首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By keeping tropical shrimp, like Litopenaeus vannamei, in recirculating aquaculture systems (RAS), valuable food for human consumption can be produced sustainable. L. vannamei tolerates low salinities, and therefore, the systems can operate under brackish water conditions. The stabilization of the microbial community in RAS might be difficult under high organic loads, and therefore, water treatment measures like UV irradiation or ozone application are commonly used for bacterial reduction. To investigate the impact of these measures, the effects of UV irradiation and ozone application were studied in small-scale brackish water RAS with a salinity of 15‰ stocked with L. vannamei. UV reactors with 7 and 9 W were used, and by ozonizers with a power of 5–50 mg/hr, the redox potential in the water was adjusted to 350 mV. Ozone had a stabilizing effect on the microbial composition in the water and on biofilms of tank surfaces and shrimp carapaces, prevented an increase of nitrite and accelerated the degradation of nitrate in the water. UV irradiation led to changes in the microbial composition and was less effective in optimizing the chemical water quality. Thus, the use of ozone could be recommended for water treatment in brackish water RAS for shrimp.  相似文献   

2.
Reuse of fish effluent for the culture of marine shrimp, such as Pacific white shrimp, Litopenaeus vannamei, could provide an opportunity for the US shrimp farming industry to ease constraints (e.g., environmental concerns and high production costs) that have limited them in the past. In this study under laboratory‐scale conditions, the feasibility of culturing L. vannamei in effluents derived from a commercial facility raising tilapia in recirculating aquaculture systems (RAS), supplemented with various salt combinations, was compared to the shrimp’s survival and growth in well water supplemented with 17.6 (control) and 0.6 (freshwater treatment) g/L synthetic sea salt. Three independent trials were conducted in RAS in which survival and growth in the control, the freshwater treatment, and two effluent treatments were compared. Water quality during this study was within safe levels and no differences (P < 0.05) between treatments were observed for dissolved oxygen, nitrite, pH, total ammonia nitrogen, and temperature. However, average nitrate and orthophosphate levels were consistently more than an order of magnitude greater in the effluent treatments compared to the control and the freshwater treatments. Survival and growth of shrimp over 6‐wk periods did not vary significantly between the control and the freshwater treatments; however, shrimp tested in the tilapia effluents often exhibited significant effects (P < 0.05) depending on the salts added. In the low‐salinity waters, correlations (P < 0.05) were observed between Ca2+, Mg2+, Ca2+ and Mg2+, K+, Na+ : K+ and Ca2+ : K+, and shrimp survival and growth. The results of this study revealed that L. vannamei can be raised in tilapia effluent when supplemented with synthetic sea salt (0.6 g/L), CaO (50 mg/L Ca2+), and MgSO4 (30 mg/L Mg2+).  相似文献   

3.
An indoor trial was conducted for 28 days to evaluate the effects and interactions of biofloc and seaweed Ulva lactuca in water quality and growth of Pacific white shrimp Litopenaeus vannamei in intensive system. L. vannamei (4.54 ± 0.09 g) were stocked in experimental tanks at a density 132 shrimp m?2 (566 shrimp m?3) and the U. lactuca was stocked at a density 0.46 kg m?2 (2.0 kg m?3). Biofloc with seaweed (BF-S) significantly reduced (P < 0.05) total ammonia nitrogen (TAN) by 25.9 %, nitrite–nitrogen (NO2–N) by 72.8 %, phosphate (PO 4 3 -P) by 24.6 %, and total suspended solids by 12.9 % in the water and significantly increased (P < 0.05) settleable solids by 34.2 % and final weight of shrimp by 6.9 % as compared to biofloc without seaweed. The BF-S can contribute by reducing nitrogen compounds (TAN and NO2–N), phosphate (PO 4 3 -P), and total suspended solids in water and increased final weight of shrimp.  相似文献   

4.
We studied the effect of rearing densities of Pacific white shrimp, Litopenaeus vannamei in three densities with three replicate treatments [T1: 0.4 million post-larvae (PL) ha−1, T2: 0.5 million PL ha−1, T3: 0.6 million PL ha−1] and water cutback approach on rearing environment, water use efficiency, water footprint and production performance. Conditional water exchange was carried out based on water quality parameters. Water quality suitability index was very good (7.5–9.0) up to 13th, 10th and 5th week of culture in T1, T2 and T3, respectively; which was attributed to rearing density, smaller-sized shrimp and low early feed input. Optimum rearing density of 50 PL m-2 (T2) led to total water use of 3.25 × 104 m3. It was seeming as a way to improve shrimp productivity (10.58 t ha−1 120 d−1), consumptive water use index (1.72 m3 kg-1 biomass), total water footprint (1229 m3 t−1 biomass) and net consumptive water productivity (USD 1.28 m-3). L. vannamei culture with low to moderate water exchange as in T2, helped uphold water quality suitable for the shrimp growth, improved water use efficiency (0.58 kg biomass m-3 water), minimized sediment load (45.3 m3 t-1 biomass), effluent outputs (0.63 × 104 m3), pumping cost (USD 30.1 t−1 biomass produced), and ratio of output value to the cost of cultivation (1.97). The findings and advancement in knowledge would offer the basis to augment shrimp rearing efforts and the water management approaches will help in preventing the production of waste and effluent while increasing water use efficiency and production performance.  相似文献   

5.
The influence of protein and energy levels on growth rate, survival, pre- and post-prandial oxygen consumption, ammonia excretion, haemolymph glucose (HG), glycogen in digestive gland and osmotic pressure (OP) in white shrimp Litopenaeus vannamei (Boone) and L. setiferus (Linne) juveniles was studied. Diets containing a high-quality protein at a protein/energy (P/E) ratio of 16, 26, 31 and 36 mg kJ−1 were fed at 20% of shrimp body weight of two sizes: < 1 g and > 1 g. Both species showed a optimum P/E ratio of 36 mg kJ−1 (33–44% protein and 6–23% carbohydrate) in juveniles < 1 g. For shrimp > 1 g, L. setiferus showed a higher growth rate in the diet with 16 mg kJ−1 (27% protein; 32% carbohydrate) and L. vannamei between 26 and 36 mg kJ−1 (33–44% protein and 6–23% carbohydrate). In both experiments, the growth rate of L. vannamei was 2–3 times that observed in L. setiferus. Routine oxygen consumption and apparent heat increment (AHI) of L. setiferus juveniles was two times higher than that observed in L. vannamei juveniles, which could indicate that L. setiferus has a higher metabolic rate. The O/N ratio varied according to protein level, with higher values (O/N = 180) with a 16-mg kJ−1 diet and lower values (O/N = 73) with a 36-mg kJ−1 diet in L. setiferus juveniles. A similar variation in O/N ratio was obtained in L. vannamei fed with all diets with an interval between 22 and 50. An inverse relation between ammonia excretion and HG, and digestive gland glycogen (DGG) in relation to an increase in the P/E ratio indicate that both shrimp species are well adapted to use carbohydrates and/or proteins from their diet. The higher values of hyper-osmotic capacity (hyper-OC) were observed in L. setiferus < 1 g fed with 36 mg kJ−1 and the lowest in L. vannamei < 1 g fed with 31 mg kJ−1. Intermediate values of hyper-OC were observed in both species fed all diets indicating that osmotic factors of juveniles < 1 g of both species are more affected by the P/E ratio than juveniles > 1 g. All results showed that juveniles > 1 g of both species are less dependent of P/E ratio than juveniles < 1 g. Litopenaeus vannamei is a most tolerant shrimp species with a high capacity to use a wide range of dietary P/E ratios for growth, which may be due to its lower energy requirements. Litopenaeus setiferus showed a lower capacity to accept different P/E ratios but the optimum P/E ratio obtained with this species shows that L. setiferus accept diets with a high carbohydrate level as well. These results demonstrate that there are nutritional and physiological differences that explain the differences that have been observed when both species were cultured in commercial ponds.  相似文献   

6.
Immobilized Spirulina mat was co-cultured with Pacific white shrimp (Penaeus vannamei) postlarvae for water quality control in a closed re-circulating system. During the culture period, the experimental Spirulina mat system showed total ammonia nitrogen and nitrate accumulation rates lower by 32.92 and 32.26 %, respectively, compared with the system without the mat. The water exchange rate in the system with the mat was comparatively reduced by 40 %. Moreover, survival rate, growth rate, and size (length) of the co-cultured shrimp larvae were greater than those of the control (P < 0.05): 72.3 ± 5.2 versus 61.3 ± 4.4 %; 0.55 versus 0.44 mm day?1; and 9.8 ± 0.5 versus 8.7 ± 0.3 mm, respectively. The most frequently observed microbes by PCR-DGGE, either with or without Spirulina mats, were species related to classes γ-, α-, and β- of Proteobacteria (95–98 % similarity), i.e., Nitrosomonas marina, Pseudomonas sp. ITRI66, Fusobacterium ulcerans, and Exiguobacterium arabatum, and species related to Bacteriodetes, i.e., uncultured Flavobacteriales (with a similarity of 96 %). However, species related to Nitrobacter winogradskyi and Stenotrophomonas maltophilia were present only when the mats were applied, suggesting a mutualistic role in the aquaculture system. These bacterial communities, in cooperation with Spirulina sp., could enhance the shrimp response against disease, as well as growth and survival rates, and also improve the shrimp culturing water quality.  相似文献   

7.
Tropical shrimp, like Litopenaeus vannamei, in land‐based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.  相似文献   

8.
An 8‐week study was conducted to explore the results of Macsumsuk® as a feed additive on the stress tolerance and growth of Litopenaeus vannamei in 15 culture tanks of 36 L each. Three hundred shrimp averaging 0.1 ± 0.01 g were fed with five isonitrogenous (48.38 ± 0.38% CP) diets (in triplicate groups) containing kaolinite (Macsumsuk®) at 0%, 0.3%, 0.6%, 1.2% and 2.4%, namely Mk0, Mk0.3, Mk0.6, Mk1.2 and Mk2.4. Specific growth rate (SGR) and weight gain (WG) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diet Mk0 (p < .05). However, SGR and WG of shrimp fed diets Mk0.6, Mk1.2 and Mk2.4 were not significantly different. Protein efficiency ratio (PER) and feed efficiency (FE) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diets Mk0, Mk0.3 and Mk0.6. Furthermore, the survival of shrimp fed diet Mk2.4 was significantly lower than that of shrimp fed diet Mk0.6 (p < .05). Cumulative mortality of shrimp fed diet Mk1.2 was significantly lower than that of shrimp fed diet Mk0 at 1–1.5 hr post‐stress to low dissolved oxygen (from 6.1 mg/L to 2.9 mg/L) and 4–5 hr post‐stress to low salinity (from 32‰ to 1‰) (p < .05). The optimum dietary Macsumsuk® level for juvenile L. vannamei was determined as 1.97% by the polynomial regression analysis of weight gain.  相似文献   

9.
A 28-day indoor trial was conducted to evaluate the water quality, phytoplankton composition and growth of Litopenaeus vannamei in an integrated biofloc system with Gracilaria birdiae and Gracilaria domingensis. The experimental design was completely randomized with three treatments: control (shrimp monoculture); SB (shrimp and G. birdiae) and SD (shrimp and G. domingensis), all with three replicates. Random sampling was done (6 % of total population per experimental unit) to confirm white spot syndrome Virus (WSSV) infection using nested-PCR analysis due to suspicion of presence of the virus in the experiment (treatment and control groups). Shrimp L. vannamei (2.63 ± 0.10 g) were stocked in experimental tanks at a density of 425 shrimp m?3, and the Gracilaria was stocked at a biomass of 2.0 kg m?3. Shrimp mortality began in both the experimental and control groups at 10 days of culture. The integrated biofloc system (shrimp and seaweed) increased settleable solids (by 26–52 %); final weight (by 6–21 %); weekly growth (by 17–43 %); weight gain (by 17–43 %); specific growth rate (by 16–36 %); and yield (by 5–7 %) and decreased feed conversion ratio (by 21–28 %) and Cyanobacteria density about 16 % as compared to the control (shrimp monoculture). The use of red seaweed Gracilaria in an integrated biofloc system can enhance shrimp growth and reduce Cyanobacteria density in the presence of WSSV.  相似文献   

10.
In a 45‐d experiment, Litopenaeus vannamei was cultured in two treatments, biofloc technology or clear water recirculating aquaculture system, to evaluate the effect on growth and survival, energy balance, and texture of the marketable product. The experimental design consisted of 40 plastic tanks of 54 L (20 tanks per treatment), with a density of 140 organisms/m3 in each culture system. The final body weight, daily growth coefficient, and survival were significantly higher (P < 0.05) in biofloc technology (12.40 g, 5.0%g/d, and 87.1%, respectively) than in the clear water system (7.0 g, 1.4%g/d, and 74.2%). The retained energy and energy content of exuviae were significantly higher for shrimp in the biofloc technology (448.5 ± 36.4 and 22.4 ± 1.8 J/shrimp/d, respectively) than in clear water (246.3 ± 40.9 and 12.3 ± 2.0 J/shrimp/d, respectively). Routine metabolism was significantly higher for the clear water treatment (411.4 ± 123.8 J/shrimp/d). Shear force was higher in the biofloc technology, indicating greater muscle firmness; this matched the gel electrophoresis patterns of the proteins extracted from the muscle tissues. This suggests that biofloc technology could be used not only to improve growth and survival in L. vannamei but also to enhance the final product quality and acceptability in the market.  相似文献   

11.
A series of experiments were conducted to examine the effects of salinity (1–48 g/L) on the biological performance, as evaluated by growth and survival, of the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, Litopenaeus setiferus, reared at temperatures of 20, 24 or 28 C. Poor growth and survival of L. vannamei was observed after 21–28 d of culture at low salinity (2 and 4 g/L) at 20 C. Raising salinity to 8 and up to 32 g/L significantly increased survival at this temperature, indicating that avoiding low temperatures is critical for survival of this species when reared at low salinity. A major improvement in the growth rate of L. vannamei was observed at 24 C, but it still was sub‐optimal compared to growth observed at 28 C. Irrespective of salinity, high survival rates were observed at both 24 and 28 C, but variable growth rates were recorded. Contrary to L. vannamei, the Atlantic white shrimp, L. setiferus, which was reared for 28 d at 24 C only, had better growth performance at 8 g/L compared to 2, 16 and 32 g/L. Under equal experimental conditions, L. setiferus had considerably lower weight gain and survival than L. vannamei.  相似文献   

12.
This study aims to develop a hybrid zero water discharge (ZWD) - recirculating aquaculture system (RAS) system to improve water quality, as well as the growth, survival, and productivity, of the super-intensive white shrimp culture under low salinity conditions at semi-mass and the industrial level. The study consisted of two parts: (1) a semi-mass trial for the optimization of shrimp production using a hybrid ZWD-RAS system with a total volume of 2.7 m3 at the different shrimp stocking densities of 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 and (2) an industrial trial at a commercial shrimp urban farming facility in Gresik, East Java, with total volume of 110 m3 at the optimum shrimp stocking density from the semi-mass trial. Both the semi-mass and industrial trials were performed in five steps: (1) preparation and installation of the RAS and ZWD system components; (2) preparation of microbial components including nitrifying bacteria, the microalgae Chaetoceros muelleri, and the probiotic heterotrophic bacteria Bacillus megaterium; (3) acclimatization of white shrimp post larvae from the salinity level of 32 ppt to 5 ppt; (4) conditioning of the biofilter used in the RAS and shrimp tank (microbial loop manipulation in ZWD); and (5) shrimp grow-out rearing for 84 days and 60 days for the semi-mass trial and the industrial trial, respectively. The hybrid system combined a ZWD system and an RAS. Shrimp tanks were conditioned with the addition of microbial components for ZWD at the beginning of the culture period. The RAS was operated when NH4+ and NO2-N levels in shrimp culture reached above 1 ppm until the levels decreased to 0–0.5 ppm. The culture performance in the semi-mass trial at 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 stocking densities was not significantly different for final mean body weight (12.06 ± 5.72, 11.84 ± 3.58, 12.04 ± 3.71 g/ind, respectively) and productivity (4.205 ± 0.071, 4.691 ± 0.025, 4.816 ± 0.129 kg/m3, respectively). Significant differences in survival (70 ± 7%, 53 ± 3%, 40 ± 4%, respectively) and feed conversion ratios (1.54 ± 0.01, 1.82 ± 0.00, 2.16 ± 0.03, respectively) were observed between the three different stocking densities. Water quality parameters and microbial loads during the semi-mass trial were similar for all stocking densities and were within the tolerance levels for white shrimp grow-out production. The results of the semi-mass trial showed that the hybrid ZWD-RAS system can maintain water quality and a microbial load up to a 1,000 PL/m3 stocking density; however, the optimum performance based on survival, feed conversion ratio, and productivity was reached at the 500 PL/m3 stocking density. The industrial trial of the application of the hybrid ZWD-RAS system using the optimal stocking density of 500 PL/m3 resulted in a comparable shrimp survival of 78% with a total production of 298 kg shrimp biomass (equal to a productivity level of 2.7 kg/m3). The overall results of both the semi-mass and industrial trials showed that the application of a hybrid ZWD-RAS system allows optimal shrimp survival and growth at the stocking density of 500 PL/m3 and has high potential for application in commercial shrimp grow-out production at low salinity levels.  相似文献   

13.
A 40‐day experiment was conducted to investigate the effects of different Ca2+ concentration fluctuation on the moulting, growth and energy budget of juvenile Litopenaeus vannamei with an initial wet body weight of (1.20±0.01) g. The Ca2+ concentration of the control group C385 was 385 mg L?1 throughout the experiment, while the Ca2+ concentration of the C591, C803, C1155 and C2380 groups periodically fluctuated from 385 to 591, 803, 1155 and 2380 mg L?1 respectively. The moulting frequency (MF) of the shrimp in the Ca2+ concentration fluctuating groups was significantly higher than those in the control group (P<0.05). The specific growth rates (SGRd) and feed intake of the shrimp in the C591 and C803 groups were significantly higher than those in other groups (P<0.05), but no significant differences in feed efficiency were found among all groups (P>0.05). The shrimp in C591 and C803 groups spent significantly less energy in respiration, while depositing significantly more energy for growth than those in other three groups (P<0.05). These results showed that proper Ca2+ concentration fluctuation could increase the MF and growth rate of the juvenile L. vannamei, and according to the regression formula made using SGRd and range of Ca2+ concentration fluctuation, periodically enhanced Ca2+ concentration of 295 mg L?1 in the seawater was suggested to be used in shrimp culture.  相似文献   

14.
The reduction in alkalinity and pH occurs due to the consumption of inorganic carbon by bacteria present in the biofloc. The objective of the study was to evaluate the effects of different doses of calcium hydroxide on the water quality and growth performance of the Litopenaeus vannamei in a biofloc system. The experiment consisted of four treatments with three repetitions for each treatment: Control treatment (TC), in which the pH maintained above 7.2 due to the application of 0.05 g L?1 of calcium hydroxide, and treatments T10, T20 and T40, in which daily doses of calcium hydroxide equivalent to 10, 20 and 40 % of the total amount of feed offered to the shrimp, respectively, were added to the environment. Twelve experimental units (150 L) were stocked with 85 juveniles of L. vannamei (0.18 ± 0.06 g), corresponding to a density of 425 shrimp m?3, and cultivated for 56 days. The values of alkalinity and pH for treatments TC and T10 were similar and significantly lower (p < 0.05) than those for treatments T20 and T40, which differed (p < 0.05) between each other. In terms of growth performance, TC, T10 and T20 performed significantly better (p < 0.05) than T40. There were no significant differences (p > 0.05) in the survival rates. The results obtained indicate that doses of 0.05 g L?1 of calcium hydroxide or daily applications between 10 and 20 % of the total amount of feed offered to the shrimp can be used for the correction of alkalinity and pH.  相似文献   

15.
Feeding aquatic animals with bacterial encapsulated heat‐shock proteins (Hsps) is potentially a new method to combat vibriosis, an important disease affecting aquatic animals used in aquaculture. Food pellets comprised of shrimp and containing Escherichia coli overexpressing either DnaK‐DnaJ‐GrpE, the prokaryotic equivalents of Hsp70‐Hsp40‐Hsp20, or only DnaK were fed to juveniles of the white leg shrimp Penaeus vannamei, and protection against pathogenic Vibrio harveyi was determined. Maintaining pellets at different temperatures for varying lengths of time reduced the number of live adhering E. coli, as did contact with sea water, demonstrating that storage and immersion adversely affected bacterial survival and attachment to pellets. Feeding P. vannamei with E. coli did not compromise their survival, indicating that the bacteria were not pathogenic to shrimp. Feeding P. vannamei with pellets containing bacteria overproducing DnaK (approximately 60 cells g?1 pellets) boosted P. vannamei survival twofold against V. harveyi, suggesting that DnaK plays a role in Vibrio tolerance. Pellets containing DnaK were effective in providing protection to P. vannamei for up to 2 weeks before loss of viability and that DnaK encapsulated by these bacteria enhanced shrimp resistance against Vibrio infection.  相似文献   

16.
Two pond experiments were conducted at the Waddell Mariculture Center to compare production characteristics of the native Penaeus setiferus and Pacific P. vannamei white shrimp in South Carolina. In 1985, 7–9 day old postlarval P. setiferus were stocked in one 0.1 and one 0.25 ha ponds, while P. vannamei of the same age were stocked in one 0.1 and one 0.25 ha ponds, while P. vannamei of the same age were stocked in one 0.1, one 0.25, and one 0.5 ha ponds. Both species were stocked at 12 shrimp/m2. The shrimp were fed a 25% protein commercial food and harvested by draining after 147 d. Sarvival in all ponds was > go%, but growth and production of the P. setiferus were considerably lower than values obtained for P. vannamei: 12.8 g and 1,555 kg/ha/crop for P. satiferus versus 19.7 g and 2,477 kg/ha/crop for P. vannamei. In 1989, duplicate 0.1 ha ponds were stocked with P. setiferus and P. vannamei at 60 shrimp/m2, and two additional 0.1 ha ponds were stocked with P. setiferus at 40/m2. The P. setiferus postlarvae were produced at the Waddell Center from captive-reared and wild South Carolina brood stock. Rearing procedures involved paddlewheel aeration (10 hp/ha), regular water exchange (averaging 16–21%/d in all ponds), and use of a 40% protein feed. Due to the availability of postlarvae, the various treatments were stocked at different times. Both P. setiferus treatments were reared for 145 d, while the P. vannamei were reared for 165 d. P. setiferus at the 40/m2 density attained mean size, survival, and standing crop biomass at harvest of 13.5 g, 97.5% and 5,259 kg/ha/crop, respectively. The 60/m2P. setiferus treatment was stocked 2 wk earlier and yielded 15.2 g mean weight, 87.5% survival, and 7,995 kg/ha/crop at harvest. The P. vannamei 60/m2 treatment, which was stocked 3 wk earlier than any of the P. setiferus, produced mean size, survival and standing crop biomass at harvest of 17.1 g, 69.5% and 7,187 kg/ha/crop. Both survival and production levels would have been higher had not one replicate experienced a partial mortality due to a feeding accident. The 1989 study yielded what is thought to be the highest production levels yet achieved with P. setiferus in pond culture. These results suggest that P. setiferus may be a viable alternative to P. vannamei for intensive cultivation in the continental U.S. when P. vannamei are unavailable. Further evaluation of this potential is needed.  相似文献   

17.
The hypothesis that intraspecific competition affects survival and growth during the culture and harvest at extensive/semi-intensive Penaeus vannamei shrimp ponds was evaluated. Thus, the effect of stocking density on the biomass, shrimp average weight, survival, and economic performance during the culture (133 days) and at the harvest of the P. vannamei shrimp was investigated in 400 m2 earthen ponds. In order to reduce the likelihood of infectious diseases, shrimp received preventive health treatments (probiotics and β-1,3/1,6-glucans) during all culture phases. In this way, the effect of density on the intraspecific competition for space/food was isolated. Ponds stocked at 6, 9, and 12 shrimp m?2 showed competition-dependent growth. Ponds stocked at 12 shrimp m?2 presented a mortality (12 %) between days 76 and 99. Competition, and accordingly individual growth reduction, could have begun at day 76 at a density of 5 shrimp m?2. Survival was significantly higher at 6 shrimp m?2 (84.2 ± 6.2 %) compared with the 12 shrimp m?2 (64.8 ± 12.4 %) treatment, while no significant differences in yield were observed between both treatments. Ponds stocked at 3 and 6 shrimp m?2 presented the best benefit–cost rates. The optimal shrimp density during the experimental culture was 5 shrimp m?2. Given the experimental conditions and considering the fraction of density-independent mortality observed, the optimum stocking density was found to be 6 shrimp m?2.  相似文献   

18.
A multivariate animal model and multi-generational data from a two-stage selection shrimp breeding program were used to estimate genetic parameters for a genetic nucleus of Penaeus (Litopenaeus) vannamei. A total of 408,648 records from years 2008 to 2010 production cycles provided by a Mexican hatchery were analyzed. The studied traits were survival from 0 to 28 days of age (S1), square root of body weight at 28 days of age (W11/2), survival from 65 to 130 days of age (S2), and body weight at 130 days of age (W2). Mean (standard deviation) for W11/2 and W2 were estimated as 5.4 mg1/2 (1.55) and 13.6 g (3.1), respectively, while mean (standard deviation) for S1 and S2 (as proportions) were estimated as 0.20 (0.41) and 0.71 (0.45), respectively. Heritabilities for S1, W11/2, S2, and W2 were 0.03 ± 0.01, 0.13 ± 0.03, 0.04 ± 0.01, and 0.21 ± 0.04, respectively. Genetic correlations of S1 with W11/2, S2, and W2 were ?0.49 ± 0.21, ?0.29 ± 0. 21, and ?0.40 ± 0.16, respectively. Genetic correlations of W11/2 with S2, and W2 were 0.55 ± 0.17, and 0.71 ± 0.12, respectively, and genetic correlation between S2 and W2 was 0.56 ± 0.10. Results show that selection based on W2 has a positive effect on S2, while selection based on W11/2, as an early selection criterion, would increase the selection responses for W2 and S2.  相似文献   

19.
Determination of differentially expressed protein profile is necessary to understand the host response to viral infection. Proteomics can be applied as a tool to examine white shrimp Litopenaeus vannamei molecular responses against white spot syndrome virus (WSSV) infection, thus enabling development of effective strategies to reduce their impact on farms. In the present study, specific pathogen-free shrimp was tested against WSSV infection under several time intervals. Shrimps were submitted to a viral load of with 5.5 × 106 viral copies in 100 μL/shrimp. The monitoring of infection was performed in intervals of 6, 12, 24, 48 and 72 h after infection. The analysis was realized using 2-DE, and differentially expressed proteins were identified by MALDI-TOF mass spectrometry (MS) peptide mass fingerprint (PMF). Between the differentially expressed proteins found in the infected animals, the most important were identified as caspase-2, ubiquitin and F1-ATP synthase. They are interesting candidates for biomarkers because could be related to the beginning of apoptosis process. The differentially expressed protein profile creates a new paradigm in the analysis of L. vannamei shrimp molecular response to WSSV infection and in virus–host relationship. Furthermore, it proposes potential biomarkers that allow strategies both selecting less susceptible individuals and reducing the impact of viruses on farms.  相似文献   

20.
The effect of chitosan, a polymer of glucosamine obtained by the deacetylation of chitin, on growth, survival and stress tolerance was studied in postlarval Litopenaeus vannamei. An experiment was performed with postlarval shrimp (mean initial wet weight 1.2 mg) fed five isoenergic and isonitrogenous diets containing five supplemented levels of chitosan (0, 0.5, 1, 2 and 4 g kg?1 diet, respectively). The five compound diets (C0, C0.5, C1, C2 and C4) sustained shrimp growth throughout the experiment. Growth performance (final body weights; weight gain; SGR: specific growth rate) in shrimp fed diet C2 was significantly higher than that in shrimp fed diets C0, C0.5 and C1 (P < 0.05), diet C4 treatment provided intermediate growth result. The survival in shrimp fed diet C1 was significantly higher than that in shrimp fed C0 diet (P < 0.05), other diets treatments gave the intermediate survival results. No significant differences were found in growth and survival between diet C2 and C4 treatments. After 9 days of a stress tolerance test, survival in shrimp fed diets C1, C2 and C4 was significantly higher than that in shrimp fed diets C0 and C0.5. We concluded from this experiment that the incorporation of a moderate dietary chitosan was beneficial to the development of postlarval L. vannamei. Considering the effect of chitosan on both growth and survival of postlarval L. vannamei, second‐degree polynomial regression of SGR and survival indicated optimum supplement of dietary chitosan at 2.67 and 2.13 g kg?1, respectively, so the level of chitosan supplemented in the diet should be between 2.13 and 2.67 g kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号