首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对使用国产原料制成的23种活性炭品种,在用同样测试条件下,测得了它们对放射性碘和放别性甲基碘的去污性能。经筛选所得的以2%TEDA~2%KI浸渍的油棕炭,是其中对碘和甲基碘吸附性能兼优的炭种,可用作核电站中除碘过滤器的吸附材料。  相似文献   

2.
磷酸活化工艺条件对活性炭性质的影响   总被引:8,自引:0,他引:8  
探讨了磷酸浓度、浸渍比、活化温度三个主要工艺参数对活性炭性质的影响。结果表明磷酸浓度、浸渍比和炭活化温度对磷酸活化法活性炭的碘吸附值、亚甲基蓝脱色力和焦糖脱色力都有影响:浸渍比(纯磷酸与绝干原料质量之比) 的影响最显著,但1.5:1之后影响不大;磷酸浓度对活性炭的碘吸附值影响显著,对亚甲基蓝脱色力的影响次之,而对焦糖脱色力的影响很小;炭活化温度对碘吸附值和焦糖脱色力的影响随磷酸浓度和浸渍比的不同而有较大的差异,但在不同的磷酸浓度和浸渍比的情况下炭活化温度的升高都提高亚甲基蓝脱色力。磷酸活化活性炭的孔隙结构能通过调整磷酸浓度、浸渍比和炭活化温度进行控制。  相似文献   

3.
以石油焦为原料,添加质量分数3%-5%的酸性活化剂,通过水蒸气法在实验室制得碘吸附值521mg/g、CCl4吸附率22%的不定型颗粒炭,以及碘吸附值800—900mg/g、亚甲基蓝吸附值120mg/g、CCl4吸附率38%-46%、苯酚吸附值180—260mg/g、灰分3%-5%、强度91%-95%的定型柱状颗粒炭。研究结果表明,酸性活化剂的添加有利于活性炭造孔,提高了活性炭的品质。在此基础上进行了定型颗粒炭的工厂放大实验,取得与实验室结果相当的产品,性能均达到或超过国家木质和煤质净水炭标准。  相似文献   

4.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

5.
对竹材炭化后不同部位炭材料进行了碘吸附性能、亚甲蓝吸附性能、比表面积、远红外发射率测定。结果表明,竹蒲炭碘吸附性能最优,竹片炭其次,竹节炭最差。炭化温度对竹炭吸附性能影响较大,炭化温度越高炭的吸附性能越好。比表面积测定结果也表明在900℃炭化条件下,竹蒲炭比表面积和孔容分别达357.674 m2·g-1和0.295 m3·g-1。亚甲蓝测定结果显示,在700℃及以下炭化条件下,竹蒲炭亚甲蓝吸附性能是最优,竹节炭亚甲蓝吸附性能是最差。而在900℃炭化条件,竹片炭亚甲蓝吸附性能是最优。在所有测试样品中700℃炭化条件下竹蒲炭亚甲蓝吸附性能是大。所有竹炭样品远红处发射率均在0.90以上。  相似文献   

6.
以椰壳活性炭生产过程中产生的粉末碎炭为原料,羧甲基纤维素钠为黏结剂,无机助剂硅酸盐为增黏剂,按一定质量比混炼、挤条、成型,再经过热处理制得耐水高强度柱状颗粒活性炭。试验考察了助剂添加量、热处理温度、热处理时间等因素对产品炭的碘吸附值、亚甲基蓝吸附值和耐磨强度的影响。随着硅酸盐添加量的增加,颗粒活性炭的耐磨强度呈增大趋势;随热处理温度的升高,颗粒活性炭的碘吸附值和亚甲基蓝吸附值不断增加。但另一方面,随热处理时间的延长,耐磨强度呈逐渐下降趋势。利用红外分析仪、综合热分析仪和全自动比表面积与孔隙分布分析仪对颗粒活性炭进行分析。在羧甲基纤维素钠用量2%、助剂添加量20%、热处理温度350℃、热处理时间0.5 h条件下,制备出的颗粒活性炭碘吸附值、亚甲基蓝吸附值和耐磨强度分别为815.37mg/g,163.50 mg/g和99.72%,并且具有良好的耐水能力。  相似文献   

7.
以水稻秸秆为原料,缺氧热解制备了生物炭并进行了负载铈改性,研究了其对亚甲基蓝模拟有机染料废水的吸附机理,探索了废水pH值、生物炭投加量等对其吸附性能的影响。结果表明:负载铈后生物炭比表面积增大,具有更好的吸附性能,并且碱性条件有利于铈改性生物炭对亚甲基蓝的吸附,该吸附过程更符合准二级动力学方程及Langmuir吸附等温方程,属于单分子层吸附,平衡吸附量为4.567 mg/g。  相似文献   

8.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

9.
研究用多元酚焦炭化料制取活性炭的方法,并探索合适的工艺条件。研究表明,破碎至不同粒度的多元酚焦炭化料通过水蒸气活化制取活性炭较适宜的工艺条件是:活化温度800~850℃;活化时间分别为:颗粒炭1h、定型颗粒炭2.5-3h,制得的活性炭的吸附指标超过国家标准GB/T13803.2-1999木质净水用活性炭的指标。碘吸附值在1000mg/g以上,亚甲基蓝吸附值在12mL/0.1mg以上研究结果还表明,磷酸法不适宜用于多元酚焦炭化料制造活性炭。  相似文献   

10.
物理法制备炭陶复合吸附材料及其表征   总被引:1,自引:0,他引:1  
以木炭和黏土为原料,采用物理法制备炭陶复合吸附材料,讨论温度和保温时间对其吸附性能的影响,采用扫描电镜(SEM)和全自动比表面积及孔径分析仪对其微观结构和孔径分布进行表征,提出原位活化的思路.结果表明:热处理过程中,木炭的收缩在木炭和陶土之间形成发达的孔隙;黏土在烧结之后并没堵塞活性炭的孔隙结构;块状炭陶的吸附性能比粉状的高;炭陶在制备过程中受原位活化作用.在较优的工艺条件下,炭陶复合吸附材料的亚甲基蓝吸附值和碘吸附值分别为127.5和543.6 mg·g-1.  相似文献   

11.
为了实现废弃粉状活性炭的再生与资源化利用,笔者以废弃粉状活性炭为原料,以凹凸棒土为黏结剂,通过混合捏合、挤压成型、干燥烧结制备了多孔炭陶瓷。采用氮气吸附、扫描电子显微镜、X射线衍射表征了多孔炭陶瓷的孔隙结构和形态,测试了多孔炭陶瓷对碘、亚甲基蓝、苯酚和腐殖酸的吸附能力。考察了黏结剂用量、烧结温度和时间对炭陶瓷孔隙结构、吸附性能和强度的影响,分析了多孔炭陶瓷吸附水体中腐殖酸的性能。结果表明,黏结剂用量、煅烧温度和时间均对炭陶瓷的孔隙结构、强度和吸附能力具有较为明显的影响:当黏结剂与原料炭的质量比为1∶4,烧结温度和时间分别为800℃和0.5 h时,可以制备出强度达98%、比表面积和比孔容积分别为607 m2/g和0.720 cm3/g的中孔发达的多孔炭陶瓷。该成型炭陶瓷具有发达的中孔结构,对腐殖酸的平衡吸附量可达193.3 mg/g,显著高于商用的成型活性炭。溶液的p H和吸附温度影响炭陶瓷对腐殖酸的吸附量,在溶液p H为3、吸附温度为45℃时,炭陶瓷表现出较好的腐殖酸吸附能力。  相似文献   

12.
通过桂花树干制备生物炭,利用硝酸和高锰酸钾对桂花树干生物炭进行修饰(活化)处理,研究了其对水溶液中染料亚甲基蓝(MB)的吸附能力。研究了温度、pH值、吸附时间和初始浓度对生物炭染料吸附性能的影响。生物炭及改性生物炭准二级动力学拟合的判决系数均为0.999。准二级动力学模型模拟的平衡吸附量更符合实际值。采用扫描电镜(SEM)和紫外分析方法(UV-vis)对生物炭吸附剂改性前后进行了测试,研究表明:改性桂花树干生物炭可以作为合成染料的高效吸附剂。  相似文献   

13.
硫酸改性对活性炭吸附性能的影响   总被引:2,自引:0,他引:2  
采用硫酸对活性炭进行改性,探讨硫酸浓度、改性温度对改性活性炭吸附性能的影响。结果表明,随着温度的升高,改性活性炭的亚甲基蓝吸附值和碘吸附值呈现先升后降的趋势,而苯吸附值和苯酚吸附值总体呈不断下降趋势;随着硫酸浓度的升高,改性活性炭的亚甲基蓝吸附值、碘吸附值和苯吸附值呈不断下降的趋势,而苯酚吸附值呈先降后升的趋势。与未改性的活性炭相比,改性活性炭的亚甲基蓝吸附值和碘吸附值均有所降低,苯酚吸附值有所升高,而苯吸附值在一定范围内有所升高。  相似文献   

14.
500℃下炭化杉木屑,再将此炭化料在较高温度下,进行第二步炭化,制得高活性木炭。讨论了温度、保温时间、升温速率等因素对产品吸附性能的影响。结果表明,随着温度的升高、保温时间的延长,亚甲基蓝吸附值、碘吸附值、苯吸附值呈现上升趋势;随着升温速率的增大,得率、亚甲基蓝吸附值、碘吸附值、苯吸附值呈现下降趋势。在相对较优的实验条件下,制得了亚甲基蓝吸附值为330 mg/g,碘吸附值1 068.3 mg/g,苯吸附值105.28 %、得率为14.29 %的高活性木炭。研究认为两步炭化有利于进一步提高木炭的比表面积及吸附性能。第二步炭化时,在微量空气的作用下,对木炭产生了活化效果。研究表明,两步炭化法工艺比较简单,对设备要求不高。  相似文献   

15.
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。  相似文献   

16.
磷酸法制备活性炭工艺研究   总被引:2,自引:0,他引:2  
以杉木屑为原料,采用磷酸浸渍在高温下对其进行活化,制备活性炭。探讨温度、保温时间、磷酸浓度对活性炭性能的影响。结果表明,随着温度和保温时间的增加,活性炭的亚甲基蓝吸附值、碘吸附值和苯吸附值总体呈上升的趋势。随着磷酸浓度的增加,活性炭的亚甲基蓝吸附值和碘吸附值呈先降后升的趋势。在较优的实验工艺下,活性炭的亚甲基蓝吸附值、碘吸附值和吸苯率分别为330.0 mg·g-1、1 015.7 mg·g-1和59.2%。  相似文献   

17.
以核桃壳和杏壳为原料,采用磷酸法制备活性炭,以亚甲基蓝吸附值、碘吸附值和得率为指标,研究了原料粒径和含水率对磷酸法活性炭性能的影响。结果表明:原料的粒径和含水率对活性炭的吸附性能有重要影响,在一定范围内减小原料粒径,对提高活性炭吸附性能有利,而原料含水率对活性炭吸附性能的影响因不同原料而异。增加原料含水率,对核桃壳活性炭吸附性能的提高有利,但会降低小粒径杏壳活性炭的吸附性能。以核桃壳为原料制备活性炭时,选择粒径0.5~0.7 mm、含水率11%的原料为佳,得率可达41%,亚甲基蓝吸附值230 mg/g,碘吸附值874 mg/g;以杏壳为原料制备活性炭时,选择粒径0.7~1.2 mm、烘干的原料为佳,得率可达42%,亚甲基蓝吸附值87 mg/g,碘吸附值734 mg/g。  相似文献   

18.
低温磷酸活化棉秆制备活性炭的研究   总被引:7,自引:2,他引:5  
以棉秆为原料,活化温度在300~450 ℃之间,研究了低温磷酸活化制备活性炭的可行性,并测定了活性炭的碘吸附值、亚甲基蓝吸附值和焦糖脱色率等吸附性能指标;根据氮气吸附等温线分析了活性炭的孔隙结构特征;采用Boehm 滴定方法分析了活性炭的各类表面官能团.结果表明:在磷酸的低温活化过程中,活化温度的升高显著促进了活性炭的比表面积及其对亚甲基蓝吸附值和焦糖脱色率等的吸附能力.在 350 ℃下的低温磷酸活化棉秆能够制备出比表面积达 1 244 m2/g,表面官能团含量高达 10.4 mmol/g,亚甲基蓝吸附值和焦糖脱色率分别达到 190 mL/g 和 100 % 的孔隙结构发达和极性较强的活性炭.  相似文献   

19.
CMC粘接法制备柱状成型活性炭   总被引:1,自引:0,他引:1  
以羧甲基纤维素钠(CMC)为粘接剂制备了柱状成型活性炭,研究了炭化温度、CMC添加量对产物吸附性能、孔结构及强度的影响。结果表明,随着炭化温度的升高,柱状成型活性炭的比表面积、亚甲基蓝吸附值和碘吸附值均呈现下降趋势;随着CMC添加量的增加,柱状成型活性炭的比表面积、总孔容、微孔容、平均孔径及亚甲基蓝吸附值、碘吸附值及对甲苯的吸附能力均逐渐降低,其强度逐渐增大。CMC粘接法制备柱状成型活性炭的最佳工艺为炭化温度200℃,CMC添加量10%,产物比表面积可达844.9 m2/g,亚甲基蓝吸附值和碘吸附值分别为189.2及968.2 mg/g,强度可达99.83%,甲苯的吸附率达65.5%。  相似文献   

20.
采用缺氧状态下进行热解,以水蒸气法提取精油的山苍子核渣为原料,测定不同热解温度下生物质炭的炭得率、灰分、挥发分、pH、固定碳、亚甲基蓝的吸附值,研究不同炭化温度对山苍子核渣生物质炭的特性影响。热解实验表明:随着炭化温度从300℃升温到600℃,炭得率和挥发分均逐渐降低,灰分和固定碳则逐渐升高,pH值逐渐升高。在温度为300℃时,山苍子核渣生物质炭的炭得率为(52.49±2.14)%、挥发分为(46.45±0.55)%、灰分为(3.37±0.47)%,通过计算得到固定碳为(50.18±1.02)%、pH值为6.68±0.10;在温度600℃时,山苍子核渣生物质炭对亚甲基蓝的吸附值最大,为56.08 mg·g~(-1)。实验结果表明炭化温度为600℃时,山苍子核渣生物质炭对亚甲基蓝的吸附效果最好,可作为一种新型潜在的生物质炭材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号