sp., Chortoglyphus arcuatus, Lepidoglyphus destructor, Gohieria fusca and Cheyletus sp. The greatest frequency was observed for D. farinae, D. pteronyssinus, Ch. arcuatus and Cheyletus sp., in the fourth quarter and D. farinae in the third quarter. Smaller coefficients of dominance were found for D. pteronyssinus, Ch. arcuatus and Cheyletus sp., and their greatest mean concentrations were found in the first and fourth quarters. Given the division of the year into heating and non-heating seasons, mites D. farinae and D. pteronyssinus achieved the highest mean concentration in the first season, and Cheyletus sp. in the second season. The analysis of the participation of developmental stages showed that the adults of D. farinae were more prevalent than juveniles in the first, second and third quarters, and imago stages of D. pteronyssinus were more numerous in relation to juveniles in the first, third and fourth quarters. The results confirm the high incidence of house dust mites in sleeping places in north-western Poland dwellings; the best conditions for the development of these mites, mainly D. farinae and D. pteronyssinus, occur in the fourth quarter and are the least favourable in the second quarter. In many cases, these results are consistent with data from other parts of Poland collected by various authors.  相似文献   

10.
OBJECTIVE: To quantitate the density of Dermatophagoides farinae and D pteronyssinus and concentrations of house dust mite (HDM) allergens (Der f 1, Der p 1, and Group 2 allergens) in the indoor microenvironment of dogs. Sample Population-50 homes in Columbus, Ohio. PROCEDURES: n each home, samples of dust were collected from 3 locations in which dogs spent most time. Whenever possible, the species of mites collected was identified. Mite density (mites/g of dust) was assessed, and allergen concentrations were assayed by standardized ELISAs. Relative humidity and temperature in each home were monitored during a 5-day period. Characteristics of homes and sample sources were evaluated. RESULTS: Dust samples from all 50 homes contained > or = 1 HDM allergen; Der f 1 and Der p 1 were detected in 100 and 74% of homes, respectively. Fifteen homes had HDMs; compared with D pteronyssinus, D farinae was found more commonly (14/15 homes) and at a higher density. Basements, homes without central air-conditioning, and dog beds that were > or = 1 year old had high HDM allergen concentrations. Homes with > or = 2 microg of Der f 1 or Group 2 allergens/g of dust or > or = 100 mites/g of dust were significantly more likely to have a maximum relative humidity > or = 75%. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate the presence of HDMs and HDM allergens in the specific microenvironment of dogs in homes. Factors associated with high levels of exposure were identified, which may be associated with increased risk for sensitization and development of atopic diseases.  相似文献   

11.
The present study investigates IgE-reactivity to crude and purified mite allergens by intradermal skin test (IDST), Immunodot method, and ELISA in atopic dogs sensitive to mite allergens, as well as the allergenic cross-reactivity between Dermatophgoides (D) farinae (DF) and D. pteronyssinus (DP) in dogs by IgE-ELISA inhibition. IDST and Immunodot method for crude mite allergens were performed for atopic dogs and 16 atopic dogs showed sensitivity to mite allergens. Of the 16 dogs, all dogs had anti-DF IgE and 11 had anti-DP IgE. We measured specific IgE to purified major allergens (Der f 1, Der f 2, Der p 1, Der p 2). Of the 16 atopic dogs, six had anti-Der f 1 IgE and seven had anti-Der f 2 IgE. Similarly, of the 16 dogs, six had anti-Der p 1 IgE and seven had anti-Der p 2 IgE. However, eight dogs had no specific IgE to these mite allergens. These dogs may be sensitive to other major mite allergens except Der 1 and Der 2. In the dogs that had both anti-DF and DP IgE, IgE binding to DF was greatly inhibited by DP, and reciprocal inhibition was observed. Based on these data, it appears that there is a strong cross-reactivity between DF and DP in dogs. Similarly, a cross-reactivity between DF and DP in purified allergens was also observed. IDST and Immunodot method are useful methods for the diagnosis of atopic diseases in dogs, and ELISA is a useful method for further investigation of IgE-reactivity for the allergens.  相似文献   

12.
Housedust mites, Dermatophagoides pteronyssinus (D. pteronyssinus) and Dermatophagoides farinae (D. farinae), are the important causative agents of allergic diseases in human and animals. By using 165 dogs suffering from atopic dermatitis (AD), serum levels of immunogloblin E (IgE) antibody against 25 kinds of allergen including housedust mites were determined. Housedust mites were the most frequent allergen against which 90 of the 165 allergic dogs (54.5%) by IMMUNODOT assay. With the further analysis of immunoblotting assay in the 90 dogs sensitized with housedust mites, antigenic proteins of housedust mites recognized by IgE antibodies were with the apparent molecular masses of 15, 76, 90, 98, and 170-kD. Among them, the 15-kD protein that might be identical to Group 2 antigens (Der f2, Der p2) was prominently observed (52/90). This study indicates that about a half of dogs with AD were sensitized to housedust mites, suggesting that Group 2 antigens of housedust mites may be a major allergen in canine AD.  相似文献   

13.
Atopic dermatitis in dogs is a common allergic skin disease that affects substantial numbers of dogs in the UK. The purpose of this study was to compare the results of an intradermal test (IDT) and an in vitro test in a large cohort of dogs. Dogs were intradermal tested with Greer allergens (Greer Labs Inc, Lenoir, NC, USA) using standard techniques. At the same time blood samples were drawn and submitted for evaluation by ELISA using the ALLERCEPT Definitive Allergen Panels for allergen-specific IgE, a commercial assay that uses a biotinylated recombinant extracellular domain of the high affinity Fc-epsilon receptor alpha chain protein (Fcepsilon RIalpha). The allergens used in the two tests included grass, tree and weed pollens, moulds, flea saliva/whole flea extract and house dust mite species. The optical density readings from the ELISA for each allergen were compared with the results of the IDT for 265 dogs. The prevalence of positive reactions in the ELISA was equal to or greater than the results of the IDT in the case of almost all of the allergens, but two notable exceptions were the house dust mites Dermatophagoides farinae and Dermatophagoides pteronyssinus. These two allergens were the most common positive reactions by IDT (prevalence D. farinae 78.9%, D. pteronyssinus 66.4%). The results of the two tests were significantly different (McNemar's test, P<0.05) for 16 of the 22 allergens. The sensitivities of the ELISA compared to the IDT (where there were more than 3 dogs with positive reactions in both tests) varied between 19.3 and 77.1% (D. pteronyssinus 19.3% and D. farinae 67.9%) and the specificities varied between 64.2 and 96.6% (D. pteronyssinus 96.6% and D. farinae 89.3%).  相似文献   

14.
In vitro cross-reactivity among two house dust (Dermatophagoides farinae, D. pteronyssinus) and three storage (Acarus siro, Tyrophagus putrescentiae, Lepidoglyphus destructor) mites was examined in 20 mite-sensitive dogs with natural occurring atopic dermatitis (group A), 13 high-IgE beagles experimentally sensitized to D. farinae (group B), and five healthy beagles (group C). Intradermal testing (IDT) and serology for allergen-specific IgE demonstrated that co-sensitization for all possible pairs of the five mites was generally 45% or higher among group A dogs. In the same dogs, enzyme-linked immunosorbent assay cross-inhibition results indicated that each one of D. farinae, A. siro and T. putrescentiae was a strong inhibitor of all the remaining mites, whereas D. pteronyssinus was a strong inhibitor of L. destructor. A high number of positive IDT and serology test results for D. pteronyssinus, A. siro, T. putrescentiae and L. destructor were recorded among group B dogs. No conclusive evidence of exposure to these mites was found upon analysis of dust samples from their environment and their food for the presence of mites and guanine. Also, the number of positive test results was generally higher among group B than among group C dogs. Enzyme-linked immunosorbent assay cross-inhibition revealed that D. farinae was a strong inhibitor of D. pteronyssinus, A. siro and T. putrescentiae. Collectively, these results demonstrated extensive in vitro cross-reactivity among house dust and/or storage mites that can explain false-positive results upon testing of dust mite-sensitive dogs with atopic dermatitis.  相似文献   

15.
This study investigated intradermal test reactions to extracts of six species of mites in 150 dogs with atopic dermatitis. At least one positive reaction was seen in 120 animals (80%). Dermatophagoides farinae attracted the highest number of positive reactions (108 dogs, 90% of dogs and 72% of atopic dogs showing positive reactions). Positive reactions to other mites were not uncommon, with many dogs testing positive for Dermatophagoides pteronyssinus (32% of dogs tested), Acarus siro (35%), Tyrophagus putrescentiae (30%), Glycyphagus domesticus (27%) and Lepidoglyphus destructor (23%). Sensitivity to D. farinae alone occurred commonly (57% of cases), but multiple sensitivities were seen frequently with the other mites. Cases of sensitivity to only one mite were also seen: D. pteronyssinus (five cases), T. putrescentiae (one case) and G. domesticus (one case). Further studies are needed to appreciate more clearly the precise role played by the different species of mite in canine atopic dermatitis.  相似文献   

16.
The house dust mites Dermatophagoides farinae (Df) and D. pteronyssinus (Dpt) are commonly implicated as allergens causing canine atopic dermatitis in the UK. However, there are few studies that characterize the exposure of UK pet dogs to these mites. The objectives of this study were to determine the prevalence of the mite species on the skin, hair coat and bedding of a population of pet dogs. Dust samples (n = 68) were collected from both dogs and their beds using a standardized vacuuming technique and stored at -20 degrees C. Mites were identified using accepted morphological criteria. House dust mite allergen concentrations were assayed using standardized ELISA for Dpt and Df group 1 allergens (Der p 1 and Der f 1). Mites were identified in 15/68 samples (22%) and Dpt was the most common. Df mites were not present. Der p 1 allergens were detected in 60% of samples, and Der f 1 in 6% of samples. There were no significant differences between the number of Der p 1 positive samples from dogs and the number of those from their bedding, or between the average Der p 1 concentrations from dogs and the number of those from their bedding. Contrary to studies elsewhere in Europe and the USA, these findings support studies of human asthma patients in the UK, where exposure to Df is rare, but to Dpt is common. As the prevalence of positive intradermal and serological reactions to Df in atopic dogs is high, further investigations are warranted to clarify true Df hypersensitivity or potential immunological cross-reactivity between mite allergens.  相似文献   

17.
Sera from dogs suffering from scabies were used to evaluate possible antigenic cross‐reactivity with proteins from house dust or storage mites. Polyacrylamide gel electrophoresis on gradient gels was used to create size‐dependent protein bands of Sarcoptes scabiei ssp. vulpis, Dermatophagoides farinae, D. pteronyssinus, Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae. Anti‐canine IgG antibodies conjugated with alkaline phosphatase were used for immunostaining. Different patterns for Sarcoptes could be seen with strong bands repetitively observed of approximately 22, 112, 116, 132 and 200 kD in size. The band at approximately 22 kD seems likely to have cross‐reactivity with a protein of the same size in A. siro. The one at approximately 200 kD might share antigenic activity with bands of D. farinae and, to a lesser extent, D. pteronyssinus. Funding: Laupeneck AG.  相似文献   

18.
In humans with atopic dermatitis and in mouse models of IgE-mediated allergic diseases, evidence is mounting that the stratum corneum (SC) provides an important barrier against environmental allergens. At this time, it is not known whether the SC has a similar role in dogs, especially in those with atopic dermatitis. The objectives of this pilot study were to determine whether SC removal led to earlier and stronger sensitization of atopic dogs to Dermatophagoides farinae (Df) house dust mites. Five Maltese-beagle atopic (MBA) dogs were sensitized epicutaneously after the SC was removed with ten tape strips (TS group), while sensitization was done without tape strips in five other MBA dogs (nontape stripping; NTS group). During this 16 week study, sensitization was assessed with allergen-specific IgE serology, intradermal testing with Df allergens and determination of stimulation indices of blood mononuclear cells cultured with Df and stained for CD4 and the activation markers CD25 or CD30. Compared with dogs from the NTS group, those of the TS group exhibited earlier rises in Df-specific IgE serum levels, usually had higher allergen-specific IgE titres, showed higher intradermal test reactivity and had earlier increases and higher percentages of CD25- or CD30-positive activated allergen-specific peripheral CD4-positive T lymphocytes. These observations implicate a role of the SC as a barrier limiting sensitization to exogenous allergens in this experimental atopic dog model.  相似文献   

19.
OBJECTIVE: To determine the most relevant aero-allergens involved in canine atopic dermatitis in southeastern Australia and provide information about these aero-allergens to the general practitioner. PROCEDURE: Dogs presented to the Animal Skin & Allergy Clinic with history and clinical signs of atopic dermatitis were injected intradermally with 38 different allergens and negative and positive control. Intradermal skin tests in 1000 dogs were retrospectively evaluated. RESULTS: One third of all patients reacted to the house dust mite Dermatophagoides farinae. Allergens reacting in more than 15% of the patients were wheat (Triticum aestivum), sweet vernal (Anthoxanthum odoratum), English couch (Agropyron repens), yellow dock (Rumex crispus), Mexican tea (Chenopodium ambrosioides), plantain (Plantago lanceolata), melaleuca (Melaleuca quinquenervia) and peppercorn (Schimus spp). CONCLUSION: House dust mites are the most common allergens in canine atopic dermatitis in southeastern Australia and D farinae is involved most frequently. However, a number of grass, weed and tree pollens also are involved regularly.  相似文献   

20.
Abstract— Sensitisation to the house dust mite, Dermatophagoides farinae , was demonstrated by skin testing and allergen-specific IgG determination in 15 out of 20 dogs in which a definitive diagnosis of sarcoptic mange was made following recovery of Sarcoptes scabiei mites on skin scrapings. After therapy, no dogs exhibited clinical signs of atopic dermatitis. Intradermal skin testing and 40 per cent of specific IgG assays for Dermatophagoides farinae were negative 90–180 DAys after the original diagnosis.
Résumé— Une sensibilisation a l'acarien de la poussière de maison, Dermatophagoides farinae , est demontrée par tests cutanés et dosage d'immunoglobulines IgG specifiques d'allergenes sur 15/20 chiens atteints de gale sarcoptique prouvée par la presence de nombreux sarcoptes aux raclages cutanés. Après traitement, aucun chien n'a présenté des signes cliniques de dermatite atopique. Les tests cutanés intradermiques et 40 plus des posages IgG pour Dermatophagoides farinae sont negatifs 90 à 180 jours après le diagnostic initial. [Prélaud, P., Guaguère, E. Sensitisation to the house dust mite, Dermatophagoides farinae , in dogs with sarcoptic mange (Une sensitisation à l'acarien de la poussière de maison sur les chiens atteints de gale sarcoptique).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号