首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six lactating Holstein cows were used to determine whether a serum luteinizing hormone (LH) surge induced by luteinizing hormone-releasing hormone (LHRH) could be detected in milk. A double antibody radioimmunoassay was evaluated for measuring LH in whole milk. Cows (d 10 of the estrous cycle) were injected with saline (time zero), followed by LHRH 12 h later. Blood samples were collected hourly for 12 h via jugular cannula following each injection; milk removal was accomplished every 2 h by a portable milking machine. On d 10 of the next estrous cycle, treatment, order was switched, with the same cows receiving LHRH at time zero and saline 12 h later. Approximately 2 h following LHRH treatment, serum LH levels peaked at 29 ng/ml and remained elevated for 5 h. There was no corresponding change in milk LH detected during the 12-h to 24-h period following the induced serum LH surge. Our conclusion is that the measurement of LH in the milk of cows shows little promise for predicting ovulation time in the cow.  相似文献   

2.
The secretion of luteinizing hormone-releasing hormone (LHRH) and its temporal association with pulses of luteinizing hormone (LH) was examined in ovariectomized prepuberal gilts. Push-pull cannulae (PPC) were implanted within the anterior pituitary gland and LHRH was quantified from 10 min (200 microliters) perfusate samples. Serum LH concentrations were determined from jugular vein blood obtained at the midpoint of perfusate collection. Initial studies without collection of blood samples, indicated that LHRH secretion in the ovariectomized gilt was pulsatile with pulses comprised of one to three samples. However, most pulses were probably of rapid onset and short duration, since they comprised only one sample. Greater LHRH pulse amplitudes were associated with PPC locations within medial regions of the anterior pituitary close to the median eminence. In studies which involved blood collection, LH secretion was not affected by push-pull perfusion of the anterior pituitary gland in most gilts, however, adaptation of pigs to the sampling procedures was essential for prolonged sampling. There was a close temporal relationship between perfusate LHRH pulses and serum LH pulses with LHRH pulses occurring coincident or one sample preceding serum LH pulses. There were occasional LHRH pulses without LH pulses and LH pulses without detectable LHRH pulses. These results provide direct evidence that pulsatile LHRH secretion is associated with pulsatile LH secretion in ovariectomized gilts. In addition, PPC perfusion of the anterior pituitary is a viable procedure for assessing hypothalamic hypophyseal neurohormone relationships.  相似文献   

3.
The luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone response of bull calves implanted with estradiol-17 beta to continuous and pulsatile infusion of luteinizing hormone releasing hormone (LHRH) has been examined. Estradiol-17 beta reduced serum LH and FSH concentrations and suppressed testosterone secretion and testicular growth when compared with sham-implanted bulls. Pulsatile iv infusion of LHRH [500 ng every 2 h (6 micrograms/d)] for a 4-wk period to estradiol-17 beta-implanted bulls resulted in elevated mean serum LH and testosterone concentrations that were characterized by discrete secretory episodes. Mean serum FSH was also increased by LHRH pulse infusion, but LHRH-coupled secretory episodes were not apparent. Continuous infusion of LHRH (6 micrograms/d) did not increase the low serum gonadotropin levels observed in estradiol-17 beta-implanted calves. Testicular growth was normal in LHRH pulse-infused calves, but was markedly curtailed in continuously infused calves. These results suggest that estradiol-17 beta inhibits testicular development by blocking gonadotropin release at the level of the hypothalamus because pulsatile administration of LHRH can override the inhibitory effect by increasing LH and FSH secretion.  相似文献   

4.
Administration of endotoxin suppresses circulating concentration of luteinizing hormone (LH) in a number of species, including rats, sheep, cattle, and non-human primates. Specifically, endotoxin administration decreases circulating concentration of LH and LH pulses frequency in castrated male sheep. Endotoxin could alter circulating concentrations of LH via actions at the hypothalamus through altered GnRH production and/or release, or endotoxin could alter circulating concentrations of LH at the level of the pituitary via inhibition of LH production and release or inhibition of LH in response to GnRH. The site of endotoxin suppression of circulating concentrations of LH as well as possible mediators of endotoxin suppression of circulating concentrations of LH, including cortiocotropin-releasing hormone, arginine vasopressin, glucocorticoids, inflammatory cytokines, prostaglandins, and opioids, are discussed.  相似文献   

5.
The effect of metoclopramide (MC), a dopamine antagonist on luteinizing hormone (LH), was examined in anestrous primaparous cows. Metoclopramide has been found to be beneficial in overcoming fescue toxicosis; increasing LH secretion stimulates return to ovulatory function after parturition. Consequently, if MC had negative effect on LH secretion, it would indicate that administration of MC to reproducing animals might be limited. Of 14 postpartum (47 to 66 days) cows, 7 were given MC (4 mg/kg of body weight, IV), and 7 served as controls. Blood was obtained via jugular cannulas at 15-minute intervals for 8 hours; MC was given at the end of the first hour, and gonadotropin-releasing hormone (GnRH, 7 mg/kg), was given IV at the end of hour 7 as a challenge stimulus for LH secretion. Prior to GnRH administration, MC did not have significant effect on LH secretion, as judged by mean serum LH concentration, LH pulse frequency, and LH pulse amplitude. Administration of MC resulted in greater (P less than 0.05) LH response to GnRH, indicating enhanced secretory ability when the pituitary gland was challenged. Serum prolactin concentration was increased (P less than 0.01) by MC administration. Therefore, MC did not have adverse effect on LH secretion in postpartum cows.  相似文献   

6.
The objective of Experiment 1 was to determine a dose and frequency of gonadotropin-releasing hormone (GnRH) antagonist administration to effectively suppress serum luteinizing hormone (LH) concentration and to delay ovulation when administered to mares. The objectives of Experiment 2 were 1) to determine the effects of subcutaneous or intravenous administration of a GnRH antagonist or oral altrenogest on serum LH concentration in the estrual mare; and 2) to determine the effectiveness of human chorionic gonadotropin (hCG) in inducing ovulation in mares with suppressed LH concentrations. In Experiment 1, mares (N = 20) were randomly assigned and treated with either 5% mannitol (control, single subcutaneous injection, 1 mL, at time 0; n = 5); low-dose GnRH antagonist (single subcutaneous injection, 0.01 mg/kg, at time 0; n = 5); frequent low-dose GnRH antagonist (subcutaneous injections, 0.01 mg/kg, at 0, 6, 18, and 24 hours; n = 5); or high-dose GnRH antagonist (single subcutaneous injection, 0.04 mg/kg, at time 0; n = 5). Both the frequent low-dose and high-dose GnRH antagonist treatments resulted in significantly lower LH concentrations compared with controls at 90, 102, and 114 hours after treatment (P < .05). In Experiment 2, mares (N = 38) were randomly assigned and treated with subcutaneous sterile saline (control), altrenogest (oral), subcutaneous GnRH antagonist, or intravenous GnRH antagonist. LH concentration for the altrenogest group was lower than the control group at 3, 4, 18, and 30 hours after treatment (P < .05). LH concentration for both the subcutaneous and intravenous GnRH antagonist groups were lower compared with the control group at several time points (P < .05). Based on these data, dose but not frequency of administration of a GnRH antagonist lowered LH concentration in the estrous mare but did not delay ovulation. In addition, serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG. This indicates that serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG.  相似文献   

7.
Infectious disease processes cause physiological adaptations in animals to reorder nutrient partitioning and other functions to support host survival. Endocrine, immune and nervous systems largely mediate this process. Using endotoxin injection as a model for catabolic disease processes (such as bacterial septicemia), we have focused our attention on regulation of growth hormone (GH) and luteinizing hormone (LH) secretion in sheep. Endotoxin produces an increase in plasma GH and a decrease in plasma LH concentrations. This pattern can be reproduced, in part, by administration of various cytokines. Antagonists to both interleukin-1 (IL-1) and tumor necrosis factor (TNF) given intravenously (IV) prevented the endotoxin-stimulated increase in GH. Since endotoxin will directly stimulate GH and LH release from cultured pituitary cells, the data suggest a pituitary site of action of the endotoxin to regulate GH. Studies with portal vein cannulated sheep indicated that gonadotropin releasing hormone was inhibited by endotoxin, suggesting a central site of action of endotoxin to regulate LH. However, other studies suggest that endotoxin may also regulate LH secretion at the pituitary. Thus, IL-1 and TNF regulate GH release from the pituitary gland while endotoxin induces a central inhibition of LH release.  相似文献   

8.
Changes in numbers of ovarian follicles and coincident secretion of pituitary gonadotropins were characterized in suckled, anovulatory beef cows injected iv with 500 ng of luteinizing hormone-releasing hormone (LHRH) every 2 h for 48 or 96 h, starting 21.4 +/- .4 d after parturition. Two hours after the last injection, all cows were ovariectomized. Compared with saline-injected controls, LHRH had no effect on baseline or overall concentrations of luteinizing hormone (LH) in serum (P greater than .10), but increased (P less than .05) frequency and decreased (P less than .05) amplitude of LH pulses. Luteinizing hormone-releasing hormone increased (P less than .05) baseline concentration of follicle stimulating hormone (FSH) in serum and frequency of FSH pulses, but decreased (P less than .05) pulse amplitude. Overall concentrations of FSH increased 20% (P less than .10). Exogenous LHRH did not affect diameter of the two largest follicles or numbers of follicles 1.0 to 3.9 mm, 4.0 to 7.9 mm or greater than or equal to 8.0 mm in diameter. These data suggest that increasing the frequency of episodic LH and FSH pulses in postpartum cattle by intermittent administration of LHRH did not increase mean circulating levels of LH, or alter size and numbers of ovarian follicles within the 96-h period of injections. Thus, induction of ovulation in anovulatory cows treated with low-dose injections of LHRH cannot be explained on the basis of an increase in mean concentrations of LH or numbers of antral follicles within 96 h after initiation of injections.  相似文献   

9.
Two experiments were conducted to investigate the response of the bovine corpus luteum to surges of luteinizing hormone (LH) induced by natural gonadotropin-releasing hormone (GnRH) administered twice during the same estrous cycle. In experiment 1, eight mature beef cows, each cow serving as her own control, were injected intravenously (iv) with saline on days 2 and 8 of the cycle (day of estrus = day 0 of the cycle), then with 100 micrograms GnRH on days 2 and 8 of the subsequent cycle. Jugular blood samples were taken immediately prior to an injection and at 15, 30, 45, 60, 120 and 240 min postinjection, to quantitate changes in serum luteinizing hormone. Blood was also collected on alternate days after an injection until day 16 of the cycle, to characterize changes in serum progesterone concentrations. Although exogenous GnRH caused release of LH on days 2 and 8 of the cycle, the quantity of LH released was greater on day 8 (P less than .025). Serum levels of progesterone after treatment with GnRH on day 8 of the cycle did not differ significantly from those observed during the control cycles of the heifers. Because exposure of the bovine corpus luteum to excess LH, induced by GnRH early during the estrous cycle, causes attenuated progesterone secretion during the same cycle, these data suggest that a second surge of endogenous LH may ameliorate the suppressive effect of the initial release of LH on luteal function. Duration of the estrous cycle was not altered by treatment (control, 20.4 +/- .5 vs. treated, 20.4 +/- .4 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The blood luteinizing hormone (LH) surge in cows is well studied. However, little is known about urinary LH in cows. This study examined urinary LH concentrations after administration of gonadotropin-releasing hormone (GnRH) in six Japanese black cows to induce LH secretion from the pituitary gland into the bloodstream. Abrupt rises in plasma and urinary LH were observed after GnRH administration. Plasma and urinary LH peaked at 2 and 5 hr, respectively. A positive correlation was observed between plasma LH concentrations and urinary LH amounts. Ovulation was confirmed in the cows after 48 hr of GnRH administration. These data strongly suggest that urinary LH is derived from plasma LH, which triggers ovulation in cows.  相似文献   

11.
The working hypothesis that a low plane of nutrition during the prepubertal period delays puberty in heifers by retarding the prepubertal increase in secretion of luteinizing hormone (LH) was investigated. Secretion of LH and the responsiveness of the pituitary to LH-releasing hormone (LHRH) were compared in heifers fed a growing diet (which allowed spontaneous occurrence of puberty; n = 12; control) or an energy deficient diet (which delayed puberty; n = 11; delayed) during the prepubertal period. The dietary treatments were initiated when the heifers were 299 +/- 14 (mean +/- SD) d of age (d 0 of the experiment) and continued until d 175 of the experiment (474 +/- 14 d of age). Weight gains were .79 +/- .05 (mean +/- SE) and .21 +/- .03 kg X head-1 X d-1 for control and delayed heifers, respectively. Puberty occurred on d 120 +/- 14 of the experiment (428 +/- 13 d of age) in control heifers, whereas none of the delayed heifers attained puberty during the feeding period. Serum concentration of LH and the frequency of LH pulses increased rapidly during the 175-d feeding period in control heifers. In delayed heifers, serum LH concentration increased less rapidly and no increase in pulse frequency was detected during the experimental period. Amplitude of LH pulses tended to be higher in control than delayed heifers. Responsiveness of LH secretion to LHRH was lower in delayed than control heifers. It is speculated that failure of secretion of LH to increase is the causative factor for delayed puberty when dietary energy is limited during the prepubertal period in heifers.  相似文献   

12.
OBJECTIVE: To determine the effect of immunization with bovine luteinizing hormone receptor (LH-R) on ovarian function of cats. ANIMALS: 9 adult female domestic cats. PROCEDURE: 7 cats were immunized with 0.5 mg of LH-R encapsulated in a silastic subdermal implant (3 x 10 mm); 2 served as control cats. Receptors had 80% specific binding to 125I-human chorionic gonadotropin with a binding capacity of 2,682 pM/mg. Cats received booster injections of LH-R. Cats were induced to ovulate with luteinizing hormone (LH) releasing hormone on day 345. Samples of venous blood and vaginal cells were collected through day 395. Observation of estrus behavior continued until day 516. Serum concentrations of estradiol, progesterone, thyroid gland hormones, LH, and LH-R antibody were determined. RESULTS: LH-R antibody was detected in the sera of immunized cats within 21 days after implantation. Detection of LH-R antibody was associated with suppression of serum progesterone to < or = 0.5 ng/mL during the study period, compared with concentrations of 5 to 10 ng/mL in control cats. Immunized cats did not display signs of estrus. Release of LH after administration of LH-releasing hormone indicated an intact hypothalamic-pituitary axis but poor corpus luteum function. Serum estradiol concentrations remained between 30 to 40 pg/mL in immunized and control cats. With the decrease antibody titers, hormone concentrations returned to a pattern consistent with that during fertility. CONCLUSIONS AND CLINICAL RELEVANCE: Active immunization with LH-R suppressed corpus luteum function in cats. The effect was reversible. An LH-R-based antifertility vaccine may have clinical application in other vertebrates.  相似文献   

13.
A possible role of endogenous opioid peptides (EOP) in regulating the release of luteinizing hormone (LH) in the absence of ovarian influence was investigated. Experiments were conducted on three lactating Holstein-Friesian dairy cows, 20-27 days after ovariectomy. The cows were bled before and after a single intravenous (i.v.) injection of either 250 mg of naloxone (EOP antagonist) or 300 mg of morphine (EOP agonist) or a combination of the two in Experiments 1, 2 and 3, respectively. The mean and basal LH concentrations and the LH pulse frequency and amplitude were compared before and after each treatment in each cow. Naloxone induced an immediate rise in LH concentration by 60-300% above the preceding baseline values. This rise lasted for 15-30 min in each cow, after which the normal rhythmic LH release continued. One cow (A) suffered discomfort and respiratory distress 15-25 min after naloxone administration and the mean and basal LH concentration dropped significantly. Morphine significantly reduced the mean LH concentration by decreasing the number and amplitude of LH pulses and the basal LH values in two cows, although the decrease in one was not significant. The mean LH concentration in each cow remained unaffected by the combined treatment of morphine and naloxone. In conclusion, the elevation of LH concentration by naloxone, the suppression of LH release by morphine and the reversal by morphine and naloxone of each other's effects suggest that EOP could be involved in the control of LH release in cows in the absence of ovarian influence.  相似文献   

14.
Seventy crossbred heifers were allotted randomly to 10 treatment groups. Treatments consisted of active immunization against ovalbumin (OV) conjugates of luteinizing hormone-releasing hormone (LHRH), human chorionic gonadotropin (hCG) and bovine luteinizing hormone (bLH) with each of three adjuvants. The adjuvants were complete Freund's adjuvant (CFA), M103(6) and 6VR6. Control animals were immunized against OV alone using CFA. Bulls were placed with the heifers following immunization to allow comparison of pregnancy rates between groups. Blood samples were collected weekly for 14 wk to determine antibody concentrations. Significant levels of circulating LH or LHRH antibodies were detected in heifers immunized with each of the hormone conjugates. Complete Freund's adjuvant was the most effective for stimulating antibody response to these antigens; however, M103 was equally effective when used with bLH or hCG conjugates. None of the heifers in the bLH-OV-CFA, bLH-OV-M103 or LHRH-OV-CFA immunization groups was pregnant at slaughter, whereas 71% of the OV-CFA control heifers were pregnant. Fertility suppression may be achieved in the bovine by active immunization against any of these three hormone conjugates. However, the duration of this study (8 wk after immunization) does not allow evaluation of the duration of effectiveness of each of the treatments.  相似文献   

15.
Mature boars were subjected to chronic treatment with a gonadotropin-releasing hormone (GnRH) agonist, goserelin (D-Ser[But]6, Azgly-NH210), and serum luteinizing hormone (LH) and testosterone concentrations were measured. Ten sexually mature boars were randomly assigned to treatment (n = 5) or control (n = 5) groups. On day 0, boars were implanted sc (day 0) with 2 GnRH agonist implants (1 mg of GnRH/implant) or sham implants. Blood samples were collected at 12-hour intervals on days -2 and -1, at 6-hour intervals on days 0 through 4, and at 12-hour intervals on days 5 through 8. In addition, blood samples were collected at 15-minute intervals for 6 hours on days -1, 0, 4, and 8. Serum testosterone and LH concentrations were determined by radioimmunoassay. Maximal LH (7 +/- 1 ng/ml) and testosterone (26 +/- 3 ng/ml) concentrations were observed at 5 and 18 hours, respectively, after GnRH agonist treatment. Subsequently, LH and testosterone concentrations decreased to pretreatment values (0.3 +/- 0.1 ng/ml and 1.8 +/- 0.4 ng/ml, respectively) by 24 and 48 hours, respectively, after GnRH agonist implantation. Few differences in the characteristics of pulsatile LH release were observed between the groups. Testosterone and LH concentrations in samples collected at 6- and 12-hour intervals and pulsatile LH release did not change after sham treatment of control boars. Whereas previous reports indicated that chronic GnRH administration suppressed serum LH and testosterone concentrations in rams, rats, and dogs, our results indicate that chronic GnRH agonist treatment induced transitory increases, without subsequent suppression, in LH and testosterone concentrations in mature boars.  相似文献   

16.
Two experiments were conducted in ovariectomized, pituitary stalk-transected ewes to determine if dopamine (DA), norepinephrine (NE) or serotonin (5-HT) alter secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL). In experiment 1, ewes were infused (iv) with saline (control), DA (66 micrograms/kg/min), NE (6.6 micrograms/kg/min) or 5-HT (6.6 micrograms/kg/min). Treatments did not alter pulse frequency, but 5-HT increased (P less than .05) amplitude of pulses of LH and mean concentrations of LH, DA and NE were without effect on basal secretion of LH. DA but not NE or 5-HT decreased (P less than .05) the release of LH in response to gonadotropin hormone-releasing hormone (GnRH, 25 micrograms, im). Concentrations of FSH were not affected by treatments. Secretion of PRL was reduced (P less than .05) by treatment with DA and NE but not 5-HT. Each amine reduced (P less than .05) the release of PRL in response to thyrotropin-releasing hormone (TRH; 3 micrograms, im). In experiment 2, ewes were given DA at doses of 0, 0.66, 6.6 or 66.0 micrograms/kg/min, iv. No dose altered basal LH, but each dose reduced (P less than .05) basal and TRH-induced release of PRL. Key findings from these studies include direct pituitary action for: (1) 5-HT enhanced basal secretion of LH, (2) suppression of GnRH-induced secretion of LH by DA. (3) DA and NE inhibition of PRL secretion, and (4) DA, NE and 5-HT inhibition of release of PRL in response to TRH.  相似文献   

17.
Twelve anestrous, postpartum beef cows were used to determine the effect of calf removal on the effect of naloxone on serum luteinizing hormone (LH) concentrations. On d 1, six cows were injected iv with saline and six with 200 mg naloxone dissolved in saline. Blood samples were taken at 15-min intervals for 2 h before and 2 h after naloxone or saline administration. At the beginning of blood sampling, calves were removed from three cows in each treatment. At 48 h after calf removal (d 3), all cows were injected iv with 200 mg naloxone and blood samples were collected as on d 1. On d 1, naloxone treatment increased (P less than .01) serum LH concentrations from 1.2 +/- .3 ng/ml at time 0 to 4.3 +/- .6 ng/ml and 4.7 +/- .8 ng/ml at 15 and 30 min, respectively. Injection of saline had no effect on serum LH concentrations. Forty-eight-hour calf removal increased (P less than .01) serum LH concentrations in five of six cows (1.7 +/- .8 vs 4.4 +/- 1.2 ng/ml). Naloxone treatment failed to increase serum LH concentrations in these cows. Injection of naloxone increased (P less than .01) serum LH concentrations in the one cow that did not exhibit an LH increase after calf removal and in six cows whose calves were not removed (1.4 +/- .2 vs 4.4 +/- .5 ng/ml). The present study provides additional evidence that endogenous opioids regulate LH in the postpartum beef cow. We hypothesize that suckling stimulates an opioid inhibition of LH secretion and removal of the suckling stimulus removes the opioid inhibitory tone.  相似文献   

18.
Changes in metabolism of serotonin (5-HT) might mediate the reduced tonic luteinizing hormone (LH) and increased pituitary responsiveness to luteinizing hormone releasing hormone (LHRH) caused by estradiol-17β (estradiol). Two experiments were conducted to determine effects of estradiol, para-chlorophenylalanine (PCPA), an inhibitor of synthesis of 5-HT, and quipazine, an agonist of 5-HT, on tonic and LHRH-induced secretion of LH in ovariectomized ewes during the summer. Tonic levels of LH were reduced, the interval from LHRH to peak of the induced surge was longer and the magnitude of release of LH was greater in ovariectomized ewes treated with estradiol than in controls. Neither PCPA nor quipazine affected tonic secretion of LH. In ovariectomized ewes not receiving estradiol, PCPA and quipazine increased the magnitude of the LHRH-induced release of LH. However, PCPA reduced pituitary sensitivity to LHRH when administered concomitantly with estradiol; treatment with quipazine attenuated this effect of PCPA. The interval to the peak of the induced surge of LH was not affected by PCPA or quipazine in estradiol-treated or control ovariectomized ewes. Based on these results it appears that 5-HT mediates or is required for estradiol to increase pituitary responsiveness to LHRH.  相似文献   

19.
The objective was to determine how estradiol (0 vs 1 mg) and changes in the dosage of luteinizing hormone releasing hormone (LHRH; 1,000 ng/steer vs 1 ng/kg body weight) and frequency of LHRH injection (25 vs 50 min) affect LH and follicle stimulating hormone (FSH) release in steers. In steers pretreated with estradiol peak concentrations of LH in serum after LHRH averaged 14.4 ng/ml, which was greater (P less than .001) than peak concentrations in steers given oil (7.4 ng/ml). Increasing the dosage of LHRH from 1 ng/Kg body weight (approximately or equal to 300 ng/steer) to 1,000 ng/steer increased (P less than .001) peak LH values from 7.5 to 14.4 ng/ml. Furthermore, increasing the frequency of LHRH injections from once every 50 min to once every 25 min increased (P less than .001) LH release, but only in steers given estradiol. Estradiol reduced basal concentrations of FSH by 65% and then increased LHRH-induced FSH release by 276% (P approximately .07) relative to values for steers given oil. Only when 1,000 ng LHRH was given every 25 min to steers pretreated with estradiol were LH and FSH release profiles similar to the preovulatory gonadotropin surges of cows in magnitude, duration and general shape. The results demonstrate that increases in the dosage or frequency of LHRH pulses increase LHRH-induced release of LH, but not of FSH. Furthermore, these results are consistent with the hypothesis that in cows, estradiol increases responsiveness of the gonadotrophs to LHRH and then increases the magnitude and frequency of pulses of LHRH secretion beyond basal levels, thereby causing the preovulatory gonadotropin surges.  相似文献   

20.
The working hypothesis was that the amount of increase in secretion of luteinizing hormone (LH) that results from positive feedback of 17 beta-estradiol (E2) is dependent on season of the year in mature bovine females. Seven beef cows, ovariectomized approximately 2 mo before the initiation of the experiment, were used in the initial year (1983) of the study. Three of the ovariectomized cows (OVX-E2) received an sc E2 implant, which provided low circulating levels of E2. The remaining four cows (OVX) were not implanted. Blood samples were collected serially (at 10-min intervals for 6 h) at each spring and fall equinox and at each summer and winter solstice. This protocol was replicated with a different group of cows in 1985 (OVX-E2, n = 4; OVX, n = 6). Concentration of LH in blood serum was quantified in all samples. Concentration of E2 in blood serum was measured in pools of samples from each serial blood collection. Concentrations of E2 were higher (P less than .05) in the implanted cows. Mean concentration of LH and amplitude of pulses of LH were higher (P less than .05) at each season of the year in cows that were ovariectomized and implanted with E2 than in cows that were ovariectomized and did not receive E2. An effect of season of the year on mean concentration of LH was detected (P less than .01). No influence of season or E2 was detected for frequency of pulses of LH. There was no significant treatment X season interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号