首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 degrees N (Skidegate a and Skidegate b) and at 41.3 degrees N (North Bend a and North Bend b), were grown for three growing seasons in ambient (~350 micromol per mol) and elevated (~700 micromol per mol) CO2 concentrations. The clones were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO2] on tree physiology. Growth in elevated [CO2] significantly increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62%. Downward acclimation of photosynthesis (A) was found in all four clones grown in elevated [CO2]. Rubisco activity and total chlorophyll concentration were also significantly reduced in elevated [CO2]. Provenance did not influence photosynthetic capacity. Best-fit estimates of Jmax (maximum rate of electron transport), Vcmax (RuBP-saturated rate of Rubisco) and Amax (maximum rate of assimilation) were derived from responses of A to intercellular [CO2] by using the model of Farquhar et al. (1980). At any leaf N concentration, the photosynthetic parameters were reduced by growth in elevated [CO2]. However, the ratio between Jmax and Vcmax was unaffected by CO2 growth concentration, indicating a tight coordination in the allocation of N between thylakoid and soluble proteins. In elevated [CO2], the more southerly clones had a higher initial N use efficiency (more carbon assimilated per unit of leaf N) than the more northerly clones, so that they had more N available for those processes or organs that were most limiting to growth at a particular time. This may explain the initial higher growth stimulation by elevated [CO2] in the North Bend clones than in the Skidegate clones.  相似文献   

2.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.  相似文献   

3.
To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis.  相似文献   

4.
Wang X  Curtis PS  Pregitzer KS  Zak DR 《Tree physiology》2000,20(15):1019-1028
Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.  相似文献   

5.
Understanding seasonal variations of photosynthetic parameters is critical for accurate modeling of carbon dioxide (CO2) uptake by ecosystems. Maximum carboxylation velocity (Vcmax), maximum rate of electron transport (Jmax), leaf respiration in the light (R(day)), light-saturated assimilation (Amax) and maximum quantum yield (Phi) were calculated from leaf gas exchange measurements made monthly throughout the year on leaves of three co-occuring evergreen species in a Pinus ponderosa Dougl. ex P. Laws. & C. Laws. forest with shrubs in the understory (Arctostaphylos manzanita Parry and Ceanothus cordulatus Kellogg.). The seasonality and relationships of the photosynthetic parameters with environmental and physiological variables differed among the species. The nitrogen-fixing species, C. cordulatus had the highest values of the parameters and the largest seasonal variation, whereas A. manzanita exhibited the lowest seasonality and weaker correlations with environmental variables. In general, variations in Vcmax were highly correlated with light, leaf mass per area and leaf nitrogen content on an area basis. Temporal scaling of the parameters with each other seemed possible for C. cordulatus and P. ponderosa. However, lags between these variables and Vcmax likely reflect the influences of other factors. The acclimation relationships found along vertical light gradients within canopies in other studies cannot be applied to seasonal variations. The Jmax to Vcmax ratio varied seasonally for P. ponderosa and A. manzanita, being lower at high light, high air temperature and low soil water content.  相似文献   

6.
Few studies have examined the effects of elevated CO2 concentration ([CO2]) on the physiology of intact forest canopies, despite the need to understand how leaf-level responses can be aggregated to assess effects on whole-canopy functioning. We examined the long-term effects of elevated [CO2] (ambient + 200 ppm CO2) on two age classes of needles in the upper and lower canopy of Pinus taeda L. during the second through sixth year of exposure to elevated [CO2] in free-air (free-air CO2 enrichment (FACE)) in North Carolina, USA. Strong photosynthetic enhancement in response to elevated [CO2] (e.g., +60% across age classes and canopy locations) was observed across the years. This stimulation was 33% greater for current-year needles than for 1-year-old needles in the fifth and sixth years of treatment. Although photosynthetic stimulation in response to elevated [CO2] was maintained through the sixth year of exposure, we found evidence of concurrent down-regulation of Rubisco and electron transport capacity in the upper-canopy sunlit leaves. The lower canopy showed no evidence of down-regulation. The upper canopy down-regulated carboxylation capacity (Vcmax) and electron transport capacity (Jmax) by about 17-20% in 1-year-old needles; however, this response was significant across sampling years only for Jmax in 1-year-old needles (P < 0.02). A reduction in leaf photosynthetic capacity in aging conifer needles at the canopy top could have important consequences for canopy carbon balance and global carbon sinks because 1-year-old sunlit needles contribute a major proportion of the annual carbon balance of these conifers. Our finding of a significant interaction between canopy position and CO2 treatment on the biochemical capacity for CO2 assimilation suggests that it is important to take canopy position and needle aging into account because morphologically and physiologically distinct leaves could respond differently to elevated [CO2].  相似文献   

7.
Zhang S  Dang QL 《Tree physiology》2005,25(5):523-531
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].  相似文献   

8.
Photosynthetic light response curves (A/PPFD), leaf N concentration and content, and relative leaf absorbance (alpha(r)) were measured in 1-year-old seedlings of shade-intolerant Betula papyrifera Marsh., moderately shade-tolerant Quercus rubra L. and shade-tolerant Acer rubrum L. Seedlings were grown in full sun or 26% of full sun (shade) and in ambient (350 ppm) or elevated (714 ppm) CO(2) for 80 days. In the shade treatments, 80% of the daily PPFD on cloud-free days was provided by two 30-min sun patches at midday. In Q. rubra and A. rubrum, leaf N concentration and alpha(r) were significantly higher in seedlings in the shade treatments than in the sun treatments, and leaf N concentration was lower in seedlings in the ambient CO(2) treatments than in the elevated CO(2) treatments. Changes in alpha(r) and leaf N content suggest that reapportionment of leaf N into light harvesting machinery in response to shade and elevated CO(2) tended to increase with increasing shade tolerance of the plant. Shifts induced by elevated CO(2) in the A/PPFD relationship in sun plants were largest in B. papyrifera and least in A. rubrum: the reverse was true for shade plants. Elevated CO(2) resulted in increased light-saturated A in every species x light treatment combination, except in shaded B. papyrifera. The light compensation point (Gamma) decreased in response to shade in all species, and in response to elevated CO(2) in A. rubrum and Q. rubra. Acer rubrum had the greatest increases in apparent quantum yield (phi) in response to shade and elevated CO(2). To illustrate the effects of shifts in A, Gamma and phi on daily C gain, daily integrated C balance was calculated for individual sun and shade leaves. Ignoring possible stomatal effects, estimated daily (24 h) leaf C balance was 218 to 442% higher in the elevated CO(2) treatments than in the ambient CO(2) treatments in both sun and shade seedlings of Q. rubra and A. rubrum. These results suggest that the ability of species to acclimate photosynthetically to elevated CO(2) may, in part, be related to their ability to adapt to low irradiance. Such a relationship has implications for altered C balance and nitrogen use efficiency of understory seedlings.  相似文献   

9.
Nitrogen-fixing plant species may respond more positively to elevated atmospheric carbon dioxide concentrations ([CO2]) than other species because of their ability to maintain a high internal nutrient supply. A key factor in the growth response of trees to elevated [CO2] is the availability of nitrogen, although how elevated [CO2] influences the rate of N2-fixation of nodulated trees growing under field conditions is unclear. To elucidate this relationship, we measured total biomass, relative growth rate, net assimilation rate (NAR), leaf area and net photosynthetic rate of N2-fixing Alnus glutinosa (L.) Gaertn. (common alder) trees grown for 3 years in open-top chambers in the presence of either ambient or elevated atmospheric [CO2] and two soil N regimes: full nutrient solution or no fertilizer. Nitrogen fixation by Frankia spp. in the root nodules of unfertilized trees was assessed by the acetylene reduction method. We hypothesized that unfertilized trees would show similar positive growth and physiological responses to elevated [CO2] as the fertilized trees. Growth in elevated [CO2] stimulated (relative) net photosynthesis and (absolute) total biomass accumulation. Relative total biomass increased, and leaf nitrogen remained stable, only during the first year of the experiment. Toward the end of the experiment, signs of photosynthetic acclimation occurred, i.e., down-regulation of the photosynthetic apparatus. Relative growth rate was not significantly affected by elevated [CO2] because although NAR was increased, the effect on relative growth rate was negated by a reduction in leaf area ratio. Neither leaf area nor leaf P concentration was affected by growth in elevated [CO2]. Nodule mass increased on roots of unfertilized trees exposed to elevated [CO2] compared with fertilized trees exposed to ambient [CO2]. There was also a biologically significant, although not statistically significant, stimulation of nitrogenase activity in nodules exposed to elevated [CO2]. Root nodules of trees exposed to elevated [CO2] were smaller and more evenly spaced than root nodules of trees exposed to ambient [CO2]. The lack of an interaction between nutrient and [CO2] effects on growth, biomass and photosynthesis indicates that the unfertilized trees maintained similar CO2-induced growth and photosynthetic enhancements as the fertilized trees. This implies that alder trees growing in natural conditions, which are often limited by soil N availability, should nevertheless benefit from increasing atmospheric [CO2].  相似文献   

10.
Sefcik LT  Zak DR  Ellsworth DS 《Tree physiology》2006,26(12):1589-1599
Seedling responses to elevated atmospheric CO(2) concentration ([CO(2)]) and solar irradiance were measured over two growing seasons in shade-tolerant Acer saccharum Marsh. and Fagus grandifolia J.F. Ehrh. and shade-intolerant Prunus serotina, a J.F. Ehrh. and Betula papyrifera Marsh. Seedlings were exposed to a factorial combination of [CO2] (ambient and elevated (658 micromol mol-1)) and understory shade (deep and moderate) in open-top chambers placed in a forest understory. The elevated [CO(2)] treatment increased mean light-saturated net photosynthetic rate by 63% in the shade-tolerant species and 67% in the shade-intolerant species. However, when measured at the elevated [CO(2)], long-term enhancement of photosynthesis was 10% lower than the instantaneous enhancement seen in ambient-[CO(2)]-grown plants (P < 0.021). Overall, growth light environment affected long-term photosynthetic enhancement by elevated [CO(2)]: as the growth irradiance increased, proportional enhancement due to elevated [CO(2)] decreased from 97% for plants grown in deep shade to 47% for plants grown in moderate shade. Results suggest that in N-limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO(2)-enriched atmosphere than trees growing in more moderate shade, because of greater downregulation in the latter environment. If photosynthetic gains by deep-shade-grown plants in response to elevated [CO(2)] translate into improved growth and survival of shade-intolerant species, it could alter the future composition and dynamics of successional forest communities.  相似文献   

11.
Carbon assimilation by Cedrela odorata L. (Meliaceae) seedlings was investigated in ambient and elevated CO2 concentrations ([CO2]) for 119 days, using small fumigation chambers. A solution containing macro- and micronutrients was supplied at two rates. The 5% rate (high rate) was designed to avoid nutrient limitation and allow a maximum rate of growth. The 1% rate (low rate) allowed examination of the effect of the nutrient limitation-elevated CO2 interaction on carbon assimilation. Root growth was stimulated by 23% in elevated [CO2] at a high rate of nutrient supply, but this did not lead to a change in the root:shoot ratio. Total biomass did not change at either rate of nutrient supply, despite an increase in relative growth rate at the low nutrient supply rate. Net assimilation rates and relative growth rates were stimulated by the high rate of nutrient addition, irrespective of [CO2]. We used a biochemical model of photosynthesis to investigate assimilation at the leaf level. Maximum rate of electron transport (Jmax) and maximum velocity of carboxylation (Vcmax) did not differ significantly with CO2 treatment, but showed a substantial reduction at the low rate of nutrient supply. Across both CO2 treatments, mean Jmax for seedlings grown at a high rate of nutrient supply was 75 micromol m(-2) s(-1) and mean Vcmax was 27 micromol m(-2) s(-1). The corresponding mean values for seedlings grown at a low rate of nutrient supply were 36 micromol m(-2) s(-1) and 15 micromol m(-2) s(-1), respectively. Concentrations of leaf nitrogen, on a mass basis, were significantly decreased by the low nutrient supply rate, in proportion to the observed decrease in photosynthetic parameters. Chlorophyll and carbohydrate concentrations of leaves were unaffected by growth [CO2]. Because there was no net increase in growth in response to elevated [CO2], despite increased assimilation of carbon at the leaf level, we hypothesize that the rate of respiration of non-photosynthetic organs was increased.  相似文献   

12.
Seedlings of seven temperate tree species (Acer pseudoplatanus L., Betula pendula Roth, Fagus sylvatica L., Fraxinus excelsior L., Juglans regia L., Quercus petraea Matt. Liebl. and Quercus robur L.) were grown in a nursery under neutral filters transmitting 45% of incident global irradiance. During the second or third year of growth, leaf photosynthetic capacity (i.e., maximal carboxylation rate, Vcmax, maximal photosynthetic electron transport rate, Jmax, and dark respiration, Rd) was estimated for five leaves from each species at five or six leaf temperatures (10, 18, 25, 32, 36 and 40 degrees C). Values of Vcmax and Jmax were obtained by fitting the equations of the Farquhar model on response curves of net CO2 assimilation (A) to sub-stomatal CO2 mole fraction (ci), at high irradiance. Primary parameters describing the kinetic properties of Rubisco (specificity factor, affinity for CO2 and for O2, and their temperature responses) were taken from published data obtained with spinach and tobacco, and were used for all species. The temperature responses of Vcmax and Jmax, which were fitted to a thermodynamic model, differed. Mean values of Vcmax and Jmax at a reference temperature of 25 degrees C were 77.3 and 139 micromol m(-2) s(-1), respectively. The activation energy was higher for Vcmax than for Jmax (mean values of 73.1 versus 57.9 kJ mol(-1)) resulting in a decrease in Jmax/Vcmax ratio with increasing temperature. The mean optimal temperature was higher for Vcmax than for Jmax (38.9 versus 35.9 degrees C). In addition, differences in these temperature responses were observed among species. Temperature optima ranged between 35.9 and above 45 degrees C for Vcmax and between 31.7 and 43.3 degrees C for Jmax, but because of data scatter and the limited range of temperatures tested (10 to 40 degrees C), there were few statistically significant differences among species. The optimal temperature for Jmax was highest in Q. robur, Q. petraea and J. regia, and lowest in A. pseudoplatanus and F. excelsior. Measurements of chlorophyll a fluorescence revealed that the critical temperature at which basal fluorescence begins to increase was close to 47 degrees C, with no difference among species. These results should improve the parameterization of photosynthesis models, and be of particular interest when adapted to heterogeneous forests comprising mixtures of species with diverse ecological requirements.  相似文献   

13.
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

14.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.  相似文献   

15.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

16.
Water relations in woody species are intimately related to xylem hydraulic properties. High CO(2) concentrations ([CO(2)]) generally decrease transpiration and stomatal conductance (g(s)), but there is little information about the effect of atmospheric [CO(2)] on xylem hydraulic properties. To determine the relationship between water flow and hydraulic structure at high [CO(2)], we investigated responses of sun and shade leaves of 4-year-old saplings of diffuse-porous Betula maximowicziana Regel and ring-porous Quercus mongolica Fisch. ex Ledeb. ssp. crispula (Blume) Menitsky grown on fertile brown forest soil or infertile volcanic ash soil and exposed to 500 micromol CO(2) mol(-1) for 3 years. Regardless of species and soil type, elevated [CO(2)] consistently decreased water flow (i.e., g(s) and leaf-specific hydraulic conductivity) and total vessel area of the petiole in sun leaves; however, it had no effect on these parameters in shade leaves, perhaps because g(s) of shade leaves was already low. Changes in water flow at elevated [CO(2)] were associated with changes in petiole hydraulic properties.  相似文献   

17.
Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.  相似文献   

18.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

19.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

20.
We compared photosynthesis-nitrogen relationships of one broad-leaved (poplar; Populus x euroamericana (Dole) Guinier) and one conifer (Douglas-fir; Pseudotsuga menziesii (Mirb.) Franco) species. Plants were grown in large pots to allow free root development and were kept well watered. We determined effects of low, intermediate and high nitrogen supply rates on area-based leaf nitrogen (Na) and chlorophyll concentrations, leaf mass per area (LMA), light-saturated photosynthesis (Amax), maximum carboxylation (Vcmax) and electron transport rate (Jmax), photosynthetic nitrogen-use efficiency (PNUE), and proportions of leaf N in active Rubisco (PR), bioenergetic pools (PB) and the light-harvesting complex (PLH). Nitrogen supply significantly affected leaf Na. Leaf mass per area did not differ between species and was unaffected by the N treatments. In both species, there was a positive correlation between leaf Na and chlorophyll concentration, and between leaf Na and the photosynthetic parameters Amax, Jmax and Vcmax. At comparable leaf Na, however, poplar showed twofold higher PNUE and a threefold steeper slope of the Amax- nitrogen relationship than Douglas-fir. Leaf Na was negatively correlated with PNUE in Douglas-fir but not in poplar. Leaf Na was also negatively correlated with PR, PB and PLH in Douglas-fir, whereas in poplar, a negative correlation was found only for PLH. Parameter PR was significantly higher in poplar than in Douglas-fir. The ratio of CO2 concentration in the intercellular space to that in ambient air was higher in poplar than in Douglas-fir. Overall, our data suggest that differences in the photosynthesis-nitrogen relationship and PNUE between Douglas-fir and poplar primarily reflect a different investment of N to active Rubisco, and possibly a different constraint to CO2 diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号